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PLANAR SURFACES IN KNOT MANIFOLDS

HOWARD LAMBERT

Let K be a knot manifold, that is the 3-sphere S3 minus
an open regular neighborhood of a polygonal simple closed
curve in S3. Whether K can be embedded in Ss differently or
in a homotopy 3-sphere different from S 3 (if such really exist)
leads in a natural way to the question of which planar surfaces
can be embedded in K. Geometric conditions are imposed on
the embedded planar surfaces which are sufficient to imply that
K is not knotted, that is K is homeomorphic to a disk cross
SK

1* Introduction and definitions* In this paper we consider some
geometric problems motivated by the so called "Property P" [3] of a
knot manifold K. In particular, we will investigate whether there is
a continuous map / of a planar surface S (compact, submanifold of E2)
into K such that /(Int S) c Int K, f \ BdS c BdK and / is 1-1 on each
component Jl9 •• ,ΛΛ of BdS (each 4 is a simple closed curve (sec)).
We are interested in the cases of either I. f is 1-1 and no f(Δ^ is
contained in a disk on BdK or II. S is connected, /(Λ) is parallel
to K's longitude and each /(4), 2 <Z i <* n, is parallel to a fixed exotic
homotopy killer of K (definitions below). For example, if Πl(K) Φ Z,
Case II holds and the homotopy killer of K is exotic, then we would
have a counter-example to "Property P" . Conversely, if we had a K
violating "Property P", then there exists / : S —• K as in Case II and
each f(di), 2 <* i <£ n, is parallel to an exotic homotopy killer of K.
In Theorem 1 we develop a geometric condition which is sufficient to
imply K is unknotted and in Theorem 2 we develop a related geometric
condition which is sufficient to imply K has "Property P "

Everything here is taken to be polyhedral. Definitions for such
terminology as "properly embedded" and "boundary-irreducible" may
be found in [17]. A knot manifold K is a submanifold of S3 such that
Cl(Ss-K) is a solid torus T = S1 x D\ On BdK, but not separating
BdK, there exists a unique (up to isotopy on BdK) sec homologous
to zero (Mod Z) in K, called K's longitude. A meridian of ϋΓ is
x x BdD2, x e S1, and we call it K's ordinary homotopy killer. Any
other sec on BdK which kills πx(K) (by attaching a 3-cell along this
sec) will be called an exotic homotopy killer. An exotic homotopy
killer is of the form m(l)n, where m is the meridian of K, I is the
longitude of K and n Φ 0. If K has no exotic homotopy killer, then
K is said to have "Property P" . Some results on "Property P" have
been obtained by R Bing and J. Martin [3], A. C. Connor [4], F.
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Gonzales [9], J. Hempel [12] and J. Simon [15]. Results about the
existence of surfaces (singular or not) in 3-manifolds have been obtained
by W. R. Alford [2], C. Feustel [5], C. Feustel and N. Max [6], W.
Heil [11], J. Hempel and W. Jaco [13], H. Lambert [14], J. Simon [16],
and F. Waldhausen [18] among others.

2* Results for Case I* Suppose / : S —• K as in Case I (since /
is a homeomorphism, identify S with f(S)) and that each Δt is not
parallel to Kfs ordinary homotopy killer. Let Xn be the 3-manifold
obtained by adding T(= Cl(S3-K)) to a regular neighborhood, S x [0,1],
of S in K (see Figure 1 for a picture of an X3 with S connected).

FIGURE l

Recall from the first paragraph that n is the number of boundary
components of S and picture Xn as being obtained by attaching
BdS x [0,1] to n disjoint annuli A19 , An on BdT.

LEMMA 1. Xn is boundary-irreducible.

Proof. Assume S is connected, as the proof is similar if not.
Suppose BdXn is compressible, i.e., there exists a properly embedded
disk D in Xn{BdD c BdXn and Int D c Int Xn) such that BdD does not
bound a disk in BdXn. Put D in general position relative to U?=i^*
After removing simple closed curves of D Π \jLiAi which bound disks
in \JΪ=ίAi, it follows that there exists a subdisk Df of D such that either
1. D' = D and Df Π (U?=i^) = 0,2. BdΠ c A, and Int Π n (U?=i^) =
0 or 3. BdU consists of two arcs, one in BdXn and the other in Aiy

and Int D' Π {\Ji=A%) = 0 . In Case 1, if D c S x [0,1], then it fol-
lows by Proposition 3.1 of [17] that BdD bounds a disk in BdXn, con-
tradiction. If D c Γ, then either each f(Δζ) is parallel to K's ordinary
homotopy killer, contradiction, or BdD bounds a disk in BdXn, con-
tradiction. Case 2 cannot occur since the center line of each At is not
homologous to zero in either S x [0,1] or T. In Case 3 if D' c S x [0,1],
the arc BdΠ Π At intersects one boundary component of A{ and, by using
Proposition 3.1 of [17], the number of components of D Π (U?=î <) c a n be
reduced. Similarly, in Case 3 for D' cT it follows that the number of
components of D Π (U?=î «) c a n be reduced (assume n > 1, since Xι is
a 3-cell). All three cases now imply D could not have existed and
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therefore Xn is boundary-irreducible.
Suppose M is a 3-manifold. If D is a disk properly embedded in

M such that BdD does not bound a disk on BdM, then we say M has
a handle D. More generally, if S is a connected planar 2-manifold
properly embedded in M such that 1. n, the number of boundary com-
ponents Δί3 '",Δn of S, is odd and 2. there exists an annulus A =
S1 x [1, n] on jBdϋlf such that each ^ = S1 x i, 1 ^ i ^ %, then call A
handle-like in M.

