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A GENERALIZATION OF SEPARABLE GROUPS

E. F. CORNELIUS, JR.

This paper introduces a new class of torsion free abelian
groups, the class of quasi-separable groups, which is the
quasi-isomorphism analog of the class of separable groups and
which properly contains the latter. Our purpose is two-fold:
first, to further explore the phenomena of quasi-isomorphism,
which has proved fruitful in the study of torsion free groups,
and second, to shed further light on separable groups.

The term ' 'group'' herein refers to a torsion free abelian group.
As is customary when dealing with quasi-isomorphism, we assume
that all groups are subgroups of a fixed vector space V over the
rational number field Q. L(V) denotes the algebra of linear trans-
formations of V. L(V) is equipped with the finite topology [7]
throughout and topological terms refer to this topology unless
otherwise stated. G always denotes a full subgroup of V, i.e., a
subgroup with torsion quotient V/G; G is full in V if and only if V
is its unique minimal divisible extension. QE{G) is the quasi-endomor-
phism algebra of G and QF{G) is the ideal of QE{G) consisting of
elements of finite rank.

Our approach is to recall that there is a one-to-one correspondence
between quasi-decompositions of a group G and idempotents in QE(G)
[8]. Thus a group with "many" quasi-decompositions has "many"
quasi-endomorphisms of a particular type. In §1, quasi-separable
groups are defined and basic properties are explored. A principal
result is that every pure subgroup of finite rank in G is a quasi-
summand of G if and only if G is quasi-separable with linearly ordered
type set, T(G). In §2, a characterization of homogeneous quasi-
separable groups is obtained, namely, G is homogeneous and quasi-
separable if and only if QF{G) is dense in the finite topology of L(V).
In §3, attention focuses on separable groups. It is shown that a
countable group G is homogeneous and completely decomposable if
and only if QE(G) is dense. Finally, a description of homogeneous
separable groups is obtained in terms of their endomorphisms. For
example, a countable group G is homogeneous and completely decom-
posable if and only if for any pair of independent elements aί9 α2 in
G and any arbitrary pair of elements b19 b2 in G, there exists an
endomorphism / of G such that /α^ = nbif i = 1, 2, n some positive
integer.

General abelian group theory [5] is assumed. By this date,
quasi-isomorphism is a familiar concept of this theory so basic facts
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are used here without comment; a complete background may be
obtained from [1,2,8,9]. £ and == denote quasi-contained and
quasi-equal, respectively. Recall that QE(G) = {fe L(V): fG<tG}.
Each endomorphism of G has a unique extension to a linear trans-
formation of V and we use the same symbol to denote both. h(ά)
denotes the height of the element a; if it is not clear from context
in which group height is computed, a subscript is appended, e.g.,
hG(a). Similarly, t(a) denotes the type of the element a; t(H) may
also denote the type of a homogeneous group H. Notation is abused
for the sake of conciseness; e.g., the same symbol Z is used to denote
both the ring of integers and its additive group. S* denotes the
subspace spanned by the subset S of V; it is also used to denote the
subalgebra generated by a subset of L(V). All sums are direct; e.g.,
notation such as G = A + B implies that A and B are disjoint sub-
groups of V and we call A a quasi-summand of G. Additional nota-
tion is introduced as needed.

1*O* Quasi-separable groups*

DEFINITION 1.1. Call a group G quasi-separable if and only if
every finite subset of G is contained in a completely decomposable
quasi-summand.

REMARK 1.2. Suppose G is quasi-separable and suppose F is a
finite subset of G; by definition G = A + B for some groups A and
B contained in F, with A completely decomposable and containing F.
Clearly A may be assumed to have finite rank without any loss of
generality. Now G = Af)G + B ΓiG and F g A Π G, but A Π G need
not be completely decomposable even if A has finite rank; see for
example Lemma 9.3 [2]. However, if A has finite rank and T(A) is
linearly ordered (especially f A is homogeneous), then A Π G is also
completely decomposable by Corollary 9.6 [1]. Thus if T{G) is linearly
ordered, A may be assumed to be a completely decomposable, pure
subgroup [1, p. 95] of finite rank in G.

The following modular law will prove indispensable.

