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GROUPS OF HOMEOMORPHISMS OF NORMED
LINEAR SPACES

R. A. McCoy

For X a Hausdorff space let H(X) be the group of
homeomorphisms of X. We study here certain subgroups of
H(E) where E is an infinite-dimensional normed linear
space.

The set of homeomorphisms from a topological space X onto it-
self forms a group H(X) under composition. There are many
topologies which can be given to H(X), some of which may make
H(X) a topological group. It is natural to ask about the properties
of H(X), both algebraic and topological. Also, what relationships
are there between X and H(X)? One way to attack these questions
is to study various subgroups of H(X). In this paper we shall in-
vestigate certain subgroups of H(E), where E is a normed linear
space.

1. Algebraic properties of H(E). Let X be a Hausdorff space.
If Ac X, S(A4) will denote the set of elements of H(X) which are
supported on A. That is, he S(4) if and only if & |;_, is the identi-
ty on X—A. Let <& be a base for the topology on X. Define B(X)
to be the subgroup of H(X) which is generated by those elements of
H(X) which are supported on elements of <z Then ke B(X) if and
only if h=~n,+++-h, where for each 1 <mn, h;eS(B; for some
B;e <Z. A homeomorphism he H(X) is said to be stable if A =
R, <+ h,, where for each 1< n, h;e S(X— U, for some nonempty
open set U; in X. The stable homeomorphisms of X, SH(X), form
a subgroup of H(X).

We shall consider the following possible conditions on <Z.

B1l. For every B, B,c <7, there exists an he H(X) such that
h(B,) C B..

B1’. For every B,, B,c <#, there exists an he B(X) such that
h(B,) C B..

B2. For every Be.<#, there exists an x€ B and a pairwise
disjoint sequence {B;e &% |B;cB,% =1,2,---} which converges to x
(i.e., for every open set U containing x, there is some B; contained
in U), and there exists an ke S(B) such that a(B;) = B;,, for every 1.

B3. For every Be &% and he H(X), h(B)ec .

B4. For every Be <Z, there exists B’ec <& such that BU B’ =
X, and no Be &7 is dense in X.
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LEmMA 1.1. If <Z satisfies B3, then B(X) is a mnormal sub-
group of H(X).

Proof. Let he B(X) and fe H(X). Then h=h, - h, where
for each 7 < n, h;e S(B;) for some B;c <. Then

Fhi™ = (Fhaf ™)« o+ (ST -

Each fh,f*e S(f(B;)), so that fhf'e B(X).
The following two lemmas can be proved in a manner similar to
the proof of Theorem 2 in [9]. Also see [1], [2], and [16].

LEMMA 1.2. Let <# satisfy Bl and B2, and let he H(X) such
that h is not the identity. If fe B(X), then f is a product of con-
Jugates of h and h™' by members of H(X).

LEemMMA 1.8. Let <Z satisfy B1’ and B2, and let he H(X) such
that h is mot the identity. If fe B(X), then f is a product of con-
jugates of h and h™* by members of B(X).

THEOREM 1.1. If <Z satisfies B1' and B2, then B(X) is simple.

Proof. Let N be a normal subgroup of B(X) having more than
one element. Let fe B(X). Choose he N such that & is not the
identity. Then by Lemma 1.3, f is a product of conjugates of % and
h* by members of B(X). But Since he N and N is normal in
B(X), f is a product of elements of N. Therefore fe N, so that
B(X) = N.

THEOREM 1.2. If <& satisfies B1, B2, and B3, then if B(X) is
nontrivial, it is the smallest nontrivial normal subgroup of H(X).

Proof. By Lemma 1.1, B(X) is a normal subgroup of H(X).
Suppose that N is a normal subgroup of H(X) having more than one
element. Let fe B(X). Choose 2e N such that % is not the identity.
Then by Lemma 1.2, f is a porduct of conjugates of ~ and A~ by
members of H(X). But since A€ N and N is normal in H(X), fis a
product of elements of N. Therefore f€ N, so that B(X)C N.

LEMMA 1.4. If <# satisfies B4, then B(X) = SH(X).

