PLANAR SURFACES IN KNOT MANIFOLDS

Howard Lambert

Let K be a knot manifold, that is the 3 -sphere S^{3} minus an open regular neighborhood of a polygonal simple closed curve in S^{3}. Whether K can be embedded in S^{3} differently or in a homotopy 3 -sphere different from S^{3} (if such really exist) leads in a natural way to the question of which planar surfaces can be embedded in K. Geometric conditions are imposed on the embedded planar surfaces which are sufficient to imply that K is not knotted, that is K is homeomorphic to a disk cross S^{1}.

1. Introduction and definitions. In this paper we consider some geometric problems motivated by the so called "Property P " [3] of a knot manifold K. In particular, we will investigate whether there is a continuous map f of a planar surface S (compact, submanifold of E^{2}) into K such that $f(\operatorname{Int} S) \subset \operatorname{Int} K, f \mid B d S \subset B d K$ and f is $1-1$ on each component $\Delta_{1}, \cdots, \Delta_{n}$ of $B d S$ (each Δ_{i} is a simple closed curve (scc)). We are interested in the cases of either $I . \quad f$ is 1-1 and no $f\left(\Delta_{i}\right)$ is contained in a disk on $B d K$ or $I I . S$ is connected, $f\left(\Delta_{1}\right)$ is parallel to $K^{\prime} s$ longitude and each $f\left(\Delta_{i}\right), 2 \leqq i \leqq n$, is parallel to a fixed exotic homotopy killer of K (definitions below). For example, if ${ }_{n_{1}}(K) \neq Z$, Case II holds and the homotopy killer of K is exotic, then we would have a counter-example to "Property P ". Conversely, if we had a K violating "Property P ", then there exists $f: S \rightarrow K$ as in Case II and each $f\left(\Delta_{i}\right), 2 \leqq i \leqq n$, is parallel to an exotic homotopy killer of K. In Theorem 1 we develop a geometric condition which is sufficient to imply K is unknotted and in Theorem 2 we develop a related geometric condition which is sufficient to imply K has "Property P ".

Everything here is taken to be polyhedral. Definitions for such terminology as "properly embedded" and "boundary-irreducible" may be found in [17]. A knot manifold K is a submanifold of S^{3} such that $C l\left(S^{3}-K\right)$ is a solid torus $T=S^{1} \times D^{2}$. On $B d K$, but not separating $B d K$, there exists a unique (up to isotopy on $B d K$) sce homologous to zero (Mod Z) in K, called K 's longitude. A meridian of K is $x \times B d D^{2}, x \in S^{1}$, and we call it $K^{\prime} s$ ordinary homotopy killer. Any other scc on $B d K$ which kills $\pi_{1}(K)$ (by attaching a 3-cell along this scc) will be called an exotic homotopy killer. An exotic homotopy killer is of the form $m(l)^{n}$, where m is the meridian of K, l is the longitude of K and $n \neq 0$. If K has no exotic homotopy killer, then K is said to have "Property P ". Some results on "Property P " have been obtained by R. Bing and J. Martin [3], A. C. Connor [4], F.

Gonzales [9], J. Hempel [12] and J. Simon [15]. Results about the existence of surfaces (singular or not) in 3 -manifolds have been obtained by W. R. Alford [2], C. Feustel [5], C. Feustel and N. Max [6], W. Heil [11], J. Hempel and W. Jaco [13], H. Lambert [14], J. Simon [16], and F. Waldhausen [18] among others.
2. Results for Case I. Suppose $f: S \rightarrow K$ as in Case I (since f is a homeomorphism, identify S with $f(S)$) and that each Δ_{i} is not parallel to $K^{\prime} s$ ordinary homotopy killer. Let X_{n} be the 3 -manifold obtained by adding $T\left(=\mathrm{Cl}\left(S^{3}-K\right)\right.$) to a regular neighborhood, $S \times[0,1]$, of S in K (see Figure 1 for a picture of an X_{3} with S connected).

Figure 1
Recall from the first paragraph that n is the number of boundary components of S and picture X_{n} as being obtained by attaching $B d S \times[0,1]$ to n disjoint annuli A_{1}, \cdots, A_{n} on $B d T$.

Lemma 1. X_{n} is boundary-irreducible.