PROPOSITION 1.3. Suppose Hώ A + B and AώH for groups H,
A, and B. Then H~ A + Hf]B.

Proof. For some positive integer n, nA £ H so

n(A + H n B) s H .

If mH £ A + B for m a positive integer, then nmH £ nA + nB;
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i.e., for ceH, mnc may be written mnc = na + nb with aeA and
b e B. Now nb = mwe — na e i ϊ Π 5 so mnH £ A + HPiB.

REMARK 1.4. Let w be a positive integer. Consider a group
having the property: (1) every pure subgroup of rank n is a quasi-
summand. It is easy to see that every pure subgroup of rank n is
a quasi-summand of G if and only if QE(G) contains a projection onto
any ^-dimensional subspace of V. Consequently if G has property
(1), so does any quasi-summand of G. Also, by Proposition 1.3, if G
satisfies (1), so does any pure subgroup of G. Corresponding results
hold for the property: (2) every pure subgroup is a quasi-summand.

LEMMA 1.5. // every pure subgroup of rank one is a quasi-
summand of G, then every pure subgroup of finite rank is a quasi-
summand which is quasi-equal to a completely decomposable group.

Proof. Assume the result for pure subgroups of rank ^ n and
let H be a pure subgroup of rank n + 1 ^ 2. Let A c H be pure of
rank n; by hypothesis G = A + B with A quasi-equal to a completely
decomposable group; take B pure in G [1, p. 95]. By Proposition 1.3,
H ~ A + H Π B; clearly H Π B is a pure subgroup of rank one in B.
By Remark 1.4, B±Hf)B + C and so G±A + HΓ\B + C±H+C,
which completes the proof.

We shall shortly be able to strengthen the conclusion of Lemma
1.5 (see Corollary 1.7). A complete description of groups with the
property that every pure subgroup of finite rank is a quasi-summand
can be obtained from the following theorem, which is the quasi-
isomorphism analog of Theorem 46.8 [5].

THEOREM 1.6. Every pure subgroup of G is a quasi-summand if
and only if G = D + Gγ + + Gn with D divisible and the Gi
reduced rank-one groups satisfying t{G^) ̂  ••• ^ t(Gn).

Proof. Suppose G has the property that every pure subgroup is
a quasi-summand and write G — D + H with D divisible and H
reduced; by Remark 1.4, H inherits this property. To see that H
has finite rank, suppose {a^T=i is an independent set in H. Let A be
the pure subgroup of H generated by {<z{ — (i + l)αί+1}f=1; a1 g A.
Now HjA contains a divisible subgroup generated by {α̂  + A}?=lf so
A could not be a quasi-summand of the reduced group H [2, p. 26].
Thus H has finite rank and by Lemma 1.5, H = Hx + + Hn with
Hi of rank one, i = 1, •••, w. It will be sufficient to show that the
types of any two of the H{ are comparable, for then a suitable
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relabeling of the Hi and Corollary 9.6 [1] will complete the proof.
Let B and C be distinct among the fli; by Remark 1.4, every pure
subgroup of B + C is a quasi-summand since B + C is a quasi-sum-
mand of H. Suppose the types of B and C are incomparable; then
B + C contains elements of three different types, t(B)y t(C), and
t(B) Π t(C). Pick nonzero elements b and c of ΰ and C, respectively,
and let M be the pure subgroup of B + C generated by b + c. But
B + C =: M + N is impossible because M + N cannot contain both
elements of type t{B) and of type t(C), since t(M) = ί(J5) Π ί(C)
[2, p. 26]. This contradiction shows that t(B) and t(C) are in fact
comparable and so completes the first half of the proof. Conversely
suppose G = D + H with D divisible, H = Gt + + Gn, and the G*
reduced rank-one groups satisfying £(G:) ̂  ••• ^ t(Gn). First, to see
that it will be sufficient to treat the case D = 0, recall that any
pure subgroup A of G decomposes into A = B + C with JS divisible
and C reduced and that DfiC = 0 because C is pure in G. Thus
the complement H of D may be chosen to contain C [5, p. 63]. Since
B is a direct summand of Z), it will be enough to show that C is a
quasi-summand of J9Γ, so we assume D = 0. By Remark 1.4 and
Lemma 1.5, it will be sufficient to show that QE(G) contains a pro-
jection onto any one-dimensional subspace of V. Let xe V be non-
zero; JcxeG for some positive integer k and so kx — aλ + + an

with aι e Ĝ , i = 1, , n. Let a3- be the first nonzero a{\

tG(kx) = ίβ(α,) = ί(Gv) .

