ON THE RATIO ERGODIC THEOREM FOR SEMI-GROUPS

H. FONG AND L. SUCHESTON

For a semi-group Γ of positive linear contractions on L_1 of a σ -finite measure space (X, \mathcal{A}, μ) , strongly continuous on $(0, \infty)$, there are two ratio ergodic theorems: one, due to Chacon and Ornstein, describes the behavior at infinity; the other one, due to Krengel-Ornstein-Akcoglu-Chacon, describes the "local" behavior. In the present paper we attempt to generalize these results to the case when the semigroup is only uniformly bounded. Then the space X decomposes into two parts, Y and Z, called the *remaining* and the *disappearing* part, and both ratio theorems are shown to hold on Y. The ratio theorem at infinity fails on Z.

This generalizes the situation described in the discrete case by the second-named author, and by A. Ionescn Tulcea and M. Moretz. We have not studied the "local" behavior of the ratio on Z.

Definitions. Let $\Gamma = \{T_t : t \ge 0\}$ be a semi-group of positive 1. linear operators in L_1 of a σ -finite measure space (X, \mathcal{A}, μ) . We assume that Γ is bounded: $\sup_{t>0} |T_t|_1 < \infty$; and that Γ is strongly continuous on $(0, \infty)$: i.e., for each $f \in L_1$ and each s > 0, we have $\lim_{t\to s} |T_t f - T_s f|_1 = 0$. It is then known (cf. [5], p. 616) that Γ is strongly integrable on every interval $[\alpha, \beta], 0 \leq \alpha < \beta < \infty$; more precisely, for each $f \in L_1$ and $0 \leq \alpha < \beta < \infty$, the integral $\int_{a}^{\beta} T_t f dt$ is defined and is an element of $L_1(X, \mathcal{A}, \mu)$. Hence for each $f \in L_1$ there is a scalar function $T_t f(x)$, measurable with respect to the product of Lebesgue measure and μ , such that for almost all t, $T_t f(x)$, as a function of x, belongs to the equivalence class $T_t f([5], p. 686)$. Moreover, there is a set E(f), $\mu(E(f)) = 0$, dependent on f but independent of t, such that if $x \notin E(f)$ then $T_t f(x)$ is integrable on every finite interval $[\alpha, \beta]$ and the integral $\int_{\alpha}^{\beta} T_t f(x) dt$, as a function of x, belongs to the equivalence class $\int_{\alpha}^{\beta} T_t f dt$. Thus for each u > 0and each $f \in L_1$, the integral $\int_0^u T_t f(x) dt$, denoted $S_u f(x)$, is defined for every $x \notin E(f)$.

All sets introduced in this paper are assumed measurable; all functions are measurable and extended real-valued. All relations are assumed to hold modulo sets of μ -measure zero. The indicator function of a set A is written 1_A . We write supp f for the set of points at which the function f is different from zero. For a set $A \subset X$, $L_1(A)$ denotes the class of functions f in $L_1(X)$ with $\operatorname{supp} f \subset A$; A is said to be *closed* (under T) if $T\{L_1(A)\} \subset L_1(A)$.

2. Behavior at infinity. The following Theorem 2.1 is a continuous parameter version of the Chacon-Ornstein theorem; Theorem 2.1 is included in a result of Berk [3], and was also recently obtained by Akcoglu and Cunsolo [2]. The following proof shows that the result is in fact contained in that of [4].

THEOREM 2.1. Let $\Gamma = \{T_t: t \ge 0\}$ be a semi-group of positive linear contractions in L_1 such that Γ is strongly continuous on $(0, \infty)$. Let $f, g \in L_1, g \ge 0$. Then, as $u \to \infty$, the ratio

(2.1)
$$D_u(f,g)(x) \stackrel{\text{def}}{=} S_u f(x) / S_u g(x)$$

converges to a finite limit a.e. on the set

$$A(g) \stackrel{ ext{def}}{=} \{x \colon \sup_{u>0} S_u g(x) > 0\}$$
 .

