PACIFIC JOURNAL OF MATHEMATICS
Vol. 39, No. 2, 1971

COHOMOLOGY GROUPS ASSOCIATED
WITH THE 85-OPERATOR

BoHuMIL CENKL AND GIULIANO SORANI

Let M be a complex analytic manifold of complex di-
mension m. The manifold J, considered open, is a submani-
fold of a manifold M’ of the same dimension, and its
boundary 91/ is a smooth C*manifold. Let A?-¢ be the sheaf of
germs of complex-valued (p, ¢)-forms, p and ¢ are integers,
p=0, ¢ =0. The exterior differential of an element u c 477
can be written in a unique way as a sum du = 0u + du. There
is a real operator

douw =V =1 (Qu — ow)
and the real second order operator
dd, =2V =100

defined on A??. Let AR? ={a=a;+ ay€ AP 9D A%? |y = a,}
be the sheaf of real (p, q)-forms. Then we get two short
exact sequences of sheaves

a0 d
0———),_%wz——)Ap,q————aAp+l.q+1—>Ap+2.q+1@Ap+l,q+2
(1.1)

dd, d
0—-)%Z’:q-—)Aﬁyq.—.—)Ag+l,q+1_—_.)Ag{+2,q+l@Ag+1,q+2

where Z27¢ and 4?7 are defined by these sequences. The
purpose of this paper is to discuss the cohomology of these
two sequences.

The importance of the cohomology of the first sequence,

Ker d on I'(M, A9

. Ayr = 22
2 * 001" (M, A=)

b

lies in its application to the study of strongly g¢-pseudoconvex mani-
folds—A. Andreotti, F. Norguet, B. Bigolin and others. The coho-
mology of the second sequence,

Kerd on I'(M, A%")
dd, (M, Ay )

(1.3) ARt = ,
contains (for p = q) the refined Chern classes of complex analytic
vector bundles over M. In both cases the first cohomology group
H'(M, -) plays the important role, therefore we restrict ourselves to
this case.

As for the cohomology of the first sequence (1.1), B. Bigolin
studied recently the relation of 42¢ with the so called Aeppli coho-
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mology

Ker 0 on I'(M, A”9)

(L.4) g = 9 on I -
oI (M, A™%) + ol (M, A»")

and with H*(M, C) under certain assumptions on the manifold M
(Stein, k-pseudoconvex, compact Kiahler) using methods of sheaf
theory. The main results of this paper are proved by direct Hilbert
space methods. The cohomology of both sequences (1.1) are studied
simultaneously. The statements concerning the first sequence (1.1)
can be considered as another proof of some results obtained by
Bigolin. It is shown that the cohomology of M with coefficients in
the sheaf &7 and also in 7?7 is, under certain conditions on the
boundary of M open, finite dimensional and isomorphic to the har-
monic spaces constructed from Spencer’s resolutions of the corresponding
sheaves. Using the terminology of [9] we can say that the Neumann
problem is solvable for the operators 93 and dd,, under certain pseudo-
convexity conditions on the boundary of M (Theorem 3.1).

The technique is based on the methods developed by Hormander
as an extension of those introduced into the subject by Kohn, Morrey,
and Ash. The relatively new part in this direction here is the
application of Hormander’s technique to the Spencer resolution of the
sheaves " and 77",

B. Mac Kichan told us recently that he can prove, using the
d-estimate [8], that the Neumann problem is solvable for the operator
00 on complex-valued functions under certain boundary conditions on
the open manifold M.

2. Before we start proving the main results concerning the
open and compact manifolds, let us start some elementary properties
of the sheaves &?? and &#¢* defined as the kernels of the operators
00 and dd, respectively—see (1.1)—and summarize the known results
connected with our considerations.

PROPOSITION 2.1. The sheaf FP° is the sheaf of germs of differ-
ential (p, 0)-_forms W=N+[, where N is a local holomorphic (p, 0)-form
and p is a d-closed (0, p)-form.

Proof. An element we &77° if and only if 60w = dow = 0. From
the exactness of de Rham’s complex, we conclude that there exists
re AP such that dh = dw. But ow e AP*° therefore o = dw and
on =0. Denote ® — A=/, Then d(@w — ) =0 =0, therefore ou =
0 and w =\ + [ as stated above.