Proof. Assume S is connected, as the proof is similar if not. Suppose $B d X_{n}$ is compressible, i.e., there exists a properly embedded disk D in $X_{n}\left(B d D \subset B d X_{n}\right.$ and $\left.\operatorname{Int} D \subset \operatorname{Int} X_{n}\right)$ such that $B d D$ does not bound a disk in $B d X_{n}$. Put D in general position relative to $\bigcup_{i=1}^{n} A_{i}$. After removing simple closed curves of $D \cap \bigcup_{i=1}^{n} A_{i}$ which bound disks in $\bigcup_{i=1}^{n} A_{i}$, it follows that there exists a subdisk D^{\prime} of D such that either 1. $D^{\prime}=D$ and $D^{\prime} \cap\left(\bigcup_{i=1}^{n} A_{i}\right)=\varnothing$,2. $B d D^{\prime} \subset A_{i}$ and $\operatorname{Int} D^{\prime} \cap\left(\bigcup_{i=1}^{n} A_{i}\right)=$ \varnothing or 3. $B d D^{\prime}$ consists of two arcs, one in $B d X_{n}$ and the other in A_{i}, and Int $D^{\prime} \cap\left(\bigcup_{i=1}^{n} A_{i}\right)=\varnothing$. In Case 1, if $D \subset S \times[0,1]$, then it follows by Proposition 3.1 of [17] that $B d D$ bounds a disk in $B d X_{n}$, contradiction. If $D \subset T$, then either each $f\left(\Delta_{i}\right)$ is parallel to $K^{\prime} s$ ordinary homotopy killer, contradiction, or $B d D$ bounds a disk in $B d X_{n}$, contradiction. Case 2 cannot occur since the center line of each A_{i} is not homologous to zero in either $S \times[0,1]$ or T. In Case 3 if $D^{\prime} \subset S \times[0,1]$, the arc $B d D^{\prime} \cap A_{i}$ intersects one boundary component of A_{i} and, by using Proposition 3.1 of [17], the number of components of $D \cap\left(\bigcup_{i=1}^{n} A_{i}\right)$ can be reduced. Similarly, in Case 3 for $D^{\prime} \subset T$ it follows that the number of components of $D \cap\left(\bigcup_{i=1}^{n} A_{i}\right)$ can be reduced (assume $n>1$, since X_{1} is a 3 -cell). All three cases now imply D could not have existed and
therefore X_{n} is boundary-irreducible.
Suppose M is a 3 -manifold. If D is a disk properly embedded in M such that $B d D$ does not bound a disk on $B d M$, then we say M has a handle D. More generally, if S is a connected planar 2-manifold properly embedded in M such that 1. n, the number of boundary components $\Delta_{1}, \cdots, \Delta_{n}$ of S, is odd and 2. there exists an annulus $A=$ $S^{1} \times[1, n]$ on $B d M$ such that each $\Delta_{i}=S^{1} \times \mathrm{i}, 1 \leqq i \leqq n$, then call A handle-like in M.

Lemma 2. Suppose M is a 3-manifold with a handle D and a handle-like annulus A. Then M has a handle D_{0} such that $D_{0} \cap A=\varnothing$ and A is handle-like in $M-D_{0}$.

Proof. The case $n=1$ is easy. Suppose then that $n \geqq 3$ (and n odd) but that $B d D \cap A=\varnothing$ (we may need to pull $B d D$ off A by an isotopy in $B d M$ to achieve this). If S is in general position relative to D, we may choose a subdisk D^{\prime} of D such that $B d D^{\prime} \subset S$ and Int $D^{\prime} \cap S=\varnothing$. Now cut S at $B d D^{\prime}$ and fill in the resulting two holes by disks close to but on opposite sides of D^{\prime} to obtain two planar surfaces, at least one of which, S^{\prime}, has an odd number of boundary components ($B d S^{\prime} \subset B d S$) and $S^{\prime} \cap D$ has fewer components than $S \cap D$. Repeating this argument a finite number of times yields $D_{0}(=D)$ in this special case.

