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DEFINING RELATIONS FOR CERTAIN INTEGRALLY
PARAMETERIZED CHEVALLEY GROUPS

W. P. WARDLAW

For each faithful finite dimensional irreducible representa-
tion R of a finite dimensional simple Lie algebra L over the
complex field, this paper treats the integrally parameterized
subgroup Gz of the Chevalley Group G over the rational field
Q. For L of type A, D, or E; Lie algebraic methods are
used to extend a result of J. Nielson on SL(,Z) to obtain
a finite set of defining relations for G,. Similar relations
augmented by defining relations for &,(B;) are shown to define
Gz when L is of type B, C;, or F,. (The relations for G,(B:)
are not listed here.)

Defining relations for the n-dimensional group of lattice transforma-
tions have been given by W. Magnus in [4]. His method easily yields
relations for the group SL(n, Z) respectively PSL(n, Z) isomorphic to
the universal respectively adjoint group G, for L of type A4,_,. H.
Klingen [2] has proven the existence of a finite set of defining rela-
tions for Sp(2n, Z), which is essentially the group G, for L of type
C,. Hence, the defining relations in §2 extend Magnus’ result to G,
of types D, and E, and Klingen’s result to G, of types B, and F.

It might be helpful to the reader to note that a displayed equation
is referred to by a symbol in parentheses, e.g., “(3.1)” or “(B)” and
a theorem, lemma, or corollary is referred to by its title and a number
without parentheses, e.g., “Lemma 3.1”.

2. Statement of results. Let R be a faithful finite dimensional
irreducible representation of a finite dimensional simple Lie algebra L
over the complex field C, and let X be the set of nonzero roots of L
with respect to some Cartan subalgebra. L hasa Chevalley basis {X,,
H,: pe ¥} as defined in [1, p. 24, Th. 1] or [9, p. 6, Th. 1]. The L
module V associated with R contains a lattice M which is invariant
under the action of the Chevalley basis. If M is properly chosen and
K is an arbitrary field, the automorphism x,(f) = exptR(X,) on Vi =
K &®,; M can be defined for each o in ¥ and ¢ in K. The group Gx
generated by all of these automorphisms is the Chevalley group over
the field K of type L corresponding to the representation R. Gy is
the adjoint respectively universal Chevalley group if R is the adjoint
respectively universal representation of L. (See [9, pp. 42-45].)

We will be concerned with the rational Chevalley group G, (hence-
forth denoted by G) and its subgroup, the integrally parameterized
Chevalley group G, generated by the x,(f) with o in ¥ and ¢ in Z.

235



236 W. P. WARDLAW

The relations z,(s)x,(t) = xz,(s + t) in G show the finite set {x,(1): pe
Y} suffices to generate G,. Our goal is to find defining relations for
G, in terms of these generators.

We will let P denote the set of positive roots and I/, the set of
simple roots with respect to some (henceforth fixed) regular ordering
(as defined in [1, p. 20] or [9, p. 266]) of X. Greek letters a and g
will denote arbitrary simple roots, and 7, 4, p, o, and = will be generie
symbols for any roots.

A set S of roots is called closed if p,o€ S and o + o€ X implies
that o + e S. A closed set S of roots is an admissible system if — pe
S whenever pe S. S is a positive set of roots if S is closed and pe S
implies — p4¢ S. If S is a positive set of roots, it is possible to find
a regular ordering of Y which makes all of the roots in S positive;
such a regular ordering will be called a relative ordering corresponding
to the positive set S, to distinguish it from the fixed regular ordering.
Finally, we define L, to be the additive group generated by the set
of all weights of the representation R.

Consider the abstract generators {z,: p € 2} and define w, = 2,272,
and h, = w? for each pe 3. Designate the following relations:

(A) (o, w,) = NNa72507 (0,0€ X, 0+ 0 0)

where (x, y¥) denotes the commutator xyx~'y~' and the product is over
all positive integers ¢ and j such that 0 + jo e 3, taken in increasing
order of the roots ¢0 + jo. The C(¢, j; p, 0) are integers depending only
on 1,37, 0,0, the choice of Chevalley basis, and the structure of L.
(See [1, p. 27] or [9, p. 22].)