LEMMA 2. Suppose M is a S-manifold with a handle D and a
handle-like annulus A. Then M has a handle Do such that DQ Π A — 0
and A is handle-like in M-DQ.

Proof. The case n = 1 is easy. Suppose then that n >̂ 3 (and n
odd) but that BdD n A = 0 (we may need to pull BdD off A by an
isotopy in BdM to achieve this) If S is in general position relative
to D, we may choose a subdisk D' of D such that ScίZ)' c S and
Int JD' n S = 0 . Now cut S at ί?c£J9' and fill in the resulting two holes
by disks close to but on opposite sides of D' to obtain two planar sur-
faces, at least one of which, S'9 has an odd number of boundary com-
ponents {BdS' c BdS) and S' Π D has fewer components than S Π D.
Repeating this argument a finite number of times yields Do(= D) in
this special case.

Now suppose BdD Π A(Φ 0) consists of arcs, each connecting one
boundary component of A to its other, and that D f) S consists of arcs
only (simple closed curves may be removed as in the special case).
Note that each arc of D Π S starts and ends in BdD Π A and that n
such arcs start at each arc of BdD Π A. If an arc of D Π S starts
and ends on the same arc of BdD ΓΊ A, then there exists a subdisk Df

of D such that D' Π A is an arc on BdD', the complementary arc of
BdDf is contained in D Π S and Int D' Π S = 0 . Now cut S at
2?dZ)' Π S and attach two disks close to but on opposite sides of £)'.
The resulting S' then contains one boundary component which bounds
a disk in A. Fill in this boundary component to obtain S" such that
S" is planar, BdS" c i?dS and S" has n-2 boundary components.

If no arc of D Π S has both its end points in the same arc of
BdD Π A, then, in D, there are two adjacent arcs Q19 Q2 of BdD Π A
(relative to BdD) such that Qt x (n + ΐjβi^Q, Π z/(w+l)/2) is connected
to Q2 x (n + l)/2 by an arc τ0 of D Π £. Since £ is orientable and
To has both ends in the same boundary component of S, namely
Δ(n + l)/2, 70 does not separate ftxl from Q2 x 1 in Zλ Hence there
is an arc of D Π S with both ends in Δ1 (or Jn). Since all arcs oί D f) S
with one end point in Δ1 U 4» have both end points in Δx U Δn, we may
ignore all these arcs and repeat the above argument ((n + l)/2) — 2
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times more to conclude that for each boundary component Jt of S there
exists an arc of S Π D with both endpoints in Δκ. Since S is planar,
one of these arcs together with an arc on BdS bounds a disk Df in S
such that Int D' Π D = 0 . Now cut D at BdDf Π D and attach two
disks close to but on opposite sides of Df to obtain two disks properly
embedded in M and at least one of them is a handle of M which inter-
sects A in fewer arcs than D does. Applying the various cases above
a finite number of times yields the desired handle Do.

It follows as a corollary to Lemma 2 that if M is a cube with
handles, then n — 1, i.e., the center line of A bounds a disk in M.

THEOREM 1. Suppose f:S—>K as in Case I, that f(S) has at least
two components S19 S2 such that each has an odd number of boundary
components and that there exists an annulus on BdK whose boundary
separates BdS19 from BdS2 in BdK(— S1 x S1). Then K is unknotted
(homeomorphic to T = C1(S3 - K)).

