REAL-VALUED CHARACTERS OF METACYCLIC GROUPS

B. G. Basmaji

Abstract

The nonlinear real-valued irreducible characters of metacyclic groups are determined, and the defining relations are given for the metacyclic groups with every nonlinear irreducible character real-valued.

Consider the metacyclic group

$$
G=\left\langle a, b \mid a^{n}=b^{m}=1, a^{k}=b^{t}, b^{-1} a b=a^{r}\right\rangle
$$

where $r^{t}-1 \equiv k r-k \equiv 0(\bmod n)$ and $t \mid m$. Let s be a positive divisor of n and let t_{s} be the smallest positive integer such that $r^{t_{s}} \equiv 1(\bmod s)$. Let χ_{s} be a linear character of $\langle a\rangle$ with kernel $\left\langle a^{s}\right\rangle$ and $\bar{\chi}_{s}$ be an extension of χ_{s} to $K_{s}=\left\langle a, b^{t_{s}}\right\rangle$, see [1]. From [1] the induced character $\bar{\chi}_{s}^{G}$ is irreducible of degree t_{s} and every irreducible character of G is some $\bar{\chi}_{s}^{G}$.

Assume $\bar{\chi}_{s}^{G}$ is nonlinear. Then $K_{s} \subset G \neq K_{s}$. From Lemma 1 of [2], $\bar{\chi}_{s}^{G}$ is real-valued if and only if there is $y \in G$ such that $\left\langle K_{s}, y\right\rangle / D_{s}$ is dihedral or quaternion, where D_{s} is the kernel of $\bar{\chi}_{s}$. Assume such a y exists. Since G / K_{s} is cyclic, t_{s} is even and we may let $y=b^{t_{s} / 2}$. Hence $r^{t_{s} / 2} \equiv-1(\bmod s)$ and $\bar{\chi}_{s}\left(b^{t_{s}}\right)= \pm 1$. Since $\bar{\chi}_{s}\left(b^{t_{s}}\right)^{t / t_{s}}=\chi_{s}\left(a^{k}\right)$, $\bar{\chi}_{s}\left(b^{t_{s}}\right)= \pm 1$ implies either (i) $s \mid(k, n)$, or (ii) $s \mid 2(k, n), s \nmid(k, n)$, and $t=t_{s}$. When (i) occurs, $\bar{\chi}_{s}\left(b^{t_{s}}\right)=1$ if t / t_{s} is odd and $\bar{\chi}_{s}\left(b^{t_{s}}\right)= \pm 1$ if t / t_{s} is even. When (ii) occurs $\bar{\chi}_{s}\left(b^{t_{s}}\right)=-1$. Note that if $\bar{\chi}_{s}\left(b^{t_{s}}\right)=-1$ then $\bar{\chi}_{s}^{G}$ is not realizable in the real field. Using [1] the number of the nonlinear irreducible real-valued characters not realizable in the real field is $\Sigma^{\prime \prime} \phi(s) / t_{s}$ where $\Sigma^{\prime \prime}$ is over all positive divisors s of n such that t_{s} is even, $r^{t_{s} / 2} \equiv-1(\bmod s)$ and either (i) $s \mid(k, n)$ and t / t_{s} even or (ii) $s \mid 2(k, n), s \nmid(k, n)$, and $t=t_{s}$. The number of the nonlinear irreducible real-valued characters is $\Sigma^{\prime} \phi(s) \mid t_{s}+\Sigma^{\prime \prime} \phi(s) / t_{s}$ where Σ^{\prime} is defined in [2, § 2].

Let $\pi=\{p \mid p$ an odd prime dividing $n\}$.
Theorem. Assume G, given as above, is non-abelian. Then every nonlinear irreducible character of G is real-valued if and only if n, m, k, t, t_{p} and r satisfy one of the conditions below.
(a) $m=t$ with either (i) $4 \nmid n, 2 \mid t$, and $t_{p}=t$ for all $p \in \pi$, (ii) $4 \nmid n, 4 \mid t$, and $t_{p}=t / 2$ for all $p \in \pi$, or (iii) $4 \mid n, r=-1, t=2$ or $t=4$.
(b) $m=2 t$ with either (i) $2 \| n, 2 \mid t$, and $t_{p}=t$ for all $p \in \pi$, or
(ii) $4 \mid n, r=-1$, and $t=2$.

Remark. Since (b)-(i) is the semi-direct product $\left\langle a^{2}\right\rangle \circ\langle b\rangle$, and thus a special case of (a)-(ii), we have (b)-(ii) (where G is quaternion) the only nonsplitting case.