If S denotes the pure subgroup of G generated by kx, then G3- is
isomorphic to S via some map /. Since G3 has rank one, for some
non-zero integers r and s, rf"ι(kx) = sa3. If # denotes the map from
G onto S S G induced by /, then (s/r)g e QE(G) projects V onto the
subspace spanned by x.

COROLLARY 1.7. These properties of a group G are equivalent:
(1) Every pure subgroup of rank one in G is a quasisummand', (2)
every pure subgroup of finite rank in G is a completely decomposable
quasi-summand) (3) G is quasi-separable with linearly ordered type
set.

Proof. Assume (1) is true and let S be a pure subgroup of finite
rank in G. By Lemma 1.5, S is a quasi-summand of G and thus by
Remark 1.4, every pure subgroup of S is a quasi-summand of S.
Theorem 1.6 shows that S is completely decomposable with linearly
ordered type set. Thus we have (1) implies (2) and (2) implies (3).
Finally, suppose (3) holds and let H be a pure subgroup of rank one
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in G. By Remark 1.2, H is contained in a pure subgroup S of G
which is a completely decomposable group of finite rank with linearly
ordered type set. By Theorem 1.6, H is a quasi-summand of S and
thus of G.

From the foregoing results it is perhaps clear that a quasi-
separable group need not be separable; a specific example is the fol-
lowing. It is well known that the subgroup S of π = ΠΓ=i^ generated
by 2π and Σ — ΣΓ=i Z £ π is not separable. Since S == π, both groups
have the same quasi-endomorphism algebra [8]. It is also known
that π is homogeneous and separable, so by Theorem 2.5, S is quasi-
separable. In fact, there exist rank-two groups which are quasi-
separable but not separable, i.e., not the direct sum of two rank-one
groups; see for example Lemma 9.3 [2].

Just as for separable groups, the direct sum of a collection of
quasi-separable groups is quasi-separable and the tensor product of
two quasi-separable groups is quasi-separable.

Having proved basic results about quasi-separable groups, we
turn our attention to the homogeneous case.

2*0* Homogeneous quasi-separable groups* We proceed to
obtain a characterization of homogeneous quasi-separable groups in
terms of quasi-endomorphisms. Intuitively, a group is homogeneous
and quasi-separable precisely when it has ' 'enough'' quasi-endomor-
phisms; this is formulated in terms of density in the finite topology
[7] of L(V).

Recall [9] that a group is irreducible if and only if it has no
nontrivial, pure, fully invariant subgroups, that an irreducible group
is homogeneous, and that G is an irreducible group if and only if V
is an irreducible Qi?(G)-module. After Jacobson [7], call a subset S
of L(V) k-ΐόld transitive if and only if given any j ^ k linearly
independent vectors xif ••-,&,• in V and any j vectors y19

 β ,2/i in
V, there exists feS such that fxt = yiy i — 1, , j . Note well that
G is irreducible, and thus homogeneous, if and only if QE(G) is one-
fold transitive.

REMARK 2.1. For a subring R of L(V) the following conditions
are equivalent: (1) R is two-fold transitive; (2) R is ft-fold transitive
for every k; (3) R is dense in L(V). This follows immediately from
Jacobson [7, p. 32].

LEMMA 2.2. Let H be a pure subgroup of G and let f be any
quasi-endomorphism of G such that f(H*) £ if*. Then the restriction
of f to H* is a quasi-endomorphism of H.
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Proof. Let n be a positive integer such that n(fG) £ G; then

s Gn (/#)* gGn (#*) - H.

PROPOSITION 2.3. ( 1 ) QE(G) is dense if and only if G is ir-
reducible and Q is the centralizer of QE(G) in L(V).