REMARK. If we denote by £° the sheaf of germs of holomorphic
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p-forms and by S#? the sheaf of 0-closed (p, 0)-forms we see immedi-
ately that there is an exact sequence of sheaves

(2.1) 0— SP— 02* P 77 > PO 0,

where S” is the sheaf of d-closed (p, 0)-forms, and the corresponding
exact sequence for cohomologies

- — H'(M, Q") ® H'(M, 2¢") — H'(M, P¢*) — H"'(M, §*) —
— H™(M, Q") @ H"(M, Z£77) -+ .

PROPOSITION 2.2. The sheaf 73° = P is the sheaf of germs of
real parts of holomorphic functions on M.

Proof. Let we A}, ddu=0. Then 6ou = dou =0 and u = f + g,
where 0f = dg = 0. The function o = f— g is real as u is a real
function. Furthermore 64 =0 and 0k = oh =0, therefore h = constant
and « is the real part of the homolorphic function 2f — h.

If B is the projection of a homolorphic function on its real part,
we get immediately the exact sequence

(2.2) 0— R L 5 —0,

where @& = 2°. The map « gives to any ac R a constant function
0 + 7a. We claim that this sequence splits, because there is a sheaf
homomorphism b: &% — ¢® which to each function u e &% associates
a holomorphic function % + v where w = v at a given point of M.
We then have:

PropoSITION 2.3. The sequence (2.2) is exact and splits.

PropoSITION 2.4. Let A®? be the sheaf of C*= complex-valued
(p, @)-forms and A%?* = {we A»*P A"?|w = a + &, ac A”7}, then the
sequences (1.1) are exact sequences of sheaves.

Proof. We prove only the exactness of the second sequence
(1.1) at A% because the proof of the first sequence is analogous.
Let we A3 du = 0. Then there exists w € A2 & A%™ such that
w=a+a+p+p,ac A, ge A%, dw = u. Because dw ¢ A1
we conclude that 0@ = da = 98 = 6 8 = 0 as these terms belong to A7+>?,
AP 12 Arta AP9¥2 pegpectively. From o0& = 0 follows that there exists
@€ A”? such that 0@ = @ and from 08 = 0 we get the existence of
bec A*%,0b= L. Then (a—a)c A»* @ A*? and (b—b)c A?* P A** and
09(a — @ + b—b) = da + 0@ + 05 +068. Putw= —1/2 —1(a—a@ — b — b).
Then we see that W = w e A%? and dd,w = 21/ —100w = d6(a—a+b—b) =
dw = u.
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From the work of Aeppli and Bigolin we have the following
information about the cohomology of M with values in the sheaves
FF 7 and the cohomology V&* (1.4).

PRrROPOSITION 2.5. Let M be a Stein manifold, then we have the
following tsomorphisms:

Ve = H™ (M, C) 2,qg=0
A2 = HY (M, FF+" = H** (M, C), p,g=0
H™(M, Pp% = H*™ "M, C) , r=zl,p+q+2=m=dim, M.

PROPOSITION 2.6. If M is strongly k-pseudoconvex, then

dime H'(M, F¢%) < + o,  rzl,p, =k, p+g+2zm=dim; M,
dimc é”q< -+ oo, p’qgky
dimc Ag,q < + 0y p, q g k .

ProrosiTiON 2.7. On a compact manifold M

dimc/lg*'q< + oo, pyqzl!
dim; H' (M, &F7) < + oo, r=zl,p+q+2=m=dim. M,
dime V&' < + oo, p+qg=l.

If M is a compact Kihler manifold then

Ve = H(M, 9°) = H* (M, &),
Azt = HY(M, ) = H>(M, &) .

3. Let M be an open manifold, M < M’, a submanifold of M’
such that the boundary oM is smooth (C*). Let m=dim,M=dim,M’
as before.

We shall construct first of all the Spencer resolution of the
sheaves %77 and &#?. But, because the resolution of the “real”
sheaf . Z%#* can be obtained from the “complex” one by adding certain
algebraic conditions on the spaces in question, we shall consider the
resolution of <777 and point out simultaneously which conditions have
to be dropped in order to get the resolution of 7.