Proof. For $f \in L_1$, let $\overline{f}(x) = S_1 f(x)$. For each u > 0, write u = n + r, where $n = [u], 0 \le r < 1$. Writing T for T_1 , we have

$$egin{aligned} S_u f &= \int_0^u T_t f dt = \sum_{k=0}^{n-1} \int_k^{k+1} T_t f dt + \int_n^{n+r} T_t f dt \ &= \sum_{k=0}^{n-1} T^k \! \int_0^1 \! T_t f dt + T^n \! \int_0^r \! T_t f dt \end{aligned}$$

and hence

(2.2)
$$S_u f(x) = \sum_{k=0}^{n-1} T^k \overline{f}(x) + T^n (S_r f)(x) .$$

We may assume that f is nonnegative; then $0 \leq S_r f(x) \leq \overline{f}(x)$ and $0 \leq S_r g(x) \leq \overline{g}(x)$ a.e., $0 \leq r \leq 1$. Thus, for u sufficiently large, we have on A(g)

(2.3)
$$\frac{\sum\limits_{k=0}^{n-1}T^k\overline{f}(x)}{\sum\limits_{k=0}^nT^k\overline{g}(x)} \leq D_u(f,g)(x) \leq \frac{\sum\limits_{k=0}^nT^k\overline{f}(x)}{\sum\limits_{k=0}^{n-1}T^k\overline{g}(x)}.$$

This completes the proof, since the Chacon-Ornstein theorem and Lemma 2 [4] imply that the first and last terms in (2.3) converge to the same finite limit on the set $\{x: \sum_{k=0}^{\infty} T^k \overline{g}(x) > 0\} = A(g)$.

For a bounded semi-group Γ , we have the following decomposition of the space X.

PROPOSITION 2.1. Let $\Gamma = \{T_t : t \ge 0\}$ be a bounded semi-group of positive linear operators in L_1 . Then the space X decomposes into Y and Z with the following properties: Z is T_t -closed for $t \ge 0$;

(2.4)
$$\begin{cases} 0 \not\equiv f \in L_1^+(Y) \ implies \ \liminf_{t \to \infty} \int T_t f d\mu > 0 \ ; \\ f \in L_1(Z) \ implies \ \lim_{t \to \infty} \int T_t \mid f \mid d\mu = 0 \ . \end{cases}$$

Proof. This result in the discrete parameter case was obtained by the second author in [11]. To prove the proposition, we apply the discrete case result to $T = T_1$, obtaining the decomposition X =Y + Z with the properties

(2.5)
$$\begin{cases} 0 \not\equiv f \in L_1^+(Y) \text{ implies } \liminf_{n \to \infty} \int T_n f d\mu > 0 ; \\ f \in L_1(Z) \text{ implies } \lim_{n \to \infty} \int T_n \mid f \mid d\mu = 0 . \end{cases}$$

Suppose that $f \in L_1^+$ and $\liminf_{t \to \infty} \int T_t f d\mu = 0$; then given $\varepsilon \in 0$, there is an s > 0 such that $0 \leq \int T_s f d\mu < \varepsilon$. For t > s, we have

$$egin{aligned} 0 &\leq \int T_t f d\mu = \int T_{t-s}(T_s f) d\mu \ &\leq \mid T_{t-s}\mid_1 \cdot \mid T_s f \mid_1 \leq arepsilon \cdot \sup_{t>0} \mid T_t\mid_1 ext{,} \end{aligned}$$

which shows that $\lim_{t\to\infty} \int T_t f d\mu = 0$; in view of (2.5), (2.4) is now proved. That Z is T_t -closed for each $t \ge 0$ is an easy consequence of (2.4).

The next proposition permits us to construct a semi-group Γ' of positive linear *contractions* related to Γ ; the ratio ergodic properties of Γ are then studied via Γ' .

PROPOSITION 2.2. Let $\Gamma = \{T_t: t \ge 0\}$ be a bounded semi-group of positive linear operators in L_1 , strongly continuous on $(0, \infty)$. Then there is a function e such that

(2.6)
$$e \in L^+_{\infty}$$
, supp $e = Y$, $T^*_t e = e$ for $t > 0$.

Proof. We may assume that $Y \neq \phi$ for otherwise the proposition is obviously true. Let

$$egin{aligned} H &= \{h \in L_{\infty} \colon T_t^*h = h, \ t > 0\} \ ; \ D &= \{1/2^n \colon n = 0, \, 1, \, 2, \, \cdots\} \ ; \ G &= \{g \colon g = f - \ T_r f, f \in L_1, \, r \in D\} \end{aligned}$$