( 2 ) If QE(G) is dense, then G is homogeneous and every pure
subgroup of finite rank in G is completely decomposable.

( 3 ) QF(G) is an ideal of QE(G); if QE{G) is dense and QF{G) Φ 0,
then QF{G) is also dense.

Proof. (1) follows from a remark of Jacobson [7,p.32] and the
fact that G is irreducible if and only if V is an irreducible QE(G)-
module. Let H be a pure subgroup of finite rank in G. In order to
prove (2), it will suffice to show that QE(H) = L(ίf*) by Corollary
1.5 [4]. Let xλ, ,xn be a basis of J9Γ* and let fe L(H*). By
density and Remark 2.1, some ge QE(G) maps #{ to fxi9 i = 1, , n,
and so g(H*) £ H*. By Lemma 2.2, g restricted to H* is a quasi-
endomorphism of H and so QE(H) — L(H*). In (3), it is clear that
QF(G) is an ideal of QE(G); Theorem 4 [7,p.33] completes the proof.

LEMMA 2.4. // QF(G) is dense, then it contains a projection
onto any finite dimensional subspace of V and thus every pure sub-
group of finite rank in G is a completely decomposable quasi-summand.

Proof. Let Xι,m ,xn be independent in V. By density and
Remark 2.1, some fe QF(G) leaves the xi invariant. Extend xiy , xn

to a basis xλ, ***,xn,yy, * ,ym of fV. Again, some ge QF(G) leaves

the xζ invariant and annihilates yx, , ym. Now gf projects V onto
the subspace spanned by xly * ,xn. Suppose H is a pure subgroup
of finite rank in G; by (2) of Proposition 2.3, H is completely decom-
posable. We have just proved that QF{G) contains a projection e of
V onto if*. Now G = eV f] G + (1- e)Vf]G and eV f] G = H because

H is pure.

We are now prepared to prove

THEOREM 2.5. These are equivalent:
(1) G is homogeneous and quasi-separable.
(2) QF(G) is dense in the finite topology of L(V).
( 3 ) QF(G) is one-fold transitive and every pure subgroup of

finite rank in G is completely decomposable.

Proof. (1) implies (2). By Remark 2.1, it will be sufficient to
show that QF(G) is two-fold transitive. Let xx and x2 be independent
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in V and let yι and y2 be arbitrary elements of V. Since G is a full
subgroup of V9 there is some positive integer n such that nxlf nx2,
nyίf and ny2 are all in G; suppose these elements are contained in a
completely decomposable quasi-summand, H, of finite rank. H is
homogeneous because G is, so by Corollary 1.5 [4], QE(H) — L(H*).
If e is an idempotent associated with H, QE{H) = eQE{G)e [8], so if
feL(H*) sends ^ to ^ , ΐ = l,2, / is induced by e#e for some
βre QE(G). Now e#ee QF(G), so QF(G) is two-fold transitive and thus
dense.

That (2) implies (3) follows from Remark 2.1 and Proposition 2.3.
(3) implies (1). G is certainly homogeneous because QE(G) is

one-fold transitive. By Corollary 1.7 and Remark 1.4, it will suffice
to prove that QE(G) contains a projection onto any one-dimensional
subspace of V, so let x be any nonzero element in V. By hypothesis
some feQF(G) leaves x invariant; A =fVf) G is pure of finite rank
in G and so is completely decomposable. B — {x}* Π G is a direct
summand of A [5, p. 178]. If g projects A onto B, then gfeQE(G)
projects V onto {#}*.

Under the hypothesis of Theorem 2.5, QE(G) is primitive with
socle QF{G) by the Structure Theorem [7, p. 75].

3*0* Applications to separable groups* Here we prove that
countable groups G with QE(G) dense in L(V) are homogeneous and
completely decomposable; this is accomplished with the aid of a
generalization of Pontryagin's criterion for countable free groups.
&-fold transitivity of quasi-endomorphisms is interpreted in terms of
endomorphisms to provide further insight into homogeneous quasi-
separable groups. This suggests properties of endomorphisms both
necessary and sufficient for a group to be homogeneous and separable.

LEMMA 3.1. A countable homogeneous group is completely decom-
posable if and only if each pure subgroup of finite rank is completely
decomposable.