Now suppose $B d D \cap A(\neq \varnothing)$ consists of arcs, each connecting one boundary component of A to its other, and that $D \cap S$ consists of arcs only (simple closed curves may be removed as in the special case). Note that each arc of $D \cap S$ starts and ends in $B d D \cap A$ and that n such arcs start at each arc of $B d D \cap A$. If an arc of $D \cap S$ starts and ends on the same arc of $B d D \cap A$, then there exists a subdisk D^{\prime} of D such that $D^{\prime} \cap A$ is an arc on $B d D^{\prime}$, the complementary arc of $B d D^{\prime}$ is contained in $D \cap S$ and Int $D^{\prime} \cap S=\varnothing$. Now cut S at $B d D^{\prime} \cap S$ and attach two disks close to but on opposite sides of D^{\prime}. The resulting S^{\prime} then contains one boundary component which bounds a disk in A. Fill in this boundary component to obtain $S^{\prime \prime}$ such that $S^{\prime \prime}$ is planar, $B d S^{\prime \prime} \subset B d S$ and $S^{\prime \prime}$ has $n-2$ boundary components.

If no arc of $D \cap S$ has both its end points in the same arc of $B d D \cap A$, then, in D, there are two adjacent arcs Q_{1}, Q_{2} of $B d D \cap A$ (relative to $B d D$) such that $Q_{1} \times(n+1) / 2\left(=Q_{1} \cap \Delta(n+1) / 2\right)$ is connected to $Q_{2} \times(n+1) / 2$ by an arc γ_{0} of $D \cap S$. Since S is orientable and γ_{0} has both ends in the same boundary component of S, namely $\Delta(n+1) / 2, \gamma_{0}$ does not separate $Q_{1} \times 1$ from $Q_{2} \times 1$ in D. Hence there is an arc of $D \cap S$ with both ends in Δ_{1} (or Δ_{n}). Since all arcs of $D \cap S$ with one end point in $\Delta_{1} \cup \Delta_{n}$ have both end points in $\Delta_{1} \cup \Delta_{n}$, we may ignore all these arcs and repeat the above argument $((n+1) / 2)-2$
times more to conclude that for each boundary component Δ_{i} of S there exists an arc of $S \cap D$ with both endpoints in Δ_{i}. Since S is planar, one of these arcs together with an arc on $B d S$ bounds a disk D^{\prime} in S such that Int $D^{\prime} \cap D=\varnothing$. Now cut D at $B d D^{\prime} \cap D$ and attach two disks close to but on opposite sides of D^{\prime} to obtain two disks properly embedded in M and at least one of them is a handle of M which intersects A in fewer arcs than D does. Applying the various cases above a finite number of times yields the desired handle D_{0}.

It follows as a corollary to Lemma 2 that if M is a cube with handles, then $n=1$, i.e., the center line of A bounds a disk in M.

Theorem 1. Suppose $f: S \rightarrow K$ as in Case I, that $f(S)$ has at least two components S_{1}, S_{2} such that each has an odd number of boundary components and that there exists an annulus on BdK whose boundary separates $B d S_{1}$, from $B d S_{2}$ in $B d K\left(=S^{1} \times S^{1}\right)$. Then K is unknotted (homeomorphic to $T=\mathrm{Cl}\left(S^{3}-K\right)$).