Proof. Clearly B(X)c SH(X). Suppose that he SH(X). Then
h = h, -+ h,, where for each 7 < n, h;€ S(X— U,) for some nonempty
open set U; in X. Since <& is a base for the topology on X, for
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each 7 < n, there is some B;e€ <% such that B;C U,. By property
B4, for each 7 < n, there exists B/e < such that B;U B/ = X.
Then each A, is an element of S(B/). Thus & e B(X).

Theorem 1.1 and Lemma 1.4 thern give conditions which imply
that H(X) is a simple group.

THEOREM 1.3. If <& satisfies B1', B2, and B4, and if every
element of H(X) 1is stable, then H(X) is simple.

Now let us consider the special case of the group of homeomor-
phisms on a normed linear space or a manifold modeled on a normed
linear space. E will always denote a normed linear space, and M
will be a connected manifold modeled on E. By that we mean a
connected paracompact space such that every point in M is contained
in an open subset of M which is homeomorphic to E. If E is finite-
dimensional it will be permissible to allow M to have boundary.

For finite-dimensional E, Fisher defined in [9] a base for M
which satisfies B1, B1’, B2, and B3. A similar base for M can be
found when F is infinite-dimensional.

LEMMA 1.5. If E is infinite-dimensional, M has a base <& which
satisfies B1, B1’, B2, and B3.

Proof. Take <# to consist of all collared open cells in M. By a
collared open cell in M is meant the interior of a collared cell in M.
C is a collared cell in M if there exists a homeomorphism from the
triple (B,; B,, S;) in E onto the triple (C’; C, BdC') in M, where C’
is some subset of M, where B, ={xcE]| ||x|| <7}, and where
S, = BdB.,.

Property B1 follows from B1’, and B3 follows from the definition
of &#. We shall outline the proof that <# satisfies B1’ and B2 by
using a similar technique to that which was used in [9]. Let
Q,, Q.¢ 4. Since M is connected, there are a finite number of ele-
ments of <, say Q% ---,Q", such that Q' '=Q,Q"=Q, and
QR NQ* = @ for 1 < n. For each 7 < n, let f; be a homeomorphism
from (B,; B,, S;) onto (C;; CIQ', BdC;), where C; is some subset of M.
Algo for each © < m, we can define a g;€ S(B,, such that

g(B) C fH@Q NA™) .

Then define &k = f,_\Guifrli =+ [0S Since for each 1< m,
fi(Int By;,) € <&, then he B(M). Also h(Q,) C Q..

To establish that <# satisfies B2, let Qe <#. Let f be a homeo-
morphism from (B,; By, S;) onto (Cl; CQ, BAC) for some set C in M.
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Define ge H(B) by g(y) =|lylly for yeB, and g(y) =y for
ye B, — B,. Let x = f(0), and choose z€ S;;. For each positive in-
teger %, set @, = fo'(Int B,4(2)). Then define he S(Q) by h(y) =
fof ' (y) if yeC, and i(y) =y if ye M — C. It can be verified that
the sequence {Q;} is pairwise disjoint and converges to x, and that
r(Q;) = Q;., for every 1.

LEMMA 1.6. If E is infinite-dimensional, it has a base <& which
satisfies B1, B1’, B2, B3, and B4.

Proof. As in Lemma 1.5, take <2 to consist of all collared open
cells in E. Hence < satisfies B1, B1’, B2, and B3. Klee showed
in [13] that if E is infinite-dimensional, there is a ¢ <€ H(E) such
that @(B,) = E — Int B,. Therefore complements of collared cells are
collared open cells. Then to see that <# satisfies B4, let Qe <Z.
From Theorem 4.1 in [14] it is seen that @ is tame, so that there
exists an fe H(E) such that f(Q) = Int B,. Let Q" = E — f~(By),
which is thus in .<Z because of Klee's result. Clearly Q U Q' = E.

The next two theorems then follow from Theorem 1.1, Theorem
1.2, Lemma 1.4, Lemma 1.5 and Lemma 1.6.

THEOREM 1.4. M has a base <& such that B(M) is the smallest
nontrivial normal subgroup of H(M) and is simple.

THEOREM 1.5. If E is infinite-dimentional, then SH(E) is the
smallest nontrivial normal subgroup of H(E) and is simple.

It was shown in [8] that if F is homeomorphic to the countably
infinite product of copies of itself (we shall abreviate this statement
as £ ~ E°), then SH(E) = H(E).