Proof. The necessity obtains by Theorem 46.6 [5]. For the
sufficiency, let {αjf=i be an enumeration of a countable homogeneous
group G, each of whose pure subgroups of finite rank is completely
decomposable. Let Hn denote the pure subgroup generated by alf , an

and set GL = Ht. Then in general, Hn+1 = Hn + Gn+ι [5, p.178] with
Gn+1 either 0 or of rank one. Now G - Σϊ=i Gn.

THEOREM 3.2. A countable group G is homogeneous and com-
pletely decomposable if and only if QE(G) is dense.
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Proof. The necessity follows from Theorem 2.5 and the sufficiency
from Proposition 2.3 (2) and Lemma 3 1.

COROLLARY 3.3. A countable, homogeneous, quasi-separable group
is completely decomposable.

COROLLARY 3.4. If QE(G) is dense then G is ^-completely de-
composable in the sense that every countable pure subgroup is com-
pletely decomposable.

The discussion now turns to an interpretation in terms of endo-
morphisms of some properties of quasi-endomorphisms encountered in
§2. E(G) denotes the endomorphism ring of G and F{G) denotes
those endomorphisms of G which have finite rank.

DEFINITION 3.5. A subset S of E(G) is called fc-fold transitive if
and only if given j <̂  k independent elements alf , a3- of G and any
j elements bu •••, bά of G, there exists an endomorphism feS and a
positive integer n such that /α, = nbi9 i — 1, •••,.?.

PROPOSITION 3.6. The pure subring R of E{G) is k-fold transitive
if and only if i2*(g L(V)) is k-fold transitive.

Proof. A straightforward computation using the fact that E(G)
is full in QE(G) and using the one-to-one correspondence between
pure subrings of E{G) and subalgebras of QE(G) [5,p.271]

REMARK 3.7. The above implies the following; (5) is of particular
interest.

(1) G is irreducible if and only if E(G) is one-fold transitive.
(2) F(G) is a pure ideal of E(G) and F(G)* = QF(G).
(3) The pure subring R of E{G) is two-fold transitive if and

only if R* is dense.
(4) G is homogeneous and quasi-separable if and only if F(G)

is two-fold transitive.
(5) A countable group G is homogeneous and completely decom-

posable if and only if E(G) is two-fold transitive.
A property somewhat stronger than two-fold transitivity may be

required of F(G) to conclude that G is homogeneous and separable.

DEFINITION 3.8. Call a subset S of E(G) fully fc-fold transitive
if and only if S is k-ίolά transitive and in addition for any nonzero
elements a and b of G such that h(a) ̂  h{b), some feS maps a to
6.
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LEMMA 3 9. Let a and b be nonzero elements of rank-one groups
A and B, respectively. Then some fe Ή,omz(A, B) maps a to b if and
only if hA(a) ^ hB(b).

Proof. Only the sufficiency need be checked and this can be done
computationally by using the characterization of subgroups of Q found
in [3].

THEOREM 3.10. The following statements about the group G are
equivalent.

(1) G is homogeneous and separable.
( 2 ) F(G) is fully two-fold transitive.
(3) F(G) is fully one-fold transitive and every pure subgroup of

finite rank in G is completely decomposable.
(4) G is homogeneous, every pure subgroup of finite rank is

completely decomposable, and F(G) is dense in the finite topology of
E(G).

Proof. We prove that (1) and (2) are equivalent, then (2) and
(3), and finally (1) and (4).

(1) implies (2). By Remark 3.7 (4), F(G) is two-fold transitive.
Let a and b be any two nonzero elements of G satisfying h(a) ̂  h(b)
and let A and B denote the pure subgroups of G generated by a
and b respectively. By Lemma 3.9, some feΈίomz(A, B) maps a to
b. By [5,p.l78], there is a projection g of G onto A. Now fgeF(G)
sends a to b, so F(G) is fully two-fold transitive.