The second order operator dd, together with its prolongations
can be factored through the sheaf of germs of the jet bundle J,(A%9),
=2, and thus we can define the vector bundle R??*— M’ by the
commutative diagram
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0 5 R?.q 5 Jl(Ag.q) RN A%H,q @ A%,qm
/

/
.
/

(3.1), 7,

Aﬁ,q

for I = 2. Let us denote by 6 the formal differential ([9]) and define
the vector bundles ¢7;4— M’ and P} ,— M', 0 < i < 2m, by the sequences

T

(3.2), 0 g7 — R Ry 0,

where 7 is the ordinary jet projection. Now let

(3.3) Pi, = (A T*® Rr/s(A T* ® g5) ,
T* = T*(M’) being the cotangent bundle of M’. It can be shown
([3]) that having chosen a splitting » of (3.2), we have an isomorphism

G4  PL=AT*QRIDIAT Qg7 0=<i<2m.

Furthermore there is a uniquely defined 1st order differential operator
D such that for any vector bundle E — M’ and for the corresponding
jet bundles

(3.5) D:J(E) — T* R J,_,(E) .

This operator is universal for all linear differential operators on E,
in the sense that for any subbundle R, of J(E) given by an operator
in the same way as R!? in (3.1), was defined, D maps R, into
T*® R,_,. Therefore

(3.6), D: Ry — T ® BRI, P,q=0.
The restriction of D to the kernel g7} of the jet projection x, (3.2),
is actually (—9).

The operator D, (3.6), and a splitting N of (3.6), define the 1st
order differential operator D, = D-\,

3.7) Dy R»* —— T* Q R .
Now we are in the position to state

LeEMMA 3.1. Let PP — M’ be the sheaf defined by the operator
dd, (1.1). Then the sequence
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D D D
(3.8) 00— e Py, P;, oo P >0,

where, using the tsomorphism (3.4),
Du = D(0, ) = (Do — £, D(Dyo — Q)), u € P;,q, 0st1<2m,
18 an exact resolution of FPg? by fine sheaves.

Proof. It follows from the general theory—see [8].

COROLLARY.

M -~ KerD on I'(M', P, ) .
3.9 HY (M, F°p9) = 2:0) ~ fptlatl
( ) ( G DI, P,?,q) R

In order to study this group we need an explicit description of the
sheaf P, ,.

Let U be a coordinate neighborhood in M’ with complex an-
alytic coordinates (z',---,z™) related to the real coordinates (z,---,2*™)
by the usual relations 2/ = 2% + 1/ —12%,1 <j < m. In order to
get an expression more suitable for calculation let us introduce at
this point a hermitian product {,) on the tangent bundle T'= T(M").
This product is locally given by a hermitian matrix h = (hi;), {0/0%,
0027y = h;;, {0/0%°, 3/0Z") = 0, and the matrix ‘A~ = (k%)) gives an inner
product on the cotangent bundle 7* by the formulas {dz’, dz’> = h%,
{d#', dz7) = 0.

As the differentiation of the hermitian product involves differ-
entials of the matrix A it turns out to be useful to intorduce a more
suitable frame. Let

(3.10) (@' «+-, @™)

be C= (1, 0)-forms on U such that
W = i aidz*, dz’ = i biw*
k=1 =1

and (@', w) =09 1=<1,5 <m. We denote by (9/0w’, ---, 0w™) the
frame dual to (@', «:-, ®™).

Identifying P;, with the direct sum in the isomorphism (3.4) we
get from straightforward local considerations

PrOPOSITION 3.1. FEach element we P; ,, uw = (0, 1) can be written
locally in terms of the frame (3.10) in the form
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0= éplwz + gpid}’,
@1y zfzz‘ @ N @ ﬂé N0 A\ & +l,j§’:;l P A @
+ ijzlmﬂ A @,
T+ 9 =0,75+795;=0,
where

01 = (2015,0" A & + 3 07,07 \ &
+ Zkg} Prraa@* @ @' \ & + 2}; Pirea@* @ @ N\ @’

+ 23 g P17:5,0" ® ' \ @7 + Z}; 0ir,0* Q @' N\ @)

and
©; = exactly the same expression as for p, if p is replaced by p.