THEOREM 1.6. If E ~ E°, then H(E) is simple.

It should be noted that if E is an infinite-dimensional Hilbert
space, then E ~ E° [5]. Also, all reflexive Banach spaces are
homeomorphic to Hilbert spaces [6]. In fact, at this time there
seems to be no known infinite-dimensional E which is not homeomor-
phic to E-.

2. Stable structure on E. Whittaker defines the following
terms in [18]. Let %27 (X) be the set of nonempty connected open
subsets U of X such that for every x, y € U, there exists an fe S(U)
with f(z) = y. Set K(X) = U ¢ (X), which is an open subset of X.
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Finally, define R(X) to be the set of he H(X) such that for every
re K(X) and every connected open subset U of K(X) containing x
and A(x), there is a neighborhood V of z and an fe S(U) satisfying
Flr = hly.

It was shown in [18] that if X is a Hausdorff space such that
each open subset contains a member of 2% (X), and K(X) cannot be
separated by any two points, then R(X) is a normal subgroup of
H(X).

As in the previous section, E will denote a normed linear space,
and M will be a connected manifold modeled on E.

Lemma 2.1. 22 (M) is a base for the topology on M, and
K(M) = M.

Proof. If ze M, then there exists a collared open cell Q@ in M
containing 2. Let ¢ be a homeomorphism from (B,; B, S;) onto (C;
ClQ, BdC), for some set C in M (see the proof of Lemma 1.5 for
terminology). Let z,ye€ @, and set a = g7'(x) and b = g~*(y). Define
he H(B,) as follows. First define h(z) = b. Next let ce B, — {a}.
Let {¢'} = Ray[a:c]NS, where Ray [a:c¢] is the infinite ray from a
through ¢. Then ¢ =a + a(¢ — a) for some 0 <a =<1. Define
he) = b+ a(c — b). With h thus defined, define fe H(M) by f(w) =
ghg ' (w) if we@, and f(w) =w if weM— Q. Then feS(Q) and
f@) = y. Therefore Qe 2% (M), which makes 22 (M) a base for
the topology on M. Then obviously K(M) = M.

THEOREM 2.1. If the dimension of E is greater than one, then
R(M) is a normal subgroup of H(M).

It was also shown in [18] that M has a stable structure if and
only if R(M) does not consist only of the identity on M. The con-
cept of a stable structure was introduced and studied in [7]. M has
a stable structure if M = U {U,|a e A}, where the U, are the images
of homeomorphisms %, from B, in E into M which satisfy the
condition that if U, N U, = @ and € (U, N Us), then there is a
neighborhood V of « and an fe S(B,) such that f|, = h;'h.|y. In the
next theorem we shall see that for a large class of spaces E, R(M)
is all of H(M).

THEOREM 2.2. If E ~ E*“, then R(M) = H(M).

Proof. Let he H(M). By Lemma 2.1, K(M) = M. So let xe M,
and let U be a connected open subset of M containing = and h(x).
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Since K ~ E°, by a result of Henderson and Schori in [10], there
exists a homeomorphism @ from M into E such that ®(M) is open in
E. Since @(U) is connected, there is a piecewise linear are, «, join-
ing ®(x) and ®h(x), such that « C @(U). By taking an appropriate
e-neighborhood of a, a collared cell C can be found contained in @(U)
and containing « in its interior. Choose 6 > 0 such that

Bi(@h(x)) c Int C .

Then choose ¢ > 0 such that B.(®(x)) € b9~ (Int B,(®h(x))) N Int C.
In [8] it is shown that SH(E) = H(E) if and only if the strong an-
nulus conjecture for K is true. Then since SH(E) = H(E) for E
such that F ~ E°, we may apply the strong annulus conjecture here.
Thus there exists ge S(C) such that ¢z @) = PP |5, 0@, Define
FeSWU) by f =9 'gp and let V = o~'(Int B.(®(x))). Then f|, = k|,
as desired, so that ke R(M).

COROLLARY. If E ~ E°, then M has a stable structure.

3. Topological propeties of H(E). Let X be a Hausdorft
space, and let & be a collection of closed subsets of X. Define
H_(X) to be H(X) along with the topology generated by the collection

{IC, U]|Ce % and U is open in X},
where
[C,Ul={he HX)|W(C)C U} .