(A")  wea,w;' = 37 (pe2).
B =1 (0e2)
© IHh,=1 if II(— 1)*»* =1 for all pe Ly,

where ¢(B, &) is the Cartan integer 2(B, a)/(a, @) and both products
are over an increasing sequence («) of (not necessarily all) simple roots.
Let (A) denote the relations (A’) respectively (A”) when 7k 3 >1
respectively rk ¥ = 1 (rk means rank). If L is of type A,, D, E,, or
G,, let (D) be the empty set of relations. If L is of type B,, C,, or
F,, let « and B be the simple roots forming a system of type B, with
long root B, and let G,(a, B) be the subgroup of G, generated by
{2.(1), 2_o(1), 25(1), 2_s(1)}. In this case, let (D) be the relations in {z,,
T_qy Ts, T_p} obtained by replacing each x,(1) by x, in a set of defining
relations for G,(a, 8). The principal result is

MAIN THEOREM. Let L be a finite dimensional simple Lie algebra
over C which is not of type G.. Then the integrally parameterized
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Chevalley group G, is isomorphic (by the canonical map defined by
X, — x,(1)) to the abstract group G’ generated by {x,: 0 € X} subject to
the relations (A), (B), (C), and (D).

The relations (C) can be omitted if G is the universal Chevalley
group. If G is the adjoint Chevalley group, then L, = Z/I and can
be replaced by /I in the relations (C).

The main theorem is proved by showing (in §4) that a normal
form for writing elements of G, (given in Theorem 3.3) can be duplicated
in the abstract group G'.

In accomplishing the latter, it is shown that a set £ of compatible
relations (See §4.) containing (A), (B), and (C) suffices to define G,
if it suffices to define the rank two subgroups of G,. This technique
of parlaying defining relations for the rank two subgroups to defining
relations for the whole group is reminiscent of Magnus’ extension in
[4] of Nielsen’s result [6] and of Klingen’s treatment in [2] of Sp(2r, Z).

An explicit set of defining relations for Sp{4, Z) would probably
allow the relations (D) for L of type B,, C,, and F', to be explicitly stated,
as suggested by R. Ree’s identification PSp4, Q) = G,(C,) = G,(B,)
in [7]. It seems likely that the relations (D) are in fact unnecessary.

3. A normal Form for G and G,. In this section we develop
several notions, notations, and a normal form in the concrete group
G, which we will use to study the abstract group in §4. Many of
the results displayed in this section are known, and most of them
appear in sources such as [1], [8], [9], and [10].

Let U be the subgroup of G generated by {x.(r): o€ P, r€ Q} and
U, the subgroup of G, generated by {x,(1): o e P}. Corresponding to
each root 0 we define the one parameter subgroups %X, = {z,(r): r € Q}
of G and %X,(Z) = {x,(r): re€ Z} of G,. More generally, for any S <
Y, ¥, respectively X (Z) is the subgroup of G respectively G, generated
by {z.,(r): pe S, re Q} respectively {x,(1): o€ S}. Then G(o, 0, ) =
X and Gy, g, ---) = X(Z), where S is the admissible system of
roots generated by p, o, +-- .

Consider the homomorphism @, from SL(2, @) into G defined (See
[1, pp. 33-37].) for each pe X by

3.1 1 0 B 1 »r B Q
6D P, (r 1)—x_p(r>,% (0 1)—%@) (reqQ.

@, maps SL(2, Q) onto G(o). Its restriction to SL(2, Z), which we
also denote by ®,, is a homomorphism into G,. Since G (1)> and <(1) })
generate SL(2, Z) (See [6, p. 8] or [3, vol. 2, Appendix B].), ¢, maps
SL(2, Z) onto the subgroup G,(0) of G, generated by x_,(1) and z,(1).
Now define
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(3.2) h®) = 20 (9w =20 (_ 94 ),

for each pe Y and te @Q*, where @* is the set of nonzero elements of
Q. Then H respectively H, is the subgroup of G respectively G,
generated by {h,(t): pe 2, te Q*} respectively {h,(— 1): o2}, and N
respectively N, is the subgroup of G respectively G, generated by
{w,(t): pe X, t e Q*} respectively {w,(1): pe X}.