Let sp(G) denote the linear span of G. We first show that $H \neq \{0\}$. Let $h \in L_{\infty}$ be such that $\int g \cdot h d\mu = 0$ for every $g \in sp(G)$. It follows from $\int (f - T_r f) \cdot h = 0$, holding for each $f \in L_1, r \in D$, that

$$(2.7) T_r^* h = h, r \in D.$$

The strong continuity of Γ on $(0, \infty)$ now implies that (2.7) holds for any r > 0. Assume *ab* contrario that $H = \{0\}$; then h = 0, and sp(G) is dense in L_1 . Thus given $f \in L_1^+(Y)$, and $\varepsilon > 0$, there is a function $g \in sp(G)$ such that $|f - g|_1 < \varepsilon$. We note that g is a linear combination of functions of the form $f_j - T_{r_j}f_j$, where $f_j \in L_1, r_j \in D$, $1 \leq j \leq m$; hence letting $r = \min\{r_1, r_2, \dots, r_m\}$, we have

(2.8)
$$\lim_{n} n^{-1} \cdot \left| \sum_{i=0}^{n-1} T_{r}^{i} g \right|_{1} = 0.$$

Thus

$$egin{aligned} &\lim_n \inf \mid T^n_r f \mid_{_1} \leq \limsup_n n^{-1} \cdot \left| \sum_{i=0}^{n-1} T^i_r f
ight|_{_1} \ &\leq \lim_n n^{-1} \left| \sum_{i=0}^{n-1} T^i_r g
ight|_{_1} + arepsilon \cdot \sup_t \mid T_t \mid_{_1} \ &= arepsilon \cdot \sup_t \mid T_t \mid_{_1} . \end{aligned}$$

This contradicts relation (2.4) and the assumption $Y \neq \phi$, since $\varepsilon > 0$ is arbitrary and Γ is bounded. Now let $0 \neq h \in H$ and write h = $h^{+} - h^{-}$, where $h^{+} = \max(h, 0), h^{-} = -\min(h, 0)$. We may assume $h^+
eq 0$; otherwise we replace h by -h. We have $T^*_t h^+ \geqq h^+$ for t >0. Let $h' = \lim_{n} T_n^* h^+$; clearly, $0 \neq h' \in L_{\infty}^+$ and, by the monotone continuity of T_r^* (cf. [9], p. 187), we have $T_r^*h' = h'$ for $r \in D$. It now follows from the strong continuity of Γ that $T_t^*h' = h'$ for t > t0. Let π be a probability measure equivalent with μ , and let s be the supremum of numbers $\pi(\operatorname{supp} h)$ where h ranges over H^+ , the class of nonnegative functions in H. There exists a sequence of functions $h_n \in H^+$ with $\pi(\operatorname{supp} h_n) \to s$. If $e \in L^+_{\infty}$ is a proper linear combination of the h_n 's, and $E = \operatorname{supp} e$, then $e \in H^+, E \subset Y$ and $\pi(E) = s$. We next show that E = Y. We note that E is T_t^* -closed, t > 0. Indeed, there are functions $f_n \uparrow 1_E$ and constants $c_n > 0$ such that $c_n f_n \leq e$. Hence $(\text{supp } T_i^* f_n) \subset E$, and by the monotone continuity of T_t^* , (supp $T_t^* 1_E \subset E$. Applying the duality relation we can now see that $E^{\circ} = X - E$ is T_t -closed, t > 0. If T'_t is the restriction of T_t to $L_1(E^{\circ})$, then $\Gamma' = \{T'_t: t \ge 0\}$ is a semi-group of positive linear operators in L_1 , strongly continuous on $(0, \infty)$. Under Γ' , E° decomposes into sets Y' and Z' according to Proposition 2.1. Since E° is closed under T_t for t > 0, we have $\int T'_t f d\mu = \int T_t f d\mu$ for $f \in L_1(E^{\circ})$ and t > 0. Hence $f \in L_1(Z)$ implies $\lim_t \int T'_t |f| d\mu = \lim_t \int T_t |f| d\mu = 0$, and $0 \not\equiv f \in L_1^+(Y - E)$ implies $\lim_t \int T'_t f d\mu = \lim_t \int T_t f d\mu > 0$. Consequently, Y' = Y - E and Z' = Z. Thus if $E \neq Y$, then Y' is nonnull, and hence the first part of the proof, with Γ' replacing Γ , shows that there is a function $e_1, 0 \not\equiv e_1 \in L^{+}_{\infty}(E^{\circ})$, and $T'_t e_1 \ge e_1, t >$ 0. Since $T'_t e_1 = 1_{E^{\circ}} T^*_t e_1$, we have $T^*_t e_1 \ge e_1, t > 0$. Let $e' = \lim_n T^*_n e_1$; then $e' \in H^+$ and ($\sup p e' \cap E^{\circ}$ is nonnull. Thus $e + e' \in H^+$ and $\pi(\sup p (e + e')) > s$, which contradicts the definition of s. Hence $\sup p e = Y$ and the proposition is proved.