Ti = 2 X170 @ O N O + F 3 7100,0" Q BTN @7

i = 2}; Niri @ @ 0" A @7 + Z}g} Niri@* Q @ A @7,

3

Vi = 2 2\ Nz n® Q @ A @7 + Z'k; Vi, ;0 Q @' N @7,

1

&
Il

Mz

Nr; = & 2 Niran®F Q@ 0f A\ @7 + ZkZl Nirkii®* Q@ @' A\ @,

k

Il

stands for [I| = p,|J| = q,

ol = @wh A o0 A @,
W = @A e /\a)jq,i1<'i2< <@'p,jl<j2<... <jq.

All these components satisfy the conditions
(3.12) =0, M=, M= iy

REMARK. The Spencer resolution of the sheaf %77 is an exact
sequence

D D D
Oﬁﬁcp'qﬁﬁpgp,q_"_’f)ép,q te 'Péth 0

where the vector bundles P¢,, are defined in an obvious way by an
expression similar to (3.3). Each element we P, ,, w = (0, 7) has the
local form given by the previous Proposition 3.1, but the conditions
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“for reality” (3.12) are not satisfied.
The complex tangent bundle T = V@ V splits into holomorphic
and antiholomorphic parts. Let V* and V* be their duals.

PROPOSITION 3.2.

(3.13) P = (V'@ 4" @ T ® (V' ® 4%
ST AV (V*® 4R .

Proof. It is easily seen directly or from previous Proposition 3.1.

Before we proceed any further with the general situation
(p, ¢ = 0) let us make an observation about F% = Z7%°. From the
general theory it follows that for any kth order, involutive, linear
differential operator =2, with constant coefficients, from a vector
bundle £ — M into a vector bundle F — M there is in a certain
sense a unique exact Spencer resolution <2, of the sheaf .&” of germs
of solutions to the homogeneous system <5 = 0. The resolution
.., of the sheaf .&” corresponding to the Ith prolongation j'-<r of
the operator <7 is also exact and has the same cohomology as .2,
for any [ = 0. Let us look in particular at the resolution of the
sheaf of germs of holomorphic functions ¢ corrresponding to the
first order operator o:

D D D
(3.14) 0 c C! Oh <o cr 0,7 =2m .

This resolution is defined in a way analogous to (3.8) and C; is the
vector bundle such that we C! is a pair w = (0,&), where o is a
complex-valued i-form and £ is a complex-valued (¢ + 1)-form which
belongs to the ideal generated by the dz’s (in the coordinates in
UcM). Du= D(o, & = (do — & —dé&).

To the first prolongation j'-6 of 8 corresponds an exact resolution

(3.15) 02 2o

where the Ci’s and D are defined using the general principle [8]°
Let us call (3.15) a prolongation of the Dolbeault resolution of 2.
It is not difficult to prove

ProOPOSITION 3.3. The resolution (3.8) of " = F% s the quo-
tient of de Rham’s resolution for R and the prolongation (3.15) of
Dolbeault’s resolution for . In other words the following diagram
is exact and commutative (writing P = P¢,):
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0 0 0 0
l l !

0—R— ALt a0
! ! ! !

(3.16) 0o 2o —o0

! ! ! !

0—sp—p 2p 2 2opr o
J ] ! l
0 0 0 0.

It turns out that the resolution of .2, can be somewhat simpli-
fied. Let us define the following vector bundles over M’; for 4 odd:

V7 is the bundle of complex-valued (p, q)-forms p > ¢,

Ui+ is the bundle of complex-valued (¢ + 1)-forms which belong
to the ideal generated by the dz’s;
for 7 even:

V¢ ig the bundle of complex-valued (p, ¢)-forms p > g,

wiziz ijs the bundle of (¢/2, 7/2)-forms of type a + &,

Uit is the bundle of complex-valued (¢ + 1) —forms which belong
to the ideal generated by the dz’s.

Now let us define

W() —_ W0,0 EB UL
Wl —_ Vl,O @ U2
W2 — VZ.O @ W'l,l @ U3

Wi=VPp VP U

p+qg=21—1,1<51< m.

