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UNIQUELY REPRESENTABLE SEMIGROUPS II

J. T. BORREGO, H. COHEN, AND E. E. D E V U N

A semigroup S is said to be uniquely representable in
terms of two subsets X and Y if X- Y — Y-X = S9 xxyu — #22/2
is a nonzero element of S implies Xi = x2 and yx = y2 and
ViXi = VzX2 is a nonzero element of S implies yγ = y2 and
Xι = x2 for all xux2eX and yuy2e Y.

In this paper we are concerned with semigroups S with
no zero divisors, E(S) = {0,1}, and which are uniquely repre-
sentable in terms of two subsets X and Y which are iseomor-
phic copies of the unusual unit interval. Here we show
the nonzero elements of the semigroup S can be embedded
in a Lie group.

The authors would like to express their appreciation to Professor
G. D. Crown for taking part in discussions concerning this paper.

NOTATION. S will represent a semigroup without zero-divisors,
E(S) = {0,1} (E(S) is the set of idempotents of S), and which is
uniquely representable in terms of X and Y which are isomorphic
copies of the usual unit interval. We will let T = S — {0} where 0
is the zero of S. Also X° = X - {0} and X01 - X - {0,1} where 1
is the identity for S. Similarly, Y° = Y - {0}, and Y01 = Y - {0,1}.

Define φ: Γ x Γ ^ Γ x Y° by φ(x, y) = (xf, y') where x' and y'
are the unique elements of X° and Y° respectively such that xy — y'x'.
Also define ψ: Γ x Y°-> X° x Y° by ψ(x, y) = (x', y') where xf and
y' are the unique elements of X° and Y° respectively such that
yx = χry\ It is easy to show φ and ψ are homeomorphisms. Also
for fixed y, π,φ \ : X° x {y} -> X°, π,ψ \ : X° x {y) ~> X° are strictly in-
creasing functions, and for fixed x, π2φ \ : {x} x Y° —> Y° and

π2ψ I : {x} x Y°->Y°

are strictly increasing functions.

LEMMA 1. Let xLeX01. If π2φ \ : {x,} x Y°—> Y° is a homeomor-

phίsm, then τu2φ \ : {x} x Y° —* y° is a homeomorphism for all x e X°.

Proof. Fix {yn} a decreasing sequence in Y° with yn—*0, and
ί c e l 0 with x^xί9 To show τr2^ | : {x} x y° —> y° is a homeomorphism
we need only show π2φ \ (x, yn) —> 0. Let x2 e X° with x2x = a?lβ Then
there exist sequences {#J, {rj contained in X°, {sj, {ίj contained in
Y° such that xγyn = a?aaji/Λ = α;2s^w = ίrorw Since

ί» = π2φ \(xu yn) • 0 , sn = τr2ί31 (x, y n ) > 0 .

573



574 J. T. BORREGO, H. COHEN, AND E. E. DEVUN

Since xf —> 0, to finish the proof we need only show

π2φ I : {xl} x Y° > Y°

is a homeomorphism. Select sequence {gj, {rj in X°, {sj, {tn} in Y°
such that x\y% — x1snqn = tnrn. Since sn = π2^ | (a?!, #w), sw —> 0. Thus
tn = τr2^ I (ajlf gn) —* 0. Thus π2φ \ : {x*} x Y° —> Y° is a homeomorphism.
A similar statement for TΓ^ | : X° x {̂/} —> X° can be made.

LEMMA 2. τr2^ | : {a;} x Y° —> F° is a homeomorphism for all xe X°
or πtφ I : X° x {?/} —> X° is a homeomorphism for all y e Y°.

Proof. Let x e X01 with π2φ | : {̂ } x Y° —> F° not a homeomor-
phism, and let 2/e F 0 1 . Fix {yn} a decreasing sequence in Y° with
2/n —> 0. There exist sequences {qn} in X°, {sn} in F° such that

and qn —> O Also there exist sequences {rn} in X°, {ίn} in Y° with
g«V = ί»^«. We claim rn —• 0. For if not £„ —> 0 and thus

with sntn —»0. However this implies π2φ \ : {x} x F° —> y° is a homeo-
morphism. This is a contradiction. So rw—>0, and thus

π,φ \:X°x{y} > X°

is a homeomorphism.

LEMMA 3. T is right reversible or T is left reversible.

