REAL-VALUED CHARACTERS OF METACYCLIC GROUPS

B. G. BASMAJI

The nonlinear real-valued irreducible characters of metacyclic groups are determined, and the defining relations are given for the metacyclic groups with every nonlinear irreducible character real-valued.

Consider the metacyclic group

$$G = \langle a, b | a^n = b^m = 1, a^k = b^t, b^{-1}ab = a^r \rangle$$

where $r^t - 1 \equiv kr - k \equiv 0 \pmod{n}$ and $t \mid m$. Let s be a positive divisor of n and let t_s be the smallest positive integer such that $r^{t_s} \equiv 1 \pmod{s}$. Let χ_s be a linear character of $\langle a \rangle$ with kernel $\langle a^s \rangle$ and $\overline{\chi}_s$ be an extension of χ_s to $K_s = \langle a, b^{t_s} \rangle$, see [1]. From [1] the induced character $\overline{\chi}_s^a$ is irreducible of degree t_s and every irreducible character of G is some $\overline{\chi}_s^a$.

Assume $\overline{\chi}_s^g$ is nonlinear. Then $K_s \subset G \neq K_s$. From Lemma 1 of [2], $\overline{\chi}_s^g$ is real-valued if and only if there is $y \in G$ such that $\langle K_s, y \rangle / D_s$ is dihedral or quaternion, where D_s is the kernel of $\overline{\chi}_s$. Assume such a y exists. Since G/K_s is cyclic, t_s is even and we may let $y = b^{t_s/2}$. Hence $r^{t_s/2} \equiv -1 \pmod{s}$ and $\overline{\chi}_s(b^{t_s}) = \pm 1$. Since $\overline{\chi}_s(b^{t_s})^{t/t_s} = \chi_s(a^k)$, $\overline{\chi}_s(b^{t_s}) = \pm 1$ implies either (i) $s \mid (k, n)$, or (ii) $s \mid 2(k, n), s \nmid (k, n)$, and $t = t_s$. When (i) occurs, $\overline{\chi}_s(b^{t_s}) = 1$ if t/t_s is odd and $\overline{\chi}_s(b^{t_s}) = \pm 1$ if t/t_s is even. When (ii) occurs $\overline{\chi}_s(b^{t_s}) = -1$. Note that if $\overline{\chi}_s(b^{t_s}) = -1$ then $\overline{\chi}_s^g$ is not realizable in the real field. Using [1] the number of the nonlinear irreducible real-valued characters not realizable in the real field is $\Sigma''\phi(s)/t_s$ where Σ'' is over all positive divisors s of n such that t_s is even, $r^{t_s/2} \equiv -1 \pmod{s}$ and $t = t_s$. The number of the nonlinear irreducible real-valued characters is $\Sigma'\phi(s)|t_s + \Sigma''\phi(s)/t_s$ where Σ' is defined in [2, § 2].

Let $\pi = \{p \mid p \text{ an odd prime dividing } n\}$.

THEOREM. Assume G, given as above, is non-abelian. Then every nonlinear irreducible character of G is real-valued if and only if n, m, k, t, t_n and r satisfy one of the conditions below.

(a) m = t with either (i) $4 \nmid n$, $2 \mid t$, and $t_p = t$ for all $p \in \pi$, (ii) $4 \nmid n$, $4 \mid t$, and $t_p = t/2$ for all $p \in \pi$, or (iii) $4 \mid n$, r = -1, t = 2or t = 4.

(b) m = 2t with either (i) $2 \parallel n, 2 \parallel t, and t_p = t$ for all $p \in \pi$, or

(ii) 4 | n, r = -1, and t = 2.

REMARK. Since (b)—(i) is the semi-direct product $\langle a^2 \rangle \circ \langle b \rangle$, and thus a special case of (a)—(ii), we have (b)—(ii) (where G is quaternion) the only nonsplitting case.