Proof. Since S_{1} and S_{2} have an odd number of boundary components and no boundary component of $f(S)$ is contained in a disk on $B d K$, it follows that each boundary component of $f(S)$ is parallel to $K^{\prime} s$ longitude. Let A_{1}, A_{2} be disjoint annuli in $B d K$, parallel to $K^{\prime} s$ longitude, such that $B d S_{1} \subset A_{1}$ and $B d S_{2} \subset A_{2}$. Let U_{1}, U_{2} be disjoint regular neighborhoods of $S_{1} \cup A_{1}, S_{2} \cup A_{2}$ in K, respectively. Then U_{1} is homeomorphic to an X_{n} of Lemma 1 ; hence it is boundary-irreducible. Similarly U_{2} is boundary-irreducible and by [7] it follows that there is a properly embedded disk D in $\mathrm{Cl}\left(S^{3}-U_{1} \cup U_{2}\right)$ such that $B d D$ does not bound a disk in $B d\left(\mathrm{Cl}\left(S^{3}-U_{1} \cup U_{2}\right)\right)=B d U_{1} \cup B d U_{2}$. Suppose, without loss of generality, that $B d D \subset B d U_{1}$. Since $D \cap U_{2}=\varnothing$, it follows that we may cut D and fill in on the two annuli components of $\mathrm{Cl}\left(B d K-U_{1} \cup U_{2}\right)$ so as to assume $D \cap T=\varnothing$ (note that obtaining $D \cap T=\varnothing$ involves assuming K is knotted). Now add to U_{1} a regular neighborhood of D in $\mathrm{Cl}\left(S^{3}-U_{1} \cup U_{2}\right.$) to obtain a new 3 -manifold U_{1}^{\prime} (if $B d D$ separates $B d U_{1}$ also add the component of $\mathrm{Cl}\left(S-U_{1}\right)-D$ not containing U_{2} to $\left.U_{1}^{\prime}\right)$. Note that the genus of $B d U_{1}^{\prime}$ is less than the genus of $B d U_{1}$. Repeat these steps on U_{1}^{\prime}, U_{2}. But now it is possible that U_{1}^{\prime} is not boundary-irreducible. If $D \subset U_{1}^{\prime}$, Lemma 2 says we may assume $D \cap S_{1}=$ \varnothing and cut out an open regular neighborhood of D in U_{1}^{\prime} to obtain the new $U_{1}^{\prime \prime}$. Again the genus of $B d U_{1}^{\prime \prime}$ is less than the genus of $B d U_{1}^{\prime}$. Continuing, we eventually conclude that there is a 3 -cell B in K such that $B \cap B d K$ is either A_{1} or A_{2} and hence K is unknotted.
3. Results for Case II. Suppose $f: S \rightarrow K$ as in Case II and, in addition, assume each $f\left(\Delta_{i}\right), 2 \leqq i \leqq n$, is parallel to a fixed exotic homotopy killer of K. We may also assume that f is in general posi-
tion, that is the singularities of f on S consist of pairwise disjoint arcs with endpoints in $B d S$ and f sews these arcs together in pairs, each pair forming a single arc in the image (see W. Haken's [10] to see how to eliminate branch points and triple points at the expense of increasing n). There are two types of such arcs of singularities, Type α where the arc runs from Δ_{1} to some $\Delta_{i}, i \neq 1$, and Type β where the arc has both endpoints in Δ_{1} and its associated arc runs from Δ_{i} to Δ_{j}, $i, j>1$ and $i \neq j$. In [10], Haken shows that we can always make every arc of Type α. Unfortunately, from the point of view of studying "Property P "', Type α arcs seem to be particularly intractible. If all arcs are of Type β, then K corresponds to being like a ribbon knot [8, p. 172] relative to its exotic homotopy killer. It is a very particular case of Type β arcs we wish to look at. Suppose S contains a pair of arcs β_{1}, β_{2} of Type β sewed together by f where $B d \beta_{1} \subset \Delta_{1}$ and one of the two components of $S-\beta_{1}$ contains no other arc of singularity but β_{2}. Denote the closure of this component of $S-\beta_{1}$ by Γ (Γ is a disk with 2 holes, see Figure 2 for a picture of $f(\Gamma) \cup T$).

Figure 2

Theorem 2. Suppose 1. $f: S \rightarrow K$ as in Case II, 2. S contains two (disjoint) Γ 's, Γ_{1} and Γ_{2}, and 3. n, the number of boundary components of S, is minimal with respect to property 1 . Then K is unknotted.