‘[4./2’5 — @ (Vp,q) @ Wzt@ U2i+1 ,
WZi—l — @ (Vp,q) GB U2i R

PROPOSITION 3.4. The following diagram is exact and commutative

0 0 0 0
) ! l l
0—s R — A2 a4 -4 . a0
! ! l !
61 ——e —c Lol 2o
l« l Y4 l 7 ’ l
0— Fo——w w2, 2 e
J | | ]
0 0 0 0

The operator 'D s defined by D.

Now let us turn our attention to the open submanifold M of
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M’'. Let the boundary 0M be a smooth (C® submanifold of codi-
mengion 1 in M’. A function » on M’ is said to define the boundary
of Mif r<0on M,r>0on M — M, and »r = 0 on oM, with grad
r# 0 on oM. Let Uc M’ be a coordinate neighborhood, U N 611
@, with the coordinates (x', «--, 2"), » = 2m. Having chosen the
hermitian metric on M’ it can be shown (see for example C. B.
Morrey, Jr. “Multiple Integrals in the Calculus of Variations.”) that
the coordinate system can be chosen in such a way that on oM

3 9 .
3.18 <___>: , ,
( ) ox' ox® 0,0<m

and 2" = r = 0 defines 6. This done, assume that

m . 1 & or ;-
(3.19) " = Tar] l;————azl dzt in U
and
0 0 . _
(3.20) <—a‘a7, a_/r> =90 y J < m, On aM-

Notice that (o™, ®™> =1 and (@', ---®™) is an orthonormal frame
(which can be obtained by the Grame-Schmidt orthogonalization

process).
Because d/0w’ = >, bk0/oz*, we get from (3.18), (3.20) that

b7 = 0, 1sj<m.

Therefore on 6M N U we have db?/ox = 0,1 <m, 1 <j <m. Finally,
on oM N U, we have the identities

or or .
3.21 — =0, — =0,  k .
( ) ow?! owiow* 9o 16 < m

Let = denote the usual star operator, x: A”?— A™*™"?, This
operator can be defined by the formula

by vV =0 N =¥, 6, Y € AP

where v = *(1) is the volume element on M’. The volume element
has the local form *(1) = det (k) (V' —1)"dz' A\ +++ A dz™ A dZ' A -+ dZ™,
or, in our special frame,

(3.22) )= 1V =D"@' A res AW A BN oer N O™

For any C*-function ¢ on M let L*(P;,, ¢) be the space of all
smooth sections u of P;, such that
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Il = | Jufete) <=,

||’ = {u, u). The global product will be denoted by (,); =
S {, e ?x(—1). The operator D: P;,6 — P;}' defines a closed densely
M

defined operator L*(P;,, ¢) — L*(Pi’}, ), which we denote by D. Let
us denote by D* its adjoint; and by P, the space of those sections
of Pi, over M which can be smoothly extended across the boundary
oM into M'. Because the space 2. =Pi, N Dy (D stands for the
domain of D*) is dense in &, N &, with respect to the graph norm
w—||ull, + || D*ull, + || Dulls, let us look at <2 more closely. It
can be shown in the same way as in [6] that ue P, belongs to
4. if and only if

(3.23) (Dv, w), = (v, D*u), for all ve P .

Using this relation let us describe the space ;. explicitely. As we
are mainly interested in &;. let us take an element uw e P}, u=(p, 1),
and ve PS,,, v = (0,7) (see Lemma 3.1). Then

{Dv, uy =Dy — 7, 00 + {Dio — Dy, >,
where

Do — 7,00 =do A\ xp — (OMG + 7) A %0 ,
Dy, > = dv N\ *T — ONY A *7)
and Dfo = fD:o for any function f because D is the curvature

form of the connection D, defined on the vector bundle R??— M’.
Furthermore we get the formulas

do N\ xpe™? = d(6 N\ #pe™?) — o N d(xpe?)
= d(o A\ #pe™?) — x[e?xdx(pe~?)]e™"
dy A\ x9e”? = d(v A\ *0e™?) + 7 A d(+7e?)
=d(v N\ #7e7?) — [e*xdx(Pe?)]e™®

therefore for any v with compact support in U, U N oM = ¢,

[ oo, wese() = | KD — 7, 03 + Dig — Doy, meta)