The identities

(3.3a) wo(t) = wo(t)o_o(— t7),(5)  (0e X, teQ¥),
(3.3b) ho(t) = w,(tyw,(— 1) (0e, teQ),
follow from corresponding identities in SL(2, Q).
R. Steinberg showed in [9, p. 66 Th. 8 and p. 43 Lemma 28] (Also

see [8].) that the group G is defined by the generators {z,(r): pe ¥,
1 € @} subject to the relations

(3.4a) 2 (1)2,(s) = x,(r + 8)

(3.4Db) (@o(r), 2,(8)) = I, ;,{C(, 7; 0, O)r's?) (0 + o= 0)
(3.4b") Wo(R)o(r)w,(t) ™" = @_o(— t'r)

(3.4¢) ho(O)ho(t) = R, (t1)

(3.4d) h(t) =1 if M1t~ = 1 for every pte L, ,

where w,(t) and &,(t) are defined by (3.3ab), p,0e 2, r,s€Q, ¢, t, t, €
R*. The product (3.4b) is over all positive integers 4,5 such that
10 + jo is a root, taken in increasing root order, and the product in
(38.4d) is taken over all « e/l in increasing root order. The relations
(3.4b) respectively (3.4b’) can be omitted if 7k ¥ = 1 respectively
rk ¥ > 1, and the relations (3.4d) can be omitted if G is the universal
Chevalley group. If R is the adjoint representation, it suffices to
have [/t =1 for all pte (] in (3.4d).

Let W denote the Weyl group of X and let @, denote the reflection
in the hyperplane perpendicular to the root p. For p,0€ ¥, ¢’ = w,(0),
¢ = c(d', p),d=clo,p),t se@* and » = n(p, 0) = = 1, the relations

(3.5a) w,(D)x(sjuw,(— t) = a,.(nt’s) ,

(3.5b) wo(t)w,(s)w,(— t) = w, (nts) ,

(3.5¢) W) () wo(— t) = b, (nt°s)h, (nt)™",
(3.5d) ho(t)x,(s)h, ()" = w,(t's) ,

(3.5€) Ro(t)w,(s)ho(t) ™ = w,(t’s) ,

(3.51) B ho(8)R, (1)~ = Ro(E'8)R,(E) 7",

hold in G. (See [1], [8, p. 119], or [9, p. 67] (3.5¢) corrects a misprint
in [8].) The last five relations are immediate from the first and the
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properties
(3.6) (0, o) = n(p, — 0) = (— 1)':(0“0)%((0’ a’), ’n(P» 40) =-1,

of the function n: ¥ x 3 — {— 1, 1}, using (3.3ab).

Now it is clear from (3.5d) that B = HU respectively B, = H,U,
is a group containing U respectively U, as a normal subgroup, and, by
[1,p.42], UNH= U, N H, ={1}. An element b of B can be uniquely
represented in the form

3.7 b= hu
with e H and v e U expressed as

(3-7&) h = -Hh/a(ta) (ta € Q*) ’
(3.7b) u = xy(r,) (r,eq),

where the product in (3.7a) is over all o€ /I in increasing root order
and the product in (3.7b) is over all pe P in increasing root order.
The expression (3.7b) is unique, and (3.7a) is unique modulo the rela-
tions (3.4d). (See [8, p. 122] and [1, p. 39, Lemme 6].) Moreover, by
[9, p. 114, Lemma 49, and p. 115 Cor. 8], B, = BN G, H, = HN G,
U,=UnN G, and an element b = hu in the form (3.7ab) is in B, if
and only if each t, = + 1 and each r,¢€ Z.
We will have use for the following easily proved result.