Assume that $\Gamma = \{T_t: t \ge 0\}$ satisfies the hypothesis of Proposition 2.2. Let *e* be a solution of (2.6); we may assume that $0 < e \le 1$ on *Y*. T_t may be extended to a positive linear map on \mathscr{M}^+ , the cone of nonnegative measurable functions on (X, \mathscr{M}) : for each fixed $t \ge$ 0, if $f \in \mathscr{M}^+$, $T_t f$ is defined as $\lim_n T_t f_n$ where $f_n \in L_1^+$, and $f_n \uparrow f$ a.e. The extended operators T_t also satisfy the semi-group property on \mathscr{M}^+ ; i.e.,

(2.9)
$$T_{t+s}f = T_t(T_sf), f \in \mathcal{M}^+, t, s \ge 0.$$

For each $t \ge 0$, we define an operator V_t on L^+_1 by the relation

(2.10)
$$V_t f = e \cdot T_t (f/(e+1_z)) ,$$

and extend V_t by linearity to L_1 . One shows, as in [11], that $\Gamma' = \{V_t: t \ge 0\}$ is a family of positive linear contractions in L_1 . That Γ' is a semi-group is a consequence of (2.9), (2.10), and the fact that Z is T_t -closed, $t \ge 0$. Let $K = \{g: g = f \cdot e, f \in L_1\}$. For a fixed s > 0 and $g = f \cdot e \in K, f \in L_1$, we have

$$(2.11) \qquad |V_tg - V_sg|_1 = \left| e \cdot T_t \left(\frac{g}{e+1_Z}\right) - e \cdot T_s \left(\frac{g}{e+1_Z}\right) \right|_1 \\ \leq |e|_{\infty} \cdot |T_t(f \cdot 1_{\mathrm{F}}) - T_s(f \cdot 1_{\mathrm{F}})|_1$$

which, by the strong continuity of Γ , tends to zero as $t \to s$. The case of a general $g \in L_1(Y)$ follows by approximation, since K is a dense subspace of $L_1(Y)$ and $|V_t|_1 \leq 1$. Finally, because $V_tg = V_t(g \cdot \mathbf{1}_Y)$ for $g \in L_1$, we conclude that Γ' is strongly continuous on $(0, \infty)$.

Theorem 2.1 may now be applied to Γ' : if $f' \in L_1^+$, $g' \in L_1^+$, then

$$\lim_{u\to\infty}\int_0^u V_t f'(x)dt / \int_0^u V_t g'(x)dt$$

exists a.e. on the set $\{x: \sup_{u>0} \int_0^u V_t g'(x) dt > 0\}$. For arbitrary measurable nonnegative functions f and g, we write $f' = f \cdot e, g' = g \cdot e$. If $f' \in L_1^+, g' \in L_1^+$, then for sufficiently large u,

(2.12)
$$\frac{\int_{0}^{u} V_{t}f'(x)dt}{\int_{0}^{u} V_{t}g'(x)dt} = \frac{\int_{0}^{u} e(x) \cdot T_{t}f(x)dt}{\int_{0}^{u} e(x) \cdot T_{t}g(x)dt} = D_{u}(f,g)(x)$$

on $Y \cap A(g)$, where $A(g) \stackrel{\text{def}}{=} \{x: \sup_{u>0} S_u g(x) > 0\}$. Thus the last ratio in (2.12) converges to a finite limit a.e. on the set $Y \cap A(g)$. The above discussion is now summarized in the following theorem:

THEOREM 2.2. Let $\Gamma = \{T_i : t \geq 0\}$ be a bounded semi-group of positive linear operators in L_1 , storongly continuous on $(0, \infty)$. If f, g are measurable functions such that $f \cdot e$, $g \cdot e \in L_1^+$, then $\lim_{u\to\infty} (D_u(f, g)(x))$ exists a.e. on the set $Y \cap A(g)$.