UnM unm

- g {d(o A pe?) — d(v A =De?)}x(1)

onm

+ g {_(57\'0 + '7) A *,5 — 0 N [e¢*d*(ﬁg—‘¢)]

onm

+ Do A 7 + ONY A+ — 7 A x[e?xdx(e?)]e (1) .
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By Stoke’s formula we get
(Dv, w), — (v, D*u), = g (@ A *B — 7 A *T)e*x(dr) ,
vnoM
where
D*u — (_e¢*d*(pe“‘¢) + e, _e¢*d*(776_¢) + oo.) y

and .-« stands for the terms which do not involve differentiation of
or ¢. From the above remarks it follows that

| @A5—7 A D@ =0

UnNed

for any ve P), with compact support in U if and only if ue Z.
Because ¢ and v can vanish independently we get instead

Sa/\*ﬁe"’zo, Sv/\*ﬁe“¢= .
uvnoM AVENS
If we use the usual notation for the decomposition of forms into the

tangent and normal parts @ = t® + n® on oM, we conclude from
above that o A 0 = n(o A *0), ¥ A *7 = n(y A\ *p) because

N
o N xpe? = 3 te N\ =p)e? =0
UNoMx UneM

and analogously for the second integral. But, if for any form o,
we have @ = n® on oM, then dr A ¢ = 0. Therefore

(3.24) dr No A\ =p=0, dr AY A=) =0.

From the first identity we can conclude that dr A =p = 0, because
o is a 0-form with values in R?? Therefore {0 = 0 and from the
formulas

*N = tx, *t = nx

we conclude that txp = *np = *np = 0, so that no = 0. Recall that
v is a (T*® Ax9-valued 1-form (as I(T* QR gy T* R TR A%9.
Such a form < splits into (1,0) and (0, 1)-parts, ¥ = v, + 7. The
secon condition (3.24) should hold for any v with compact support
in U. Therefore

(3.25) dr AN =0, drATBLAx=0

should hold for any 7, and 7,. From Proposition 3.1 follows that we
can write
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m

n= Zk Ni7a®* Q@ 0" \ @7 + Z’sz D@ Q ' N\ @7

=1

m

350540 @ & A 0 + 3 37740 Q0T N @,

where 7;5., etc ... are 2-forms (3.11). We shall use the obvious
notation

= 3, 51 70,0" @ 07 A 0

ll71= w=1
1VI=q

where U, V and w stand for barred as well as for unbarred indices.
Then we can write, instead of (3.25), for any (1, 0)-form ¢ and any
0, 1)-form

dr A ¢ N * gy =0,  dr Ay A *Npye = 0.
And these identities have to be satisfied for all components of 7.
PROPOSITION 3.5. An element ue PL, u = (o,7), belongs to D

of and only if for any ¢ A"’ e A™ with compact support in
U, UnoM +# @,

no =0,
d/"/\gé/\*ﬁm/;w:oy d/r/\"f'f/\*ﬁUV;w:Oy
holds (on U N oM).

Using the explicit coordinate description (3.11) of an element
u € P}, we get, by direct computation,

(3.26)

COROLLARY. An element ueP;‘q belongs to ik if and only if
for its components (via (3.11)) the following identities hold:

n0;7 =0, NP5 =0, Nn0;5.: =0

0 L
Zlaa’rl’?ukuzos lz‘fa/rﬁ]uku:oy
(3.27) E"‘: or —0, Eml or —0,
i=1 0w’ i=1 0w
z 0r., 0 m — 0
- 5&7711%,11 =49, Z 7]1J wni; =0,

together with their complex conjugates.

REMARK. If we write down only formally the conjugate equations
to (3.27), than using the remark following Proposition 3.1 we get the
boundary conditions for an element % in complex situation.
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For an element u € . write Du= Au + -+- and D*u = By + +--,
where .- - stands for those terms where w and ¢ do not get differ-
entiated. Then for such an » = (o, ) we have

(3.28) Au = Ao, 1) = (dp, dy) .
Let us introduce symbols
d*w = e*d(w-e~?)

and
@ =S o AN+ > @A dE
=1 =1
The differentiating part of the adjoint D* gives then

(3.29) Idin, 0t — Sdin;®’ — Sdin;e!
— X0 — Idin;el + Sdin;d) .