LEMMA 3.1. Let the group X be a product X =%, -+ %X, of sub-
groups X, «+«, X, such that (X;, %,) S [1iz; X and uniqueness holds for
the representation & = x, --- x, (x;€%,;), and let p be any permutation
of the numbers 1,2, «++ . m. Then X =%, -+ X,,, with uniqueness of
representation.

Now if S is a positive set of roots it follows from (3.4ab) that
Xy = II%,

where the product is over all pe S taken in increasing relative order.
Since ¥; & U’ = X, where P’ is a positive system of roots containing
S, the representation (3.7b) (for U’ instead of U) of u € X, is unique,
so (3.4b) and Lemma 3.1 show that any element % ¢ X5 can be uniquely
expressed in the form w = [1z,(r,), with the product taken over all
o€ S in any fixed order.

There is a unique homomorphism { of N onto the Weyl group W
of L, with kernel H, such that w-X, e @-X,,, when {(w) = w. (Recall
that X, is an element of the Chevalley basis of L, and that elements
of G act as automorphisms on L. See [1, p. 37, Lemma 3] or [9, pp.
29-31, Lemmas 20 and 22].) Thus «: N/H— W: Hw— {(w) is an
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isomorphism onto W. Moreover, for any te @*, Hw,(t) = Hw,(1) and
W Hw,(t)) = {w,(1)) = w,. It is clear that H, is the kernel of the
restriction of { to N, and {(N,) = W. Thus +,: N,/H, — W: H,w—
{(w) is an isomorphism onto W.

A set N* of representatives of N modulo H (as well as N, modulo
H;) can be chosen in N, so that w,(1) € N* for each pe P. For each
€ W there is a unique representative w(w) € N* such that {(w(w)) =
w. Henceforth, the elements w e W are frequently identified with the
representatives w(w), and both are denoted by w. We will also denote
the reflection w, by w,.

The Chevalley group G has Bruhat decomposition
(3.8) G = U BwB
into disjoint double cosets BwB = BwU,, where U, is the group gene-
rated by the x, such that o > 0 and w(o) < 0. This provides the
normal form

(3.9) x=>bwu (beB,weN*,ueclU,)

for uniquely expressing any element xe G. Since (3.9) is invalid in G,
(since we might have x = bwu € G, with b, v ¢ G;), we must modify
this normal form to a normal form for G which applies to G, as well.

A reflection w, in W corresponding to a simple root a is called
a simple reflection. It is well known that the simple reflections gen-
erate the Weyl group W. For each root o, let

a b
Y, ={p, (G d)

(“ b)eSL(2,Z>,oga<c},
c d

where @,: SL(2, Q) — G(p) is the canonical homomorphism described above
(8.1). Then Y, is a system of representatives for B\Bw,B, and we have

LEMMA 3.2. For every we W choose a minimal expression w =
WWse»»W; as a product of simple reflections. Then
(3.10) BwB = BY,Y; -+ Y,

with uniqueness of expression on the right.

Lemma 3.2 is a special case of [9, pp. 99-100, Theorem 15 and
Lemma 43]. (A more detailed proof for the special case was given
in [10].)

For any rational number », define

1 10 01
x(r)=(0 :), y(r)z(r 1),and9=<_1 O)'
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Consider A = <g 3) eSL(2,Z) with 0Za<e¢. If a =0, then ¢ =1,
b= —1, and A = y(— d)2°'. If a > 0, there is a positive integer 7,

such that ¢ =ra +¢, with a >¢, =20 and d=rb+d. If ¢ =0,
then ¢ = d, = 1 and A = y(r,)x(b); if ¢, > 0, there is a positive integer
s, such that a =s¢ +a, with ¢, >a,=>20,b = sd, + b, and A =
y(r)x(s,) 4, with A, = <le dbi) e SL(2, Z) with ¢ > ¢, > a, = 0. By in-
duction on ¢, repeated application of the division algorithm will yield