Proof. We will assume π$ \ : X° x {y} —• X° is a homeomorphism
for all yeY°. We will show Γ is r ight reversible. Let sιys2eT
with sx = x^i, s2 = x2y2 and ^ ^ ?/2. Thus Ts1 Π Ts2 = Tx1y1 Π T^2?/2 ^ ^
if Tx^^1 Γ\ Tx2^ φ. Let 3̂̂ 3 = x^^T1. If ^3 ̂  x21 then

and hence 7fy3#3 Π Γα g ̂  Φ- lΐ x2 < xz, then Ttys&s Π Tx2 Φ φ if

Γ1/3 n T t f ^ 1 ̂  ^ .

Thus to show T is right reversible we need only show Tx± Π Ty4 Φ φ
for all x4eX01,y4eY0ί. Now TΓ^ | X° X {2/J -> X° is onto and thus
there exists xδ e X01 such that π$ \ (α?6, ?/4) = a;4 and thus x5y± — yδx4

for some yδ e Y°. Hence Γαj4 Π Ty4 Φ φ. If π2φ \ {x} x Y°-* Y° is a
homeomorphism for all # e X°, T is left reversible.

Now T is a right (left) reversible cancellative semigroup [2]. Hence
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[4] T is algebraically embedded in a group G of left (right) quotents
of T. Note that for every element g e G we have g = st where

0'1s , ί G Γ U I r l U Γ°U Y

Also it is easy to see that there exist x e X01, y e Y01 such that
xTΠyT Φ φ and Tx n Ty Φ φ.

LEMMA 4. // x, e X01, yι e Y01 with x,T ΐ\y,T Φ φ and Tx, Π Ty, φ φ,
then for x2 e X°\ x2^ x,,y2e Y°\ y* ̂  2/i there exist x e X01, y e Y01 such
that x2y7λ = y~~xx.

Proof. Now Tx2 Π Ty2 Φ φ for x2 ̂  ^ and y2 ̂  # l β Thus there exist
s,teTsx2 = ty2. Let s = xdy3 and £ = x4y±. Thus α;3?/3ίi?2 — ίc4?/42/2 If
x3 < a?4, then x^% e X01. Thus xϊ%y3x2 = y,y2 or let t ing ^/3x2 = x5yδ wi th
ί̂ 5 € XQ, yδ 6 F° we have xτιxzx^ = 7/47/2 This contradicts fi» being
uniquely representable, so xz^ x4. Hence x^x^ e X° and t h u s y3x2 =
%7%y*y2 or x2y2~

1=y^1x^%yi. But ^ ^ 4 e l ° , s o there exist x6 e X\ yQ e Y°
such that xϊ'xMt = yQx6. Hence x2yςι = yr%xδ. Now ^s"1^ e Γ°~ For
if i/3"1^ e F 0 1 we would have x2 = y^ιyQxQy2 and letting cc62/2 = 2/7a?7 with
&7 G X°, i/7 e Y° we would have x2 = y^lyQy7x7 wi th y^1y6y7 e Y01, x7 e X°.
But this contradicts S being uniquely representable. Note that a
similar argument yields that there exist x e X°, 1/ e YOί such that

LEMMA 5. 7/ ίfcerβ βxίsί ^x e X01, 2/112/2 e ^ 0

/or βαcfe xe X°, y e Y°, there exist yr e Y° such that yx = xy\

Proof. Let ^ e X 0 1 , y1,y2£ Y01 with yγx, — xxy2. We will divide
the proof into two parts.

Part 1. We will show that for each ye F 0 1 there exist y'e YOί

such that yx, = x,yf. To prove the above we need only show that
there exist yze F 0 1 such that Vy^^i — %&*• Now -\Z^x,e T so there
exist x4 G -X"0, 2/4 G Γ° such that Vy[^ι = a?^. Also let #5 e X°, 2/5 e Y°
with i/^"α?4 = αj62/6 Now y,x, = I /^ΓT/^Γ^I = W^ύJ* = aJβl/βl/*. Thus
aj5 = a?! and τ/2 = 2/5τ/4. The map TΓ^ | : X° x {1/^} —> X° is strictly
increasing and TΓ^ | ( π ^ | (xu V^), Vyl) = ̂ t I (^
thus TΓio/r I (^x, 1/^") = ̂ i Hence i/y^x, = x,y4.

