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GROUPS OF HOMEOMORPHISMS OF NORMED
LINEAR SPACES

R. A. MCCOY

For X a Hausdorff space let H(X) be the group of
homeomorphisms of X. We study here certain subgroups of
H(E) where E is an infinite-dimensional normed linear
space.

The set of homeomorphisms from a topological space X onto it-
self forms a group H(X) under composition. There are many-
topologies which can be given to £Γ(X), some of which may make
H(X) a topological group. It is natural to ask about the properties
of H(X), both algebraic and topological. Also, what relationships
are there between X and H(X)1 One way to attack these questions
is to study various subgroups of H{X). In this paper we shall in-
vestigate certain subgroups of H{E), where E is a normed linear
space.

1* Algebraic properties of H(E). Let X be a Hausdorff space.
If AaX, S(A) will denote the set of elements of H{X) which are
supported on A. That is, heS(A) if and only if h \X-A is the identi-
ty on X—A. Let & be a base for the topology on X. Define B(X)
to be the subgroup of H{X) which is generated by those elements of
H{X) which are supported on elements of &. Then heB(X) if and
only if h = hn h19 where for each i <; n, h{e S(B<) for some
Bi e &. A homeomorphism k e H(X) is said to be stable if k =
K ' h19 where for each ί <J n, h{e S(X— Ut) for some nonempty
open set Ui in X. The stable homeomorphisms of X, SH{X), form
a subgroup of H(X).

We shall consider the following possible conditions on &.
B l . For every B19 B2e^, there exists an heH(X) such that

h{Bύ c B2.
Bl' . For every B^B^e^, there exists an JιeB(X) such that

h{Bx) c B2.
B2. For every 5 G ^ , there exists an xeB and a pairwise

disjoint sequence {B{ e & \ Bι c B, i = 1, 2, •} which converges to x
(i.e., for every open set U containing x, there is some Bi contained
in Z7), and there exists an he S(B) such that h(Bi) = Bi+1 for every i.

B 3. For every B e <S£ and h e H(X), h{B) e &.
B4. For every U e ^ , there exists Bf'e & such that B U B' =

X, and no Be& is dense in X.
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LEMMA 1.1. // & satisfies B3, then B{X) is a normal sub-
group of H{X).

Proof. Let heB(X) and fe H(X). Then h = hn h19 where
for each i ^ n, hi e S(Bi) for some Bt e &. Then

Each /Λi/-ι6S(/(B4)), so that fhf~ιeB{X).
The following two lemmas can be proved in a manner similar to

the proof of Theorem 2 in [9]. Also see [1], [2], and [16].

LEMMA 1.2. Let & satisfy B l and B2, and let heH(X) such
that h is not the identity. If feB(X), then f is a product of con-
jugates of h and h~γ by members of H{X).

LEMMA 1.3. Let & satisfy BΓ and B 2, and let heH(X) such
that h is not the identity. If feB(X), then f is a product of con-
jugates of h and h~x by members of B(X).

THEOREM 1.1. If ^ satisfies BΓ and B2, then B(X) is simple.

Proof. Let N be a normal subgroup of B(X) having more than
one element. Let feB(X). Choose heN such that h is not the
identity. Then by Lemma 1.3, / is a product of conjugates of h and
hr1 by members of B{X). But Since heN and N is normal in
B(X), f is a product of elements of N. Therefore feN, so that
B(X) = N.

THEOREM 1.2. If & satisfies Bl, B2, and B3, then if B(X) is
nontrivial, it is the smallest nontrivial normal subgroup of H(X).

Proof. By Lemma 1.1, B(X) is a normal subgroup of H(X).
Suppose that N is a normal subgroup of H{X) having more than one
element. Let feB(X). Choose heN such that h is not the identity.
Then by Lemma 1.2, / is a porduct of conjugates of h and hr1 by
members of H(X). But since heN and N is normal in H(X), f is a
product of elements of N. Therefore feN, so that B(X)aN.

LEMMA 1.4. // & satisfies B4, then B{X) = SH(X).

Proof. Clearly B(X)czSH(X). Suppose that heSH(X). Then
h = hn hu where for each i <^ n, h{e S(X— U4) for some nonempty
open set Z7* in X. Since & is a base for the topology on X, for
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each i <; n, there is some Bt e & such that B{ c J7<. By property
B 4, for each i^n, there exists Bl e & such that Bt U 5/ = X.
Then each ft, is an element of S(Bl). Thus heB(X).