A = y(r)a(s,) -« Y(r,_)x(s,—)y(r,)z(k)
or
A = y(r)a(s,) « - 2(8,-)y(r)us)y(k)2",

where n = 0, r; and s; are positive integers which do not appear if
n =0, and k is an integer. Clearly, the integers =, r;, s;, and k are
uniquely determined by A. In view of (3.1) and (3.2), transforming
the above result by the homomorphism @, shows that every element
g, of Y, can be expressed in exactly one of the forms

(3.11a) Go = T_p(r)Tp(8) =+ + T o(T0 )T p(Sn—1) T p(10) 20 (K)
or
(B.11b) g, = Z_p(r)2(8) *** Zo(Su_)Z_p(T2)Zo(Sn)T_p(K)Wo(— 1)

where the integers n = 0, the positive integers r; and s; (which do
not occur if n = 0) and the integer k are uniquely determined by g¢,.
Thus we have

THEOREM 3.3. For every ge G, there is a unique we W such
that g€ BwB. Thus, for any minimal decomposition w = W, Ws* W,
of w as a product of simple reflections w,, g can be expressed as a
product of generators x,(r), hy(t), and w,(1) (0e X, de ll) by writing

(3.12) g = bg.9s -+ 9,

with b in the form (3.7ab), and each g;€ Y; in one of the forms (3.11).
Movreover, ge G, if and only if every parameter r, is an integer in
(38.7b) and every parameter t;, = =1 in (3.7a). Thus, (3.12) provides
a normal form for G,.

4. The abstract group. In this section, we will consider several
abstract groups generated by the symbols z, (0€2) and defined by
different sets of relations. A set FE of relations among the generators
%, (0€ ) is called compatible if the corresponding relations in G,,
obtained by replacing each x, by x,(1), are valid. Henceforth, E will
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denote a compatible set of relations which contains the relations (A)
of §2, and G’ will denote the abstract group generated by the symbols
z, (0 € Y) and defined by the relations £. Thus the mapping z, +— x,(1)
extends to an epimorphism 7: G’ — G,, which we call the canonical
projection of G’ onto G,.

For each S ={0,0, ---} & 2%, let X¥(S) = X' (0, 0,, ---) be the
subgroup of G’ generated by {z,€ G": 0€ 8}, and let G'(0,, 0, ---) =
%'(S), where S is the admissible system generated by S.

LEMMA 4.1. Let S be any positive set of roots. Then
(4.1a) X'(S) = 11¥' (o) ,
and any element x € X'(S) can be expressed in the form
(4.1b) x = [l 2t ,

where both products are taken over all roots ¢ in S in any (fixed)
order, and k(o) are uniquely determined by x and the order in which
the product is taken.

Proof. First, induction on the cardinality m of S is used to show
that X'(S) = [1¥'(s) with uniqueness of expression, where the product
is taken in increasing order (by some fixed relative ordering associated
with S) of 6 S. If m = 1, this is clear. Suppose m > 1. Let 7 be
the smallest and 6 the largest root of S with respect to the relative
ordering. Denote S’ = S — {7}, ¥(S) = ¥, ¥'(S") = ¥”. &' is a positive
set of roots with cardinality m — 1, so the lemma holds for X¥’. Now,
Y+6>0, 0 v+ 0¢S, and hence v + d¢ 2, since S is closed. Since
S contains at least two linearly independent roots, vk 5 > 1 and the
relations (4’) hold in G’. Thus (x,, ;) = 1 and ;' x,%, = 2, € X”’. Sup-
pose that for some o € &', x;'z,x, € X" for every pe S’ with 0 > 0. Then
(%), x,) = zy'” (0 > o0,0€8") is in X', so (z,, 27) = z/'(x,, x,)x, =
Il (x7'z2,)" (0 > 0, peS’) is in X¥’. Hence 222" = (x, ,)x, and
7w, = (%, ;) 'x, are in X"’ for every oceS. Thus the elements
of ¥'(v) can be commuted to the left in any product of elements of
%', leaving an element of X” to the right, and the factors of this
element can be taken in increasing root order by the induction hy-
pothesis. Hence, the product x = /7 2% can be taken in increasing
root order. Since the k(o) are uniquely determined in the image
nw(x) = Hx,(k(0)) of x under the canonical projection z, the k(o) are
uniquely determined by z. (Note that this shows 7 is biunique when
restricted to %X’(S).) The result for arbitrary root order now follows
from Lemma 3.1.
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COROLLARY 4.2. Let S be a positive set of roots. Then the
subgroup X'(S) of G’ is isomorphic by the canonical projection T to
the corresponding subgroup =(X(S)) = X(2) of G,.