Part 2. To finish the theorem we need only show that there
exist x2 e X01 with x2 > x, and y,y' e YOί such that yx2 — x2y

f. Since
the map s —> s2 is onto we can pick xs,x4e X01, yz,y*€ Y01 with
yλx, = (x3yd)

2 and ^3^3 = 2/4x4. Now y^x^xzyz = y,x, = x,y2. Pick x5 e X01,
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y6 6 Γ 0 1 such t h a t xδy6 = y4x4x3. Then x,y2 = yxxx = y±x4x3y3 =

Thus α?5 = a?1# Select τ/6 e F 0 1 such t h a t a ? ^ = ^ ^ So

y,x,x3 = ^ 5 ?/ 5 = i/βo?!

Thus #4#3 = ajlβ Hence x3> xλ. Now t h e r e exist x0 e X01, y0 e Y01 such

t h a t x3y3y± = yQx0- So ytxt = xzy3y4x4 = yQxQx4. Hence xx = xQx4. But

x1 = x4x3 = a?8a?4. Thus ^0 = x3 and τ/0̂ 3 = ^o^o = %z{yzVΪ) This completes

t h e proof.

Let R and iϋ' be the relation ^ or <^.

LEMMA 6. / / ^ , a ; 2 e I 0 I , i / 1 } i / 2 6 F 0 1 with Xιyι = y2x2') XiRx*, and

ViR'Vto then for xs,x4e X01, yziV^^ Y01 with xsy3 = y4x± we have x3Rx4

and yzR'y4.

Proof. C o n s i d e r t h e m a p πxφ | : Γ x {y,} —> X°, a n d l e t

πxφ(xλ, yλ) = x2

and πjφfa, yx) — x6. Suppose xδRx3. Now xtRx2 and thus there exist

x e X01 such that πίφ(xf y^ = x. Hence there exist y e Y01 such that

xyx — yx. By Lemma 5 we see x3yx = y'xz for some y' 6 F 0 1 . Thus

x3 — x5 and x3Rx5. The same type of argument yields yxR'yh where

#β2/i = Vδχ5' Applying them again we get x3Rx4 and yzR!y^ This

completes the proof.

For seT, let s° = 1. Fix x e X01, y e Y01 with xTΠyT Φ φ and
TxV\TyΦφ. Now consider G with the topology generated by the
following neighborhoods. For t real t e (0, 1) define

tf(l,ί) - {x*yβ:a,βe(-t,t)} .

For £ e G, g = sr with s , r e I ° U X0"1 ϋ Y° Ό Γ0"1. The neighborhoods
for £ will consist of siV(l, t)r where N(l, t) is a neighborhood of the
identity.

LEMMA 7. ijf iV(l, ί) is a neighborhood of the identity, then there
exist N(l,q) a neighborhood of the identity such that

N(l,q) N(l,q)c:N(l,t).

Proof. From Lemma 6 and from the fact yί!n —>1, x1Jn —»1 we

can pick N such t h a t for n > N the following hold: (1) yllnxq = xnyn

and xn e {xt!\ 1] implies xq e {xt!\ 1], (2) xlln e (x ί / 4,1], and (3)

ylίnx« = x'ny'n

with ^G(^ ί / 2,1] implies y'ne(ytl2,l].
From Lemma 4 there exist xn e X01, yn e Y01 such that
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Since xlln = yιlny~Unxιln = tlnxny~x we see that j/1/nάΛ = α1 '*^. Thus
from the above xn e {xtι\ 1] and yn e (ytι\ '] or y-1 e [1,2Γί/2). That is
there exist N such that for

n > N, ψ(xlln, y~1In) c {{x% yβ): a,βe (-ί/2, 0) U (0, ί/2)} .

Using the same procedure we can find M large enough such that

{ψ(χιlM, y 1 ' * ) , Ψ(%~1IM, y l l M ) , Ψ(%1IM, y ~ l l M ) , ψ(χ~llM, y ~ l l M ) , (%llM> vUM),

(or1'", y~llM)} c {̂ α, 2/0: a, β e (-ί/2, 0) U (0, ί/2)} .

Now by Lemma 4 and Lemma 6

{yaχt: a,βe (-1/ΛΓ, 1/M)} c {α?V: ^ /3 e (-ί/2, ί/2)} .

Hence JV(1,1/Λf) ΛΓ(1,1/ikf) c iV(l, ί).

LEMMA 8. G is a topological semigroup.