Proof. First assume $n>1$, since $n=1$ implies, by Dehn's Lemma, that K is unknotted. Let A_{1}, A_{2} be disjoint annuli on $B d K$ such that $f\left(\Gamma_{1}\right) \cap B d K \subset A_{1}$ and $f\left(\Gamma_{2}\right) \cap B d K \subset A_{2}$. Let U_{1}, U_{2} be disjoint regular neighborhoods of $A_{1} \cup f\left(\Gamma_{1}\right), A_{2} \cup f\left(\Gamma_{2}\right)$ in K, respectively. We claim both U_{1} and U_{2} are homeomorphic to an X_{3} of Lemma 1. (To see this we have indicated in Figure 2 where the three annuli A_{1}, A_{2} and A_{3} of Lemma 1 would be located in U_{1}.) By Lemma $1, U_{1}, U_{2}$ are boundary irreducible and we follow the technique used in the proof of Theorem 1 to conclude that there is a disk D properly embedded in $\mathrm{Cl}\left(S^{3}-U_{1} \cup U_{2}\right)$ such that $B d D \subset U_{1}$ (or U_{2}) and $D \cap T=\varnothing$. As in the proof of Theorem 1, we add a regular neighborhood of D to U_{1} to obtain U_{1}^{\prime}. Now $B d U_{1}^{\prime}$ is a torus, $S^{1} \times S^{1}$. By [1], the closure of one complementary domain of $S^{1} \times S^{1}$ in S^{3} is a solid torus $T^{\prime \prime}$. If $f\left(\Gamma_{1}\right) \subset T^{\prime \prime}$, then the sce
L of Figure 2 can be shrunk to a point in $T^{\prime \prime}$ since homology and homotopy are the same in $T^{\prime \prime}$. (To see that L is homologous to zero Mod Z, note that L bounds an orientable surface in $f\left(\Gamma_{1}\right) \cup A_{1}$.) Suppose $f\left(\Gamma_{2}\right) \subset T^{\prime \prime}$. Then $T^{\prime \prime}-\left(\operatorname{Int} T \cup \operatorname{Int} A_{1}\right)$ is a solid torus, $L \sim 0 \operatorname{Mod} Z$ in $f\left(\Gamma_{2}\right) \cup A_{2} \subset T^{\prime \prime}-\left(\operatorname{Int} T \cup \operatorname{Int} A_{1}\right)$ and hence the L of $f\left(\Gamma_{2}\right)$ can be shrunk to a point in $T^{\prime \prime}-\operatorname{Int} T$. In either case, by using the singular disk that L bounds, it follows that there is an $f^{\prime}: S^{\prime \prime} \rightarrow K$ as in Case II with $n^{\prime}<n$, contradicting property 3 of the hypothesis. Then $n=$ 1 and K is unknotted.
4. A question. Suppose $f: S \rightarrow K$ as in Case II, each $f\left(\Lambda_{i}\right)$, $2 \leqq i \leqq n$, is parallel to a fixed exotic homotopy killer of K and each arc of singularity in S is of Type β. We can say in general that there exist disjoint Γ_{1}, Γ_{2} in S as before but now Γ_{1}, Γ_{2} contain holes whose boundaries go parallel to the exotic homotopy killer under f. It does not seem likely that K is knotted if Γ_{1}, Γ_{2} exist, but the author could not show this. We conclude then with the following

Question. If K does not have "Property P " and all singularities of the resulting $f: S \rightarrow K$ are of Type β, then is K unknotted?

References

1. J. W. Alexander, On the subdivision of 3-space by a polyhedron, Proc. Nat. Acad. Sci. U. S. A., 10 (1924), 6-8.
2. W. R. Alford and C. B. Schaufele, In topology of Manitoids, (1970), 87-96, Markham, Chicago, Illinois.
3. R. H. Bing and J. M. Martin, Cubes with knotted holes, Trans. Amer. Math. Soc., 155 (1971), 217-231.
4. A. C. Connor, manuscript.
5. C. Feustel, A splitting theorem for closed orientable 3-manifolds, to appear.
6. C. Feustel and N. Max, On a problem of R. H. Fox, to appear.
7. R. H. Fox, On the embedding of polyhedra in 3-space, Ann. of Math., 49 (1948), 462-470.
8. -, Some problems in knot theory, Topology of 3-manifolds and related topics, Prentice-Hall, 1962.
9. F. Gonzales, Thesis, Princeton University, 1970.
10. W. Haken, On homotopy 3-spheres, Illinois J. Math., 10 (1966), 159-180.
11. W. Heil, On the existence of incompressible surfaces in certain 3-manifolds, Proc. Amer. Math. Soc., 23 (1969), 704-707.
12. J. Hempel, A simply connected 3-manifold is S^{3} if it is the sum of a solid torus and the complement of a torus knot, Proc. Amer. Math. Soc., 15 (1964), 154-158.
13. J. Hempel and W. Jaco, 3-manifolds which fiber over a surface, manuscript.
14. H. Lambert, A 1-linked link whose longitudes lie in the second commutator subgroup, Trans. Amer. Math. Soc., 147 (1970), 216-269.
15. J. Simon, Some classes of knots with property P, in Topology of Manifolds, pp. 195199, Markham, Chicago, Ill., 1970.
16. -, On knots with non-trivial interpolating manifolds, Trans. Amer. Math. Soc., 160 (1971).
17. F. Waldhausen, On irreducible 3-manifolds which are sufficiently large, Ann. of Math., (2) 87 (1968), 56-88.
18. \qquad , Gruppen mit zentrum und 3-dimensionale mannigfaltigkeiten, Topology, 6 (1967), 505-517.

Received September 30, 1970 and in revised form February 14, 1971. Research supported by NSF Grant GP-19295. A portion of this work was done while the author was at the Institute for Defense Analysis, Princeton, New Jersey.
University of Iowa