Proof. Consider χ_{n} with kernel $\langle 1\rangle$. Assume $m / t>2$. Since $b^{t} \in\langle a\rangle \subseteq K_{n}=\left\langle a, b^{t_{n}}\right\rangle$ we have $\chi_{n}\left(b^{t}\right)$, and hence $\bar{\chi}_{n}^{G}\left(b^{t}\right)=t_{n} \chi_{n}\left(b^{t}\right)$, complex. Thus $m / t \leqq 2$, i.e., $m=t$ or $m=2 t$. Assume $t_{s}=1$ for some $s \mid n, s>2$. Since $b^{-1} a^{n / s} b=a^{n / s}$ we have $\bar{\chi}_{n}^{G}\left(a^{n / s}\right)=t_{n} \chi_{n}\left(a^{n / s}\right)$ complex. Thus $t_{s}>1$ for all $s \mid n, s>2$.

Consider χ_{s} with kernel $\left.\left\langle a^{s}\right\rangle, s\right\rangle 2$. Assume $\left.t / t_{s}\right\rangle 2$. Then the extension $\bar{\chi}_{s}$ to $K_{s}=\left\langle a, b^{t_{s}}\right\rangle$ can be chosen such that $\bar{\chi}_{s}\left(b^{t_{s}}\right)$ is complex. Thus $\bar{\chi}_{s}^{G}\left(b^{t_{s}}\right)=t_{s} \bar{\chi}_{s}\left(b^{t_{s}}\right)$ is complex and hence $t=t_{s}$ or $t=2 t_{s}$. Also, since G / K_{s} is cyclic of even order, $2 \mid t_{s}$.

Let p and q be in $\pi, p \neq q$ and assume $t_{p}=t$ and $t_{q}=t / 2$. Then $t_{p q}=t$. Thus $K_{p q}=\langle a\rangle$, and since $b^{-t / 2} a b^{t / 2} \notin a^{-1}\left\langle a^{p q}\right\rangle$, it follows that $\left\langle a, b^{t / 2}\right\rangle\left\langle\left\langle a^{p q}\right\rangle\right.$ is neither dihedral nor quaternion, a contradiction. Thus either $t_{p}=t$ for all $p \in \pi$ or $t_{p}=t / 2$ for all $p \in \pi$.

Now assume $\lambda \mid n, \lambda=2^{e}, e>1$. Then t_{λ} is a power of 2. Consider χ_{λ}. Then since $\left\langle a, b^{t_{\lambda} \lambda^{2}}\right\rangle\left\langle\left\langle a^{\lambda}\right\rangle\right.$ is dihedral or quaternion, it follows that $r^{t_{\lambda} / 2} \equiv-1(\bmod \lambda)$. The only solution is $r \equiv-1(\bmod \lambda)$. Thus $t_{\lambda}=2$. As above, if $e>1$ then $2=t_{\lambda}=t_{p}$ for all $p \in \pi$, so $r \equiv-1(\bmod n)$.

Assume $t_{p}=t, 2 \mid t$, for all $p \in \pi$. If n is odd then $t=m$, and if $n=2 v, v$ odd, then $t=m$ or $2 t=m$. If $4 \mid n$ then $r=-1$ and $2=t_{4}=t_{p}=t=m$ or $2 t=m=4$.

Assume $t_{p}=t / 2,4 \mid t$, for all $p \in \pi$. If $4 \nmid n$ then $t=m$. [The case $m=2 t, n=2 v, v$ odd can not occur, since then we have $b^{t}=$ $a^{v} \neq 1, K_{n}=\left\langle a, b^{t / 2}\right\rangle$, which implies $\bar{\chi}_{n}\left(b^{t / 2}\right)= \pm \sqrt{-1}$ and thus $\bar{\chi}_{n}^{G}$ is complex.] If $4 \mid n$ then $r=-1$ and $2=t_{4}=t_{p}=t / 2$. Thus $4=t=m$. [The case $m=2 t=8$ cannot occur for a similar reason as above.]

The above give all the cases in the Theorem. Conversely if G is as in the Theorem and $s|n, s\rangle 2$, it is easy to show that $\left\langle a, b^{t_{s} / 2}\right\rangle / D_{s}$ is dihedral or quaternion, where D_{s} is the kernel of $\bar{\chi}_{s}$, and thus $\bar{\chi}_{s}^{G}$ is real-valued. This completes the proof.

We remark that a similar result to Theorem 1 of [2], with a parallel proof, could be given for the real-valued characters of metabelian groups.

References

1. B. Basmaji, Monomial representations and metabelian groups, Nagoya Math. J., 35 (1969), 99-107.
2. B. Basmaji, Representations of metabelian groups realizable in the real field, Trans. Amer. Math. Soc., 156 (1971), 109-118.

Received October 12, 1970 and in revised form June 6, 1971.
California State College at Los Angeles