Theorem 1.1 and Lemma 1.4 then give conditions which imply
that H(X) is a simple group.

THEOREM 1.3. If & satisfies BΓ, B2, and B4, and if every
element of H(X) is stable, then H(X) is simple.

Now let us consider the special case of the group of homeomor-
phisms on a normed linear space or a manifold modeled on a normed
linear space. E will always denote a normed linear space, and M
will be a connected manifold modeled on E. By that we mean a
connected paracompact space such that every point in M is contained
in an open subset of M which is homeomorphic to E. If E is finite-
dimensional it will be permissible to allow M to have boundary.

For finite-dimensional E, Fisher defined in [9] a base for M
which satisfies Bl, BΓ, B2, and B3. A similar base for Mean be
found when E is infinite-dimensional.

LEMMA 1.5. // E is infinite-dimensional, M has a base & which
satisfies Bl, BΓ, B2, and B3.

Proof. Take & to consist of all collared open cells in M. By a
collared open cell in M is meant the interior of a collared cell in M.
C is a collared cell in M if there exists a homeomorphism from the
triple (B2; B19 S2) in E onto the triple (C; C, BdC) in M, where C"
is some subset of M, where Br = {xeE\ \\x\\<^r}, and where
Sr — BdBr.

Property B1 follows from B1', and B 3 follows from the definition
of &. We shall outline the proof that & satisfies B l ' and B2 by
using a similar technique to that which was used in [9]. Let
Qi, Q 2 £ ^ . Since M is connected, there are a finite number of ele-
ments of &, say Qι,"-yQn, such t h a t Qi = Q1,Q

n = Q2> and

Qι Π Qί+1 Φ 0 for i < n. For each i < n, let f{ be a homeomorphism
from (B2; B19 S2) onto (C<; CIQ\ Bdd), where d is some subset of M.
Also for each i < n, we can define a ^ £ S(BSJ2) such that

Then define ft = fn-xgn-Jn-i fiQifΓ1* Since for each i < π,
/,(Int £3/2) e ̂ , then heB(M). Also ΛfQJ c Q2.

To establish that & satisfies B 2, let Q e &. Let / be a homeo-
morphism from (B2; Biy S2) onto (Cl; CQ, BdC) for some set C in M.
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Define geH(B2) by g(y) = \\y\\y for yeBly and g(y) = y for

yeB2 — B±. Let <c = /(0), and choose zeS3}8. For each positive in-
teger i, set Q< =/^(IntB1/β(s)). Then define heS(Q) by Λ(2/) =
fΰf~ι{y) if 2/e C, and Λ(#) = y if ye M— C. It can be verified that
the sequence {QJ is pairwise disjoint and converges to x, and that
h(Qi) = Qi+1 for every i.

LEMMA 1.6. // E is infinite-dimensional, it has a base έ%? which
satisfies Bl, BΓ, B2, B3, and B4.

Proof. As in Lemma 1.5, take & to consist of all collared open
cells in E. Hence & satisfies Bl, BΓ, B2, and B3. Klee showed
in [13] that if E is infinite-dimensional, there is a φeH(E) such
that φ(Bj) — E — Int Bγ. Therefore complements of collared cells are
collared open cells. Then to see that & satisfies B 4, let Q e &.
From Theorem 4.1 in [14] it is seen that Q is tame, so that there
exists an feH(E) such that f(Q) = IntB,. Let Q' = E - f^(B1/2)9

which is thus in & because of Klee's result. Clearly Q U Q' = E.
The next two theorems then follow from Theorem 1.1, Theorem

1.2, Lemma 1.4, Lemma 1.5 and Lemma 1.6.

THEOREM 1.4. M has a base & such that B(M) is the smallest
nontrivial normal subgroup of H(M) and is simple.

THEOREM 1.5. // E is infinite-dimentional, then SH(E) is the
smallest nontrivial normal subgroup of H(E) and is simple.

It was shown in [8] that if E is homeomorphic to the countably
infinite product of copies of itself (we shall abreviate this statement
as E ~ Eω), then SH(E) - H(E).

THEOREM 1.6. If E ~ Eω, then H(E) is simple.