X is (stably) Z-homogeneous if every homeomorphism between ele-
ments of & can be extended to a (stable) homeomorphism in H(X).

For the remainder of this section, F will be a locally convex,
linear topological space such that FF ~ F x F. If A is a closed sub-
set of F, then A is F-deficient if there exists a homeomorphism #%
from F onto F x F such that h(A)C F x {0}. It is a standard
technique (see [12] and [4]) that F is stably &-homogeneous if &
has the property that for C, Dec &, CU D is F-deficient. Lemma 3.1
is a partial converse to this. In Lemma 8.1, Theorem 3.1, and
Theorem 3.2, we shall take & to be closed under finite unions and
under homeomorphisms (i.e., if C,De %, then CUDe %; and if
Ce &, then h(C)e & for every he H(F)).

LEmMmA 3.1. If F is &-homogeneous, then every element of &
is F-deficient.

Proof. Let Ce %, and let f be a homeomorphism from F onto
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F x F. Then the homeomorphism from C onto f~*(C x {0}) can be
extended to some ge H(F'). Let h = fg, so that

mMC) = f9(C) = fr(C x {0) = C x {0} F x {0} .

THEOREM 3.1. If F is C-homogeneous, then it is stably &-homo-
geneous.

THEOREM 3.2. Let F be &-homogeneous. Then SH(F) = H(F)
iof and only +f SH.(F) is open in H_(F).

Proof. Suppose SH._(F) is open in H.(F), and let he H(F). Let

»_, [C;i, U] be a neighborhood of the identity on F which is con-

tained in SH(F'), where C;e% and U; is open for i =< n. By

Theorem 3.1, there exists a ge SH(F) such that glyz o, =h|yr_c;.

Then ¢~'h(C;) c U; for ¢ < n, so that g-*he SH(F'). Therefore h =
g(97*h) € SH(F).

The following corollary to Theorem 3.2 then is true because in-
finite-dimensional Fréchet spaces are homogeneous with respect to
compact sets, which in turn follows from Michael’s version of the
Bartle-Graves Theorem, found for example in [15], and from the fact
that separable infinite-dimensional Fréchet spaces are homeomorphic
to separable Hilbert space, which can be found in [3].

COROLLARY. Let F be a Fréchet space such that F~ F x F.
Then SH(F) = H(F) if and only if SH(F) is open in H(F) under
the compact-open topology.

Kirby showed in [11] that if E is finite-dimensional, then SH(E)
is open in H(E) under the compact-open topology. But he made use
of the fact that H(E) with the compact-open topology forms a
topological group. This is not the case for infinite-dimensional E.
We might ask the following questions. If H.(F) is a topological
group, is SH.(E) open in H.(E)? Which classes, &, make H_(E)
into a topological group? One answer to this last question is the
following theorem.

THEOREM 3.3. Let E be an infinite-dimensional normed linear
space, and let M be o connected manifold modeled on E. If € con-
sists of the collared cells in E or M, respectively, then H. (K) is a
topological group and H.(M) is a topological semigroup. If & con-
sists of the collared cells in M and the complements of the imteriors
of the collared cells in M, then H.(M) is a topological group.
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Proof. Let h,, h,e H(E) (or H(M)). Let Ni.[B;, U;] be an open
set in H(FE) containing h.h,, where each B;e &. For each 7 < n, let
C;e & which is contained in h;'(U;), such that #,(B;) CInt C;. Such
a C; can be found since a collared cell is collared in every open set
containing it [17]. Then h.(C;)c U;. Let g,€ N, [B; Int C;] and
g:€ ﬂ?—l [C,, U] Then gzgl<B') o gz(Int C) c U..

Let he H(E) (or H(M)). Let N, [B;, U;] be an open set in H(E)
containing h~!, where each B;e%. For each 1< n, let D;e ¥
which is contained in U;, such that »'(B;)cIntD,. Let C;=
E—1Int D; which is an element of & (see the proof of Lemma 1.6).
Then nMC;) = W(E — Int D;) C h(E — k'(B;)) = E — B,. Let
geN=.[C;, E— B;]. Then C;,cg (K — B;) = E — ¢g'(B;), so that
g 'B)CE—C,=IntD;,CU,.
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