It is an easy computation to show that for any we <. there is an
inequality

I Awlly + || Bully — || Dull5 — [[D*ull; |

3.3
(3-30) < Cllull,(| Dully + | D*ull, + [ ul)

where C is a constant independent of » and ¢.

We have chosen the local coframe (w!, ---, ®™), where o’ is
(1, 0)-form. Therefore there are smooth (C*) functions ¢}, and ai,
such that

m m
ow' = >, ¢, N\ 0F, 00" = >, ¢Lw! N\ @F,
Jrk=1 k=1
m o — =t —
ow' = kZ a;; @ N\ ©F, 00" = kZ ai @' N\ @F .
g, k=1 Jrk=1

If w is any function, then

Gow = —3w = — 3w A @F

kyy=1

02 LA 0 0? LI 0
3.3D) gy, = a@fjauwk + 3 "f’ca—f:i’ Wy = 2% 4 IA w_

w;k = wkj .

And we introduce other symbols, namely
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0w i 0w i ow
Wk = S T 2 = S T2

w;ﬁ = w%;, wj'k == wkj .

(3.32)

Because x(dr)/|dr| is the volume element on oM we have
dr A *dr=|dr+(1), where *(1) =1/ =L"®' A o+ AO™ A @ A +++ @™
is the volume element on M’. Let f,g be any two functions with
support in a coordinate neighborhood U M’. Then

A(fge (V' —D)"@' A +++ AN O E A OFTEA e s AWM A @A oo A\ O™
= (—1)"‘1%56““’*(1) + (=¥ fedige?+(1) + (= 1) fge?0,x(1)

where o, is defined by this relation. By Stoke’s fromula we get

PRroOPOSITION 3.5. Let f, g be complex-valued functions (C*) with
supports in U, then we have the formula

g %ge—ma) - —S frdigex(1) — S faeoux(1)
(3.33) vhu 5 v unau
+ | raerean) .

Tnim

There is an analogous formula for g ofjo@w*ge=?x(1) which is
ovumM
obvious.
One more technical device is needed for obtaining the basic
estimate—the commutation relations. Using the definition of df and
replacing w in (3.31) by ¢ we get

dqsaaa@j)‘? w = W- ¢k_7 + Zc]kd¢w - gfck]a_i ’
(3.34)
ow 0 - i 76 ™ ;0w
At — geiw = weus + Zahdiw — BabsZ

DEFINITION 3.1. Let 7 be a tangent vector at oM. The quad-
ratic form

(3.35) 9or, 7 N 0

is called the Levi form.
If we use the orthonormal coframe (@', -+, ®™) then the Levi form
can be written in the form

m

2 iy, = e

i,5=1
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Now, let us compute explicitely || Au |} + || Bu|[} for ue <2 and
use the estimate (3.30) to make the results of [4] immediately appli-
cable. The computation is rather long and routine. Using (3.28)
and (3.29) together with (3.33) and (3.34) we get, for ue . with
support in U, the terms involving o only:

2 2) apl ¥ \ apf ¥ | apl >
(I Auls + | BulE), z§ {[ 20y | Dol | 22,
(3.36) 5
+‘ Pz'}—¢*(1)+...
and the terms involving 7 only:
(Il Aw|ls + || Bull3)
. ony; [ 577 , oy, |2 | on; | ‘ onr; I
=X S 2 %] J J
Um[{ ow* ow* + ow* | + ow* + o0w*
(3.37) ‘
o o |07 [ o | 9% [ s
%0 | T130r | T | ek }e L) A

Let us put for the moment:
k, = the boundary integral in (3.36),
k, = the integral following %, in (3.36),
k, = the terms involving the d?p’s,
k, = the remaining terms.
Therefore (3.36) can be written in the form

U0 P+l B4l Pl Ber
rnx
+ 3 | (0T + 03:78) + 6110575 + w305 B+ (1)
[Zp

+k + k4 kst k.
The integral k, splits into %; and %}'; k, = k} + k), where
, i = Or ko 0T —f o = O
by =2% ‘ {Cé‘jtoa"toi%; + €05+ ey 5 Pz%;

Y —
unaM

@505 Pt et (dr)

Using the boundary conditions (3.27) all terms involving the d?o’s
are zero, because 1o = 0 implies

S0 =0, et

a")
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and simple substitution does it. As for the remaining part of %, we
get by integration by parts

32 = o'r —
=3 [ [P s o
k Y 0: + i 0+ pECC
Ui
o*r } —¢x(d
a0 (dr) -

Then

by + k=2 S {rs0;0: + 1505+ 05 + T5i* 05 07

vnox
75+ 05+ P} (dr) .