Proof. To prove this we need only show that for each

s e Γ U X0"1 UΓ°U Γ0"1

and JV(1, ί) a neighborhood of the identity there exist N(l, q) a neigh-
borhood of the identity such that sJV(l, q) c N(l, t)s. We will assume
S G Γ U Γ0"1. NOW N(l, t)s = {xasy?: a,βe (-t, t)}. Now pick r such
that {sxa: a β (-r, r)} c {xay^s: a,βe (-ί/2, ί/2)}. Set g = min {r, ί/2}.
Then sN(l,q)c:N(l,t)s.

Now G is a locally compact topological semigroup which is
algebraically a group. By [9] G is a topological group. Moreover
since G is locally euclidean [8] G is a two-dimensional Lie group.

THEOREM 9. T is embedded in G.

Proof. The inclusion map i: T —> G is an iseomorphism into.

It should be pointed out here that an alternate and more general
method for embedding semigroups in groups has been constructed by
D. R. Brown and Michael Friedberg [4].

COROLLARY 10. If D is a uniquely divisible semigroup on the
two-cell with E(D) — {0,1} (E(D) is the set of idempotents for D),
then D — {0} is embedded in a Lie group.

Proof. In [2] it was shown that D — {0} is uniquely representable
in terms of two usual unit intervals. Thus D — {0} is embedded in
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a Lie group.

Examples and characterization* The authors would like to ex-
tend their appreciation to J. Lawson for supplying us with the
information for the characterization of the uniquely representable
semigroups.

(1) Let (/, *) denote the closed unit interval with the usual
multiplication. Then (/, •) x (/, •)/[({()} x / ) U ( I x {0})] is the only
commutative which is uniquely representable in terms of two usual
unit intervals [6], [7].

If S is non-abelian, then G is a non-abelian Lie group and G can

be represented by the real matrices ί ϊ Vj with x> 0 [1].

In the examples below we will take S to be the semigroup in-
duced by one point compactification of the subsemigroups of G. The
point added will always be the zero for S.

It is to be noted that Example 4 is anti-isomorphic to Example
2 and Example 5 is anti-isomorphic to Example 3.

(2) Let S be the topological semigroup generated by taking the

one point compactification of the semigroup of matrices ί ϊ Ψ\ with

β>0, i/^0, ίB + 2/^l . Note S is uniquely divisible and thus S
is uniquely representable in terms of two usual unit intervals [2]. Also
S is not left reversible. It is easy to see that if W is the semigroup
induced by the one point compactification of any collection of matrices

(o I ) w i t h ° < x — •*• a n d y = a(χ-i)> y ^ β(χ - ! ) f o r t w 0 r e a l

numbers a and β, W is iseomorphic to S.

(3) The one point compactification of the semigroup ί ϊ Ψ\ with

0<#5gl,7/^>0 is a uniquely divisible semigroup on the two-cell. S

is uniquely representable in terms of (^ «J U {0} and

This semigroup is both left and right reversible. Furthermore,

(x 0V1 y\ _ (1 xy\(x 0\

\o lΛo i;~Vo lΛo l).
Also if W is the one point compactification of any semigroup of

matrices ί? γ\ with y ^ a(x — 1), 0 < x ^ 1 or y ^ a(x — 1), 0< x <; 1

for some real number a, then S is iseomorphic to W. We will say
S is half commutative if for each x e X°, y e Y° there exists yf e Y°
such that xy = y'x.

(4) Let S be the one point compactification of the semigroup

(o l ) w**k x — ̂ ' y — ̂ ' ^ — x "" ""•• Then S is uniquely divisible,
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left but not right reversible, it is not half commutative. Also if W
is the semigroup formed by the one point compactification of the

semigroup (Q | ) wi th x^£l,y^ a(x — 1), y ^ β(x — ΐ),β>a, W is

iseomorphic to S.

(5) Consider the semigroup S formed by the one point com-

pactification of the semigroup ί? ^ϊ %^l,y^0. S is uniquely divi-

sible, half commutative, right and left reversible. S differs from

Example 3, since S has no copy of Example 2 contained in it, but

Example 3 has a copy of Example 2 in it. Also if W is the one

point compactification of the semigroup lΐ Ψ\ x^l,y^> a(x — 1), a

real, or x^l,y ^ a(x — 1), then W is iseomorphic to S.
These are all of the semigroups which are uniquely representable

in terms of two usual unit intervals. Note that they are all uniquely
divisible.

COROLLARY 11. If S is uniquely representable in terms of two
usual unit intervals and without zero divisor and E(S) = {0,1}, then
S is uniquely divisible.
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