We say that the ratio theorem holds (for Γ) on a subset B of X if whenever $f \in L_1, g \in L_1^+$, $\lim_{u\to\infty} D_u(f,g)(x)$ exists a.e. on the set $B \cap A(g)$; otherwise we say that the ratio theorem fails on B. We showed that the ratio theorem holds on Y. We now show

THEOREM 2.3. Let $\Gamma = \{T_i: t \ge 0\}$ be bounded semi-group of positive linear operators in L_i , strongly continuous on $(0, \infty)$. If there is a function $g \in L_1^+(Z)$ such that the set $C(g) \stackrel{\text{def}}{=} \{x: \sup_{u>0} S_u g(x) = \infty\}$ is nonnull, then the ratio theorem fails on every nonnull subset of C(g).

Proof. Theorem 2.3 in the discrete parameter case was given in [7]; (see also [11] and [6]). The method of proof in [7] extends to the continuous case. Assume that the ratio theorem holds on a non-null subset A of C(g), where $g \in L_1^+(Z)$. In particular, $\lim_{u\to\infty} D_u(f,g)(x)$ exists a.e., on A for every $f \in L_1$. Let R be the operator from L_1 into \mathscr{M} , the space of real-valued measurable functions on (X, \mathscr{M}) , defined by $Rf(x) = \mathbf{1}_A(x) \cdot \lim_{u\to\infty} D_u(f,g)(x)$. Since $S_ug(x) \to \infty$ on A, we have for each t > 0

(2.13)
$$R(T_{t}g)(x) = \lim_{u \to \infty} \frac{\int_{0}^{u} T_{s+t}g(x)ds}{\int_{0}^{u} T_{s}g(x)ds}$$
$$= \lim_{u \to \infty} \left[\frac{\int_{0}^{u} T_{s}g(x)ds}{\int_{0}^{u} T_{s}g(x)ds} - \frac{\int_{0}^{t} T_{s}g(x)ds}{\int_{0}^{u} T_{s}g(x)ds} + \frac{\int_{u}^{u+t} T_{s}g(x)ds}{\int_{0}^{u} T_{s}g(x)ds} \right] \ge 1$$

on A. On the other hand, since $|T_tg|_1 \to 0$ as $t \to \infty$, we may choose a subsequence $(T_{t_n}g)$ with $\sum_{n=1}^{\infty} T_{t_n}g \in L_1$. Then $0 \leq \sum_{n=1}^{\infty} R(T_{t_n}g) \leq R(\sum_{n=1}^{\infty} T_{t_n}g) < \infty$ μ -a.e.; hence $\lim_n R(T_{t_n}g) = 0$ μ -a.e., but this contradicts (2.13).

3. Local behavior. Akcoglu and Chacon [1] have shown that for a semi-group $\Gamma = \{T_t: t \ge 0\}$ of positive linear contractions in $L_1(X, \mathcal{M}, \mu)$, there is a decomposition of the space X into an 'initially conservative part', C, and 'initially dissipative part', D. The set C may be defined as $\{x: S_u f(x) > 0 \text{ for all } u > 0\}$, where f is any strictly positive function in $L_1(X, \mathcal{M}, \mu)$. We note that this decomposition remains valid for bounded semi-groups. The main result in [1] can be stated as follows:

THEOREM A. Let $\Gamma = \{T_i: t \ge 0\}$ be a semi-group of positive linear contractions in $L_1(X, \mathscr{A}, \mu)$, strongly continuous on $(0, \infty)$. If $\in L_1, gf \in L_1^+$, then $\lim_{u \ge 0} (S_u f(x))/(S_u g(x))$ exists a.e. on the set $C \cap \{g > 0\}$.

We recall from §2 that for a bounded semi-group $\Gamma = \{T_i: t \ge 0\}$ of positive linear operators in L_i , strongly continuous on $(0, \infty)$, we can construct a semi-group $\Gamma' = V_i: t \ge 0\}$ of positive linear contractions related to Γ defined by (2.10). Theorem A is thus applicable to Γ' . Let X = C + D = C' + D' be the initial decompositions corresponding to Γ and Γ' respectively.

Theorem A applied to Γ' shows that if $f' \in L_1, g' \in L_1^+$, then $\lim_{u \downarrow 0} \int_0^u V_s f'(x) ds / \int_0^u V_s g'(x) ds$ exists a.e. on the set $C' \cap \{g' > 0\}$. For arbitrary measurable nonnegative functions f and g, we let $f' = f \cdot e$, $g' = g \cdot e$. If $f', g' \in L_1^+$, then

(3.1)
$$\frac{\int_{0}^{u} V_{s}f'(x)ds}{\int_{0}^{u} V_{s}g'(x)ds} = \frac{e(x) \cdot \int_{0}^{u} T_{s}f(x)ds}{e(x) \cdot \int_{0}^{u} T_{s}g(x)ds} = \frac{S_{u}f(x)}{S_{u}g(x)}$$

on the set $\Big\{x:\int_{0}^{u}V_{s}g'(x)ds>0 ext{ for } u>0\Big\}$, which contains the set $C'\cap$

 $\{g' > 0\}$, as shown in [1], Lemma 2.3. Thus $\lim_{u \downarrow o} (S_u f(x))/(S_u g(x))$ exists a.e., on the set $C' \cap (g' > 0\}$.