It should be noted that if E is an infinite-dimensional Hubert
space, then E ~ Eω [5]. Also, all reflexive Banach spaces are
homeomorphic to Hubert spaces [6]. In fact, at this time there
seems to be no known infinite-dimensional E which is not homeomor-
phic to Eω.

2. Stable structure on E. Whittaker defines the following
terms in [18]. Let 3ίΓ(X) be the set of nonempty connected open
subsets U of X such that for every x,ye U, there exists an feS(U)
with f(x) = y. Set K{X) = U^Γ(X), which is an open subset of X.
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Finally, define R(X) to be the set of heH(X) such that for every
x e K{X) and every connected open subset U of K(X) containing x
and h(x), there is a neighborhood V of x and an feS(U) satisfying
f\v = h\y.

It was shown in [18] that if X is a Hausdorff space such that
each open subset contains a member of J%Γ{X), and K{X) cannot be
separated by any two points, then R{X) is a normal subgroup of
H(X).

As in the previous section, E will denote a normed linear space,
and M will be a connected manifold modeled on E.

LEMMA 2.1. *_%"' (ikf) is a base for the topology on M, and
K(M) = M.

Proof. If ze M, then there exists a collared open cell Q in M
containing z. Let g be a homeomorphism from (I?2; Blf S2) onto (C;
C7Q, BdC), for some set C in ilf (see the proof of Lemma 1.5 for
terminology). Let x,yeQ, and set a = flΓ1^) and δ = g~ι{y). Define
heH(B^) as follows. First define h(a) = &. Next let c e ^ - f α } .
Let {c'} = Ray [α : c] Π Si, where Ray [a : c] is the infinite ray from a
through c. Then c = α + a(c' — α) for some 0 < a ^ 1. Define
jφ) = 6 + a(p' - b). With h thus defined, define / e H(M) by /(ω) =
ghg~ι{ω) if ωeQ, and /(ω) = ω if ω e i l f - Q . Then/GS(Q) and
f(x) = y. Therefore QeSΓ(M), which makes 3£Γ{M) a base for
the topology on M. Then obviously K{M) = M.

THEOREM 2.1. If the dimension of E is greater than one, then
R(M) is a normal subgroup of H(M).

It was also shown in [18] that M has a stable structure if and
only if R{M) does not consist only of the identity on M. The con-
cept of a stable structure was introduced and studied in [7]. M has
a stable structure if M = \J {Ua\oί£ A), where the Ua are the images
of homeomorphisms ha from Bt in E into M which satisfy the
condition that if Ua Γ) Uβ Φ 0 and xeh~ι(UaC\ Up), then there is a
neighborhood V of x and an / e SiB^ such that / | F = hγha\v. In the
next theorem we shall see that for a large class of spaces E, R(M)
is all of H(M).

THEOREM 2.2. If E ~ Eω, then R(M) = Ή(M).

Proof. Let h e H(M). By Lemma 2.1, K(M) = M. So let xeM,
and let U be a connected open subset of M containing x and h(x).
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Since E ~ Eω, by a result of Henderson and Schori in [10], there
exists a homeomorphism φ from M into E such that φ(M) is open in
E. Since φ(U) is connected, there is a piecewise linear arc, a, join-
ing φ(x) and φh(x), such that aaφ(U). By taking an appropriate
ε-neighborhood of a, a collared cell C can be found contained in φ{U)
and containing a in its interior. Choose δ > 0 such that

Bδ(φh(x)) c Int C .

Then choose e > 0 such that Bt(φ(x)) c:φh~1φ~ι(J.ntBδ{φh{x))) ΠlntC.
In [8] it is shown that SH(E) = jff(ί7) if and only if the strong an-
nulus conjecture for E is true. Then since SH(E) = H(E) for E
such that E ~ Eω, we may apply the strong annulus conjecture here.
Thus there exists geS(C) such that g\Bem*)) ~ Ψ^CP~1\B^Ψ{X)) Define
feS(U)byf = φ~'gφ and let V = ^ (IntB.(φ(x))) . Then f\v = h\v

as desired, so that heR(M).

COROLLARY. If E ~ Eω, then M has a stable structure.

3* Topological propeties of H(E). Let X be a Hausdorff
space, and let ^ be a collection of closed subsets of X. Define

to be H(X) along with the topology generated by the collection

{[C, U] I Ce <gf and ?7 is open in X) ,

where

[C, U] = {he H(X) I h(C) c £7} .