Proof. Since Si and S2 have an odd number of boundary components
and no boundary component of f(S) is contained in a disk on BdK, it
follows that each boundary component of f(S) is parallel to K's longitude.
Let A19 A2 be disjoint annuli in BdK, parallel to K's longitude, such
that BdSί c Aι and BdS2 c A2. Let UΊ, U2 be disjoint regular neighbor-
hoods of fi»i U A19 S2 U A2 in K, respectively. Then U^ is homeomorphic to
an Xn of Lemma 1; hence it is boundary-irreducible. Similarly U2 is
boundary-irreducible and by [7] it follows that there is a properly embed-
ded disk D in C1(S3 — U1 U U2) such that BdD does not bound a disk in
Bd(C\(S3 - U1 U U2)) = Bdϊ7i U BdU2. Suppose, without loss of gener-
ality, that BdD c BdTJγ. Since D Π U2 = 0 , it follows that we may
cut D and fill in on the two annuli components of Cl(BdK — U1 (J U2)
so as to assume D f] T = 0 (note that obtaining D f] T = 0 involves
assuming K is knotted). Now add to U1 a regular neighborhood of
D in C1(S3 - Uι U £72) to obtain a new 3-manifold UT (if BdD separates
BdUx also add the component of C1(S — ϋΊ) — D not containing U2 to
Z7ί). Note that the genus of BdU[ is less than the genus of BdUγ.
Repeat these steps on U[, U2. But now it is possible that U[ is not
boundary-irreducible. If Da U[, Lemma 2 says we may assume D Π S1 =
0 and cut out an open regular neighborhood of D in U[ to obtain the
new U". Again the genus of BdU" is less than the genus of BdU[.
Continuing, we eventually conclude that there is a 3-cell B in K such
that B Π BdK is either A1 or A2 and hence if is unknotted.

3* Results for Case II* Suppose / : S —> K as in Case II and, in
addition, assume each /(J<), 2 ^ i ^ n, is parallel to a fixed exotic
homotopy killer of K. We may also assume that / is in general posi-
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tion, that is the singularities of / on S consist of pairwise disjoint
arcs with endpoints in BdS and / sews these arcs together in pairs,
each pair forming a single arc in the image (see W. Haken's [10] to
see how to eliminate branch points and triple points at the expense of
increasing n). There are two types of such arcs of singularities, Type
a where the arc runs from Δ1 to some Aui Φ 1, and Type β where the
arc has both endpoints in Δλ and its associated arc runs from z/{ to Δά,
i,j>l and i Φ j . In [10], Haken shows that we can always make
every arc of Type a. Unfortunately, from the point of view of studying
"Property P", Type a arcs seem to be particularly intractible. If all
arcs are of Type β, then K corresponds to being like a ribbon knot [8,
p. 172] relative to its exotic homotopy killer. It is a very particular
case of Type β arcs we wish to look at. Suppose S contains a pair
of arcs /Si, β2 of Type β sewed together by / where Bdβλ c Aι and
one of the two components of S — βλ contains no other arc of singu-
larity but β2. Denote the closure of this component of S — βt by Γ
(Γ is a disk with 2 holes, see Figure 2 for a picture of f(Γ) (J T).

FIGURE 2

THEOREM 2. Suppose 1. f:S—>K as in Case II, 2. S contains
two (disjoint) Γ's, Γ1 and Γ2, and 3. n, the number of boundary com-
ponents of S, is minimal with respect to property 1. Then K is un-
knotted.

Proof. First assume n > 1, since n = 1 implies, by Dehn's Lemma,
that K is unknotted. Let Aly A2 be disjoint annuli on BdK such that
f{Γx) Π BdK c Ax and f(Γ2) Π BdK c A2. Let Uί9 U2 be disjoint regular
neighborhoods of AL U /(Λ)> A2 U f(Γ2) in K, respectively. We claim
both U\ and U2 are homeomorphic to an X3 of Lemma 1. (To see this
we have indicated in Figure 2 where the three annuli A19 A2 and A3

of Lemma 1 would be located in Ut.) By Lemma 1, U19 U2 are boundary
irreducible and we follow the technique used in the proof of Theorem
1 to conclude that there is a disk D properly embedded in C1(S3 — U1U U2)
such that BdD c U, (or U2) and D Π T = 0 . As in the proof of Theo-
rem 1, we add a regular neighborhood of D to U1 to obtain U[ Now
BdU[ is a torus, Sι x S1. By [1], the closure of one complementary
domain of S1 x S1 in S3 is a solid torus T. If /(Λ) c T, then the sec
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L of Figure 2 can be shrunk to a point in T since homology and homo-
topy are the same in T' (To see that L is homologous to zero Mod
Z, note that L bounds an orientable surface in /(/\) U Ax.) Suppose
/(Γ2) c V. Then T - (Int T U Int A,) is a solid torus, L ~ 0 Mod Z
in /(Γ2) u Λ c f - (Int T U Int Λ) and hence the L of f(Γ2) can be
shrunk to a point in T" — Int T. In either case, by using the singular
disk that L bounds, it follows that there is an f':S'-+K as in Case
II with n' < n, contradicting property 3 of the hypothesis. Then n =
1 and K is unknotted.

4* A question. Suppose f:S-+K as in Case II, each /(4),
2 ^ i ^ %, is parallel to a fixed exotic homotopy killer of K and each
arc of singularity in S is of Type β. We can say in general that
there exist disjoint Γlf Γ2 in S as before but now Γ19 Γ2 contain holes
whose boundaries go parallel to the exotic homotopy killer under / .
It does not seem likely that K is knotted if Γlf Γ2 exist, but the author
could not show this. We conclude then with the following

Question. If K does not have "Property P" and all singularities
of the resulting f:S—+K are of Type β, then is K unknotted?
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