But the special choice of the local frame in U with the property
(8.21) shows that the last two terms are zero on M so that

(3.38) ky+ k=2 S 7305 0: + 0i-07)e"*(dr) .
Unem
Let us denote by

3‘0z N

oo,
ow* q

3.39) el =23 g {|_@£_

ow*

i last

+ el -
Then it is easy to show that there are constants C,, C,;, C, such that

K] = Clllellls-llells [k = Colllollls+1l 01l

and

k| = Cllells-]ols

Similarly let us define ¢, &, &, ¢, in (3.37). And as we did for Z,
we can also split ¢, into ¢ + ¢, get an estimate for ¢, ¢!, ¢, and
write the boundary integral

t+t=2 g 755 g + N3N + N7
(3.39) Unox
+05+ 75 + NarNa + NueTae = (dr) .
By direct computation we get
PROPOSITION 3.6. For an element we . vanishing outside a

fized compact subset of a coordinate meighborhood U im M’ and for
any ¢ € C*(M), oM e C® the following estimate holds
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HID*uwls + (| Dully — Quu, ) — Quu, u) — Qs(u, u) |

(3.40) .
< Cllullg(|| Dully + [[1D*ully + || w]lls)
where
a 2 a - |2 a 2 a _ |2 a . 2
AT AR NEA ST EY
Qs ) m{ 50 | T30 | Tlaar | T13ar | T e
L/ i /i i /N e /T R R/
+ ow* + ow* + ow* + o0w* + o0w*
a _7 2 a —j 2 _
aer| 55 }e )

Qut, w) = 3 | 90,25 + 0509) + 6110,°B% + 9307

Uvnu
+ 65 (Dei Pus + M50 + N + N E + Yafa
+ 050 a) + S, a + ST + NN
+ i) }e?+(1)
Qs(u, u) = ¥ S 7:5(0:° 05 + 0705 + N Nug + 5N + N7

UnoM
+ N E A+ a1+ N Ra)e?*(dr)
This proposition corresponds to Proposition 3.1.1 is [4]. Now applying
the technique of [4] to our situation we get

LEmMMA 3.1. If the Levi from (3.35) has at least (n — 2) positive
etgenvalues or at least 3 megative eigenvalues at every point on oM
then there exists a constant C > 0 such that

(3.41) | Duly + | D*ul; + |uf* = CS | u[*e~?=(dr)

for we .

We are now in the position that the Kohn-Nirenberg Theorem
can be applied (Theorem 5, §2 [7]). Let us denote by N' the
subspace of P., composed of all sections we P}, satisfying the
boundary conditions (3.23) and

(3.42) (Dv, Du), = (w, D*Du), for all ve P}, .

Let H' be the subspace of N' which is annihilated by the laplacian
DD* + D*D, i.e., H = {ue N*| Du = D*u = 0}.

THEOREM 3.1. For an open manifold Me M', oM c C°, satisfying
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the assumptions of the previous Lemma 3.1, the Newmann problem
s solvable for the operator D: P} ,— P, , (related to dd, by (1.1)) at
P, ,. This means that H* is closed in L*(P},, ), and that there exists
a bounded operator N: L*P), ¢) — L*P}, ¢) such that its range 1is
wn N, and

(i) NH = HN, where H: L*(P, ,, ¢) — H' is the orthogonal pro-
jection,

(ii) each element we L*(P,,, ¢) can be written in the form w =
DD*Nw + D*DNu + Hu, where the terms are mutually orthogonal,

(iiiy DN = ND.

REMARKS. 1. If one drops the “side conditions” (3.12) and con-
siders the operator 00 instead of dd, then exactly the same conditions
on the Levi form are sufficient for the solvability of the Neumann
problem related to 9a.

2. All the computations have been done at P}, only. It would
be only a technical problem to get an extension in that direction
and show that on strongly pseudoconvex manifolds the Neumann
problem is solvable (for 96 and dd,).
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