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PRIMES IN PRODUCTS OF RINGS

JOEL CUNNINGHAM

This paper is an elementary note which indicates how
Harrison's primes sit in certain kinds of rings. It is proved
that primes behave nicely under finite direct products. Also
it is shown that any nil ideal is a subset of every prime.
This gives information about the primes of artinian rings.

By ring we mean associative ring with identity.
Harrison introduced the notion of a prime of a ring in [2]. For

a ring R, a preprime of R is a subset of R which is closed under
addition and multiplication and does not contain —1. A prime of R
is a preprime of R which is not properly contained in any other
preprime of R. A prime is called finite if it does not contain 1.

The collection Y(R) of all primes of R is topologized by taking
as a basis all subsets V(E) where E is a finite subset of R and
V(E) = {Pe Y(R) \Pf]E=φ}.

Some important special cases of the following result were known
to Harrison and his students as early as 1966. However the proofs
known then were long and depended heavily on the special conditions.
One of the cases in which the result was known was where the rings
are both commutative and all the primes are taken to be finite. This
case is also handled by Connell in [1] where he deals with a notion
of prime which generalizes the notion of a finite prime of a commu-
tative ring.

THEOREM 1. Let R and S be rings. The primes of the direct
product R0S are exactly the subsets P x S = {(p, s) e J? 0 S \ p eP}
where P is a prime of R and R x Q = {(r, q) e R 0 S \ q e Q} where Q
is a prime of S.

Proof. Let ΠR:R®S-+R and ΠS:R®S-*S be the canonical
projections.

Let H be any prime of Rξ&S. Clearly ΠR{H) and ΠS{H) are
both closed under addition and multiplication. Just suppose — 1 e ΠR(H)
and —leΠs(H). Then there exists seS and reR with (—l,s) and
(r, -1) in if. But then ( - 1 , -1) = (-l,s)(r, -1) + (-1,8) + (r, -1)
is in H, a contradiction. So say —1&ΠR(H). Then ΠR(H) is a
preprime of R. Choose a prime P of R such that ΠR(H) c P. Then
clearly P x S is a preprime of R 0 S and H c P x S. S o f f = P x S .
Similarly if — 1 g ΠS(H) then there exists a prime Q of S such that
H= R x Q.
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Now let P be a prime of R. Then P x S is a preprime of ϋ! 0 S.
Let if be a prime of .# 0 S containing P x S. Using the above part
of the proof one checks that H = Pf x S for some prime P' of R.
But then since P is a prime, P — Pf. So P x S is a prime. Simi-
larly, for Qe F(S), Rx QeY(R® S).

In the above, no mention is made of the topology. However, we
do have

COROLLARY 2. For any nonzero rings R and S, Y(RQ)S) is
naturally homeomorphic to Y(R) U Y(S) with the disjoint union topology.

Proof. Let A = {PxS\Pe Y(R)} andB = {Rx Q\Qe Y(S)}. Since
R and S are both nonzero, A and B are disjoint. Using Theorem 1 we
have Y(R 0 S) = A U B and that A = V({(-1, 0)}) and B = V({(0, -1)}),
so A and B are both open. Noting that A is naturally homeomorphic
with Y(R) and B is naturally homeomorphic with Y(S) we have the
corollary.

Clearly Theorem 1 and its corollary can be extended to any finite
product of rings. However the corresponding statement for an infinite
product of rings is not true. In the infinite case there can be primes
other than the ones given by one coordinate.

It follows from Corollary 2 that for an arbitrary ring R, Y(R) is
far from connected. However, for R an integral domain Y(R) is
connected; in fact we have

PROPOSITION 3. If R is a commutative integral domain, then Y(R)
is irreducible, i.e., any two nonvoid open subsets of Y(R) have nonvoid
intersection.

Proof. This follows easily by using the result of Harrison and
Manis [2,2.6]. For if V(G) and V{H) are two nonvoid basic open
subsets of Y{R) then 0 g G U H and so no power of the product of
the elements of G U H is zero. Hence by [2,2.6] there is a prime P
with Pe V(G U H) = V(G) n V(H).

In order to use Theorem 1 to study Y(R) for artinian rings we
need the following two observations.

Note 4. For any ring R and any two-sided ideal a of R the space
Y(R/a) is naturally homeomorphic to the subspace of Y(R) composed
of all primes containing a. The homeomorphism is given by P~*f(P)
where f: R-* R/a is the natural map.

This note is made more interesting by the following
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PROPOSITION 5. Any nil ideal of a ring R is contained in every
prime of R.

Proof. Let N be a nil ideal of R and P a prime of R. Just
suppose N'fiP, then P S= N + P and N + P is closed under addition
and multiplication. So —leN+P. Say —l = n + p for neN and
peP. Then p + 1 is in JV so there exists a positive integer m such
that

Hence

a contradiction.

Now if R is an artinian ring with Jacobson radical J, then J is
nilpotent so by the above proposition J is contained in every prime
of R. R/J has an Artin-Wedderburn decomposition

as a direct product of finitely many full matrix rings over division
rings. Thus using Note 4 we have

COROLLARY 6. If R is artinian with notation as above, Y(R) is
naturally homeomorphic to the disjoint union

In the special case where R is a finite ring the Dt are all finite
fields and in this case Y(Mn.(Di)) is completely analyzed by Rutherford
in [3]. There it is shown that for any finite dimensional vector space
V over a locally finite field K, the primes of the full ring E of K-
endomorphisms of V are exactly the subsets T(W, L)cE where L is
a subspace of V and W is a subspace of L with dimκ(L/W) = 1 and
T(W, L) = {feE\f(L)a W). Using this and Corollary 6 we have
a complete analysis of Y(R) for finite rings.
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