(2) implies (1). By Remark 3.7 (4) and Corollary 1.7, G is homo-
geneous and every pure subgroup A of rank one is a quasi-summand;
it will be sufficient to show that A is in fact a direct summand [5,
p.178]. Write G ^ A + C with C pure in G. By [1, p.96],

G = B + C

with B isomorphic to A via some map /; let g be the projection of
G onto B. Pick a nonzero element aeA; h(a) = h{f~ιa) and height
is unambiguous since all relevant groups are pure subgroups of G.
By hypothesis, some reF(G) maps a to f~*a. Let s = fgr; sa — a.
{c e f t sc = c) is a nontrivial pure subgroup of G contained in A and
so equals A, i.e., s is an idempotent.

(2) and (3) are equivalent by Remark 3.7 (4) and Theorem 2.5.
(1) implies (4). Since (1) implies (3), it will be enough to prove

that F(G) is dense in the finite topology of E(G). Let / be any
endomorphism of G and let ai9 , an be arbitrary elements of G.
Now aiy fai9 i = 1, « ,w, are all contained in some direct summand
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of finite rank. If g is a projection associated with this summand,
gfeF(G) is in the open neighborhood of/,

{h e E{G): ha{ = faif i = 1, , n} .

(4) implies (1). It will be sufficient to see that any pure sub-
group A of finite rank in G is a direct summand [5,p.l78]. By
density, some feF(G) leaves A invariant because the identity map
does. Let B denote the pure subgroup of G generated by fG; by
hypothesis B is completely decomposable and A is a direct summand
of B by [5,p.l78]. If g projects B onto A then gf projects G onto
A.

REMARK 3.11. Full two-fold transitivity cannot be strengthened
in the following sense. Given αlf α2 independent in G and b19 b2

arbitrary in G such that h{a?) ^ M&;)> ί*1 general there is no endo-
morphism mapping a{ to bi9 ί = 1, 2. Furthermore in Theorem 3.10
(3), the complete decomposability of pure subgroups of finite rank is
essential, as the following discussion indicates. Let K be any sub-
field of the p-adic number field Fp and let R = K Π J9f Jp the subring
of p-adic integers; R is a pure subring of Jp and so is indecomposable
[5,p.l50]. By standard arguments [5,p.212], E(R) = R, i.e., every
endomorphism of the additive group of R is induced by ring multi-
plication. Now it is easy to see that E{R) is fully one-fold
transitive, for if a and b are nonzero elements of R, a = pmu, b — pnv
with u and v units in Jp [6, p.225] and hence in R by purity; also

u-1 e R = K n JP .

Now h(a) ̂  h(b) if and only if m £ n [6, p.225], so if m ^ n,

maps a to 6; otherwise vw1 maps a to pm~nb. Thus E(R) is fully
one-fold transitive. In particular for K an algebraic number field
[6, p.229], E(R) = F(R), F(R) is fully one-fold transitive but not
(fully) two-fold transitive, and R is homogeneous but not (quasi-)
separable.

REFERENCES

1. R. A. Beaumont and R. S. Pierce, Torsion-free rings, Illinois J. Math., 5 (1961),
61-98.
2. , Torsion free groups of rank two, Memoirs Amer. Math. Soc, 38 (1961),
3. R. A. Beaumont and H. S. Zuckerman, A characterization of the subgroups of the
additive rationals, Pacific J. Math., 1 (1951), 169-177.
4. E. F. Cornelius, Jr., Note on quasi-decompositions of irreducible groups, Proc. Amer.
Math. Soc, 26 (1970), 33-36.



A GENERALIZATION OF SEPARABLE GROUPS 613

5. L. Fuchs, Abelian Groups, Budapest, I960.
6. N. Jacobson, Lectures in Abstract Algebra, vol. 3, Princeton, 1964.
7. N. Jacobson, Structure of Rings, Amer. Math. Soc. Colloquium Publications, vol.
37, 1956.
8. J. D. Reid, On quasi-decompositions of torsion free abelian groups, Proc. Amer.
Math. Soc, 13 (1962), 550-554.
9. , On the ring of quasi-endomorphisms of a torsion-free group, Topics in
Abelian Groups, Chicago, 1963, 51-68.

Received February 17, 1970. This paper is a revision of part of the author's doctoral
thesis written under Professor R. A. Beaumont at the University of Washington,
Seattle, Washington.

WAYNE STATE UNIVERSITY