It is clear from $g' = g \cdot e$ that $\{g' > 0\} = \{g > 0\} \cap Y$. We next show that $C' = C \cap Y$. Let C be defined in terms of some fixed function $g \in L_1, g > 0$. For each u > 0,

(3.2)
$$\int_{0}^{u} T_{s}g(x)ds = \int_{0}^{u} T_{s}g_{Y}(x)ds + \int_{0}^{u} T_{s}g_{Z}(x)ds .$$

The last integral in (3.2) vanishes a.e. on Y since Z is T_s -closed, $s \ge 0$. Hence $\int_0^u T_s g(x) ds = \int_0^u T_s g_Y(x) ds > 0$ on $C \cap Y$. Let $g' = g_Y \cdot e$. Then $\int_0^u V_s g'(x) ds = e(x) \cdot \int_0^u T_s g_Y(x) ds > 0$ for u > 0 on $C \cap Y$. This shows that $C' \supset C \cap Y$. Next, since $V_s g(x) = 0$ a.e. on Z for any $g \in L_1$, C' may be obtained as the set $\left\{x: \int_0^u V_s g(x) ds > 0$ for $u > 0\right\}$ for any $g \in L_1^+$ such that g > 0 on Y. Let $g' = g \cdot e$. Then g' > 0 on Y and hence $\int_0^u V_s g'(x) ds > 0$ on C', u > 0. Since $\int_0^u V_s g'(x) ds = \int_0^u e(x) \cdot T_s g(x) ds$, we conclude that $\int_0^u T_s g(x) ds > 0$ a.e. on C', u > 0. Hence $C' \subset C \cap Y$. We have proved:

THEOREM 3.1. Let $\Gamma = \{T_i : t \ge 0\}$ be a bounded semi-group of positive linear operators in L_1 , strongly continuous on $(0, \infty)$. If f, g are nonnegative measurable functions such that $f \cdot e$, $g \cdot e \in L_1^+$, then $\lim_{u \downarrow 0} (S_u f(x))/S_u g(x)$ exists a.e. on the set $\{g > 0\} \cap C \cap Y$.

Of course, the restriction of the above statement to C is not a loss of generality, since on D the ratio D_u is of the form 0/0. The local behavior of D_u on Z does not seem to be easy to ascertain by the methods of the present paper.

REFERENCES

1. M. A. Akcoglu and R. V. Chacon, A local ratio theorem, To appear.

2. M. A. Akcoglu and J. Cunsolo, An ergodic theorem for semi-groups, To appear in Proc. Amer. Math. Soc.

3. K. N. Berk, Ergodic theory with weighted averages., Ann. Math. Sta., **39** (1968). 1107-1114.

4. R. V. Chacon and D, S. Ornstein, A general ergodic theorem, Illinois J. Math., 4 (1960), 153-160.

5. N. Dunford and J. T. Schwartz, *Linear Operators I*, New York, Interscience Publ. 1966.

6. H. Fong, On invariant functions for L_p -operators, To appear in Colloquium Mathematicum, XXII.

7. A. Ionescu Tulcea and M. Moretz, Ergodic properties of semi-Markovian operators on the Z-part. Z. Wahrscheinlichkeitstheorie verw. Geb., 13 (1969), 119-122.

8. U. Krengel, A local ergodic theorem, To appear.

666

9. J. Neveu, Mathematical Foundations of the calculus of probability, San Francisco: Holden-Day, Inc. 1965.

10. D. S. Ornstein, The sums of iterates of a positive operator, To appear.

11. L. Sucheston, On the ergodic theorem for positive operators I. II, Z. Wahrscheinlichkeitstheorie verw. Geb., $\mathbf{8}$ (1967), 1-11, 353-356.

Received January 26, 1970. This research was supported by the NSF Grant GP-13692.

THE UNIVERSITY OF MICHIGAN BOWLING GREEN STATE UNIVERSITY AND THE OHIO STATE UNIVERSITY