Proof. Consider χ_n with kernel $\langle 1 \rangle$. Assume m/t > 2. Since $b^t \in \langle a \rangle \subseteq K_n = \langle a, b^{t_n} \rangle$ we have $\chi_n(b^t)$, and hence $\overline{\chi}_n^G(b^t) = t_n \chi_n(b^t)$, complex. Thus $m/t \leq 2$, i.e., m = t or m = 2t. Assume $t_s = 1$ for some $s \mid n, s > 2$. Since $b^{-1}a^{n/s}b = a^{n/s}$ we have $\overline{\chi}_n^G(a^{n/s}) = t_n \chi_n(a^{n/s})$ complex. Thus $t_s > 1$ for all $s \mid n, s > 2$.

Consider χ_s with kernel $\langle a^s \rangle$, s > 2. Assume $t/t_s > 2$. Then the extension $\overline{\chi}_s$ to $K_s = \langle a, b^{t_s} \rangle$ can be chosen such that $\overline{\chi}_s(b^{t_s})$ is complex. Thus $\overline{\chi}_s^G(b^{t_s}) = t_s \overline{\chi}_s(b^{t_s})$ is complex and hence $t = t_s$ or $t = 2t_s$. Also, since G/K_s is cyclic of even order, $2 \mid t_s$.

Let p and q be in π , $p \neq q$ and assume $t_p = t$ and $t_q = t/2$. Then $t_{pq} = t$. Thus $K_{pq} = \langle a \rangle$, and since $b^{-t/2}ab^{t/2} \notin a^{-1}\langle a^{pq} \rangle$, it follows that $\langle a, b^{t/2} \rangle / \langle a^{pq} \rangle$ is neither dihedral nor quaternion, a contradiction. Thus either $t_p = t$ for all $p \in \pi$ or $t_p = t/2$ for all $p \in \pi$.

Now assume $\lambda | n, \lambda = 2^e$, e > 1. Then t_{λ} is a power of 2. Consider χ_{λ} . Then since $\langle a, b^{t_{\lambda}/2} \rangle / \langle a^{\lambda} \rangle$ is dihedral or quaternion, it follows that $r^{t_{\lambda}/2} \equiv -1 \pmod{\lambda}$. The only solution is $r \equiv -1 \pmod{\lambda}$. Thus $t_{\lambda} = 2$. As above, if e > 1 then $2 = t_{\lambda} = t_{p}$ for all $p \in \pi$, so $r \equiv -1 \pmod{n}$.

Assume $t_p = t$, $2 \mid t$, for all $p \in \pi$. If *n* is odd then t = m, and if n = 2v, *v* odd, then t = m or 2t = m. If $4 \mid n$ then r = -1 and $2 = t_4 = t_p = t = m$ or 2t = m = 4.

Assume $t_p = t/2$, 4 | t, for all $p \in \pi$. If $4 \nmid n$ then t = m. [The case m = 2t, n = 2v, v odd can not occur, since then we have $b^t = a^v \neq 1$, $K_n = \langle a, b^{t/2} \rangle$, which implies $\overline{\chi}_n(b^{t/2}) = \pm \sqrt{-1}$ and thus $\overline{\chi}_n^G$ is complex.] If 4 | n then r = -1 and $2 = t_4 = t_p = t/2$. Thus 4 = t = m. [The case m = 2t = 8 cannot occur for a similar reason as above.]

The above give all the cases in the Theorem. Conversely if G is as in the Theorem and $s \mid n, s > 2$, it is easy to show that $\langle a, b^{t_s/2} \rangle / D_s$ is dihedral or quaternion, where D_s is the kernel of $\overline{\chi}_s$, and thus $\overline{\chi}_s^{g}$ is real-valued. This completes the proof.

We remark that a similar result to Theorem 1 of [2], with a parallel proof, could be given for the real-valued characters of metabelian groups.

References

1. B. Basmaji, Monomial representations and metabelian groups, Nagoya Math. J., **35** (1969), 99-107.

2. B. Basmaji, Representations of metabelian groups realizable in the real field, Trans. Amer. Math. Soc., **156** (1971), 109-118.

Received October 12, 1970 and in revised form June 6, 1971.

CALIFORNIA STATE COLLEGE AT LOS ANGELES