X is (stably) ^-homogeneous if every homeomorphism between ele-
ments of ^ can be extended to a (stable) homeomorphism in H(X).

For the remainder of this section, F will be a locally convex,
linear topological space such that F ~ F x F. If A is a closed sub-
set of F, then A is .F-deficient if there exists a homeomorphism h
from F onto F x F such that fe(A) c F x {0}. It is a standard
technique (see [12] and [4]) that F is stably ^-homogeneous if ^
has the property that for C, D 6 <g% C U -D is F-deficient. Lemma 3.1
is a partial converse to this. In Lemma 3.1, Theorem 3.1, and
Theorem 3.2, we shall take ^ to be closed under finite unions and
under homeomorphisms (i.e., if C ΰ e ^ , then CϋDe^; and if
CeW, then h(C)e^ for every heH{F)).

LEMMA 3.1. // F is ^-homogeneous, then every element of &
is F-deficient.

Proof. Let C e ^, and let / be a homeomorphism from F onto
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F x F. Then the homeomorphism from C onto f~\C x {0}) can be
extended to some geH(F). Let h = fg, so that

h(C) = fg(C) = ff~\C x {0}) - C x {0} c F x {0} .

THEOREM 3.1. // F is C-homogeneous, then it is stably ^-homo-
geneous.

THEOREM 3.2. Let F be ^-homogeneous. Then SH(F) = H{F)
if and only if SH^(F) is open in H

Proof. Suppose SH^(F) is open in H&(F), and let heH(F). Let
f|? si[Ci, £7;] be a neighborhood of the identity on F which is con-
tained in SH(F), where de^ and Z7* is open for i ^ n. By
Theorem 3.1, there exists a geSH(F) such that ^lu?βl(?i

 = ^lujsslί?<

Then g~ιh(C%)a Ui for ΐ ^ w, so that g~ιheSH(F). Therefore h =
g(Γιh)eSH(F).

The following corollary to Theorem 3.2 then is true because in-
finite-dimensional Frechet spaces are homogeneous with respect to
compact sets, which in turn follows from Michael's version of the
Bartle-Graves Theorem, found for example in [15], and from the fact
that separable infinite-dimensional Frechet spaces are homeomorphic
to separable Hubert space, which can be found in [3].

COROLLARY. Let F be a Frechet space such that F ~ F x F.
Then SH(F) = H(F) if and only if SH(F) is open in H{F) under
the compact-open topology.

Kirby showed in [11] that if E is finite-dimensional, then SH(E)
is open in H(E) under the compact-open topology. But he made use
of the fact that H(E) with the compact-open topology forms a
topological group. This is not the case for infinite-dimensional E.
We might ask the following questions. If H^{E) is a topological
group, is SH&(E) open in iί^(S)? Which classes, ^ make H^(E)
into a topological group? One answer to this last question is the
following theorem.

THEOREM 3.3. Let E be an infinite-dimensional normed linear
space, and let M be a connected manifold modeled on E. If & con-
sists of the collared cells in E or M, respectively, then H& (E) is a
topological group and H&(M) is a topological semigroup. If ^ con-
sists of the collared cells in M and the complements of the interiors
of the collared cells in M, then H&(M) is a topological group.
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Proof. Let h19 h2eH(E) (or H(M)). Let Πi=ΛB^ U{] be an open
set in H(E) containing h2hu where each B{ e <g". For each %<Ln, let
de^ which is contained in h^iUi), such that h^B,) c Int d. Such
a C< can be found since a collared cell is collared in every open set
containing it [17]. Then Λ2(C<) c E7*. Let &£ Π?=i [#<> Int OJ and
02 e n?=i [Cif Z7J. Then flrtfiφ) c g2(lnt d) c C7,.

Let heH(E) (or iϊ(ikΓ)). Let f|?=i [#*> 17*] be an open set in H(E)
containing hr1, where each B* 6 ^. For each i ^ n, let Ό^^
which is contained in Uif such that h~x{B^ c Int D ίβ Let d =
E— Int A which is an element of ^(see the proof of Lemma 1 6).
Then hid) = h(E - Int Z><) c fc(J0 - hr\B^) = E - B,. Let
flr e Γl?=i [C4, ̂  - 5 J . Then d c flΓ1^ - B<) = E - flΓ1^), so that
0Γ W c J5 - C* = Int A c [7,.
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