COROLLARY 4.3. The relations

[

{4.2) (ol ) = [, o0 rid (0,0, cX, p+0+0,rs €4,

where the product s talken over all positive tintegers 1 and j such that
to -+ Joe N in increasing order of the roots 1o -+ jo, hold in G'.

Proof. S = {ip + joeX: i and j are nonnegative integers} is a
positive set of roots, so the result follows from the isomorphism =
and the corresponding relations in X (Z).

We now investigate various other relations in G'. First, it will
be useful to show the equivalence of three formulas (4.3 abc). The
definition w, = x,27x, (0€ Y) gives the identity w,w _, = wa,w, e,
and %, = % by definition, so the relation
(4.3a) WEW, " = X,
is equivalent to
(4.3b) ww_, = hh_, = 1.

The latter yields 1 = w_,w, = x_,w, 2z,w,, and so w,'z,w, = x7,. Con-
jugating this last relation or (4.3a) with appropriate powers of w,
and using (4.3b) gives

(4.3¢) wr,w, = ¥, (¢ = *xp,t = +1).

Clearly, for any p € Y, the relations (4.3abc) are equivalent. Moreover,
the relation (4.3a) and the definition A, = w? implies

(4.4) (w,,)" = h; (0==20).

We will now imitate the methods of [8] to discover more of the
structure of G'.

LEmMMA 4.4. Letp,0e, 0 = w,0,¢ =¢(0’,0),t = *=1,and s Z.
Then

(4.5) wyryw, = apnre
m G, where n(p, 0) = (P, — o) = = 1 depends only on ¢ and o.
The proof of Lemma 4.4 is quite similar to the proof of Lemma

7.2 in |8, p. 118], and is hence omitted. It is perhaps helpful to note
that when considering the case 0 = + ¢ for the integrally parame-
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terized group, one uses the existence of roots v and ¢ such that (x,,
%;) = ap [’ with v = £ 1 occurs among the relations (4’).

Note that for any pe 3, (4.5) specializes to (4.3a), which implies
that (4.3abc) and (4.4) hold in G'.

Utilizing Lemma 4.4 and the definitions of w, and h,, we get
the next corollary.

COROLLARY 4.5. Let the motation be as in Lemma 4.4, and let
d = ¢(o, p). Then the following relations hold in G':

(4.6) whwiwyt = wp e
4.7 wihiwyt = oot
(4.8) Rbashst = w, 0%,
(4.9) hywsht = wih®
(4.10) RLRSh;t = RSO

The next corollary is immediate from the relations (B), (4.3Db),
(4.4), (4.7) and (4.10).

COROLLARY 4.6. Let the motation be as in Lemma 4.4. If the
defining relations E of G’ contain the relations (B), then the following
relations hold in G':

(4.11) ho=h," =h_,,
(4.12) (wo,)* =1,
(4.13) wihiwyt = ki,
(4.14) hohy = hoh, -

We define N’ (respectively H’) to be the subgroup of G’ generated
by the elements w, (respectively h,) for all roots pe . For each root
0, H'(0) is the subgroup of H’ generated by h,. It is easy to show
that H’ is a normal subgroup of N’ and that the mapping H'w, —
w, (0€ ) extends to an isomorphism of N'/H' onto the Weyl group
W, but we will not need this fact here.

LEmMMA 4.7. For any pe ¥, H'(0) is a normal subgroup of H', and
H' = llH (), where the product is taken over all simple roots a. If
E contains the relations (B), then H' is abelian.

The proof of Lemma 4.7 is omitted because of its similarity to
the proof of [8, 7.7, p. 120].

Now, let U’ = X'(P) be the subgroup of G’ generated by {x,: o € P}
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and let B’ be the subgroup of G’ generated by H' U U’.
LeEMMA 4.8. U'H = HU =B and UUNN' =UnNH = {1}.

Proof. U'H'=H'U'= B by (4.8). Sincen(U'NN")=U,N N, ={1}
in G, and 7 is an isomorphism on U’ by Corollary 4.2, U'N N’ ={1} in G'.

COROLLARY 4.9. Any element b in B’ can be uniquely decomposed
in the form

(4.15a) b= hu (heH',uelU’).
Any he H' can be written in the form
(4.15D) h = Il1pt@ (tla)e Z2) ,

where the product is over all acll wn increasing root order. Any
we U can be written in the form

(4.15¢) u = [T (k(p) e 2) ,

where the product is over all pe P in any order. The k(o) in (4.15¢)
are uniquely determined by w and the order im which the product is
taken. Furthermore, the integers t(a) in (4.15b) can be chosen in {0,
1} iof E contains the relations (B).

Proof. (4.15a), (4.15b), and (4.15c¢) are immediate from Lemmas
4.8, 4.7, and 4.1, respectively.

COROLLARY 4.10. An element b in B’ is in the kernel of 7 if and
only if b = IR with I(— 1)@°® =1 for every (te Ly, where both
products are taken over all ae Il (in any order). If E contains the
relations (B) and (C), then m restricted to B’ is an tisomorphism of
B’ onto B,.

Proof. Expressing b in the form (4.15a), we have 7(b) = w(h)w(u) =
1, so w(u) lies in U, N H, = {1}. Thus 7(x) =1 implies v =1 by
Corollary 4.2, and b=h can be written in the form (4.15b).
Now, =n(h,) = m(w?) = w,(1) = w,(— Dw,(— 1) = h,(— 1), so w(h) =
ITh((—1)"*) =1 if and only if /I1(— 1)*«“°=® =1 for every p e Ly, by
(3.4d) and [9, p. 43, Lemma 28(c)]. If E contains the relations (B) and
(C), the relations (B) “reduce” the ¢, to 0 or 1, and then the condition
for b to be in the kernel of 7 implies b = 1 by the relations (C), so =
restricted to B’ is an isomorphism.

Corollary 4.9 establishes a normal form for elements of B’ which
corresponds to the normal form in B, under the canonical projection
7. Following the next technical lemma, we will seek to extend this
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normal form to all of G'.

LeMMA 4.11. Let o, 0 € X be simple roots relative to some ordering
of ¥. Then every element of G'(0) commutes with every element of
G'(0) if and only if (o, 0) = O.

Proof. Since p, ¢ are simple roots in the relative ordering, p — ¢
and o — p are not roots, and o + o is not a root if and only if — ¢ =
¢(p, 0) = 0. Thus, (o,0) = 0 implies there are no roots 0 + joe
Y (i,jeZ) except = 0 and =+ g, so (%, &) = (%, 2_,) = (®_,, ®,) =
@—py ;) = 1 by (A). If (o, 0) = 0, (x,, x,) = 1, since p + o is a root
and the right hand product in (A’) has the factor x}., with k = C(1,1;
0, 0) = =£1, and hence cannot be 1 because of the uniqueness in (4.15¢).

We now try to duplicate the normal form of Theorem 3.3 for G,
in the abstractly defined group G’. An element x in G’ such that
7(x) € BwB is called completely decomposable (c.d.) if, for every minimal
representation w = w,w, -+ w, of w in terms of simple reflections w;,
x can be written in the normal form

(4.163,) ¥ = hug1gz el

where h and w are in the forms (4.15b) and (4.15c), respectively, and
for each 7 =1,2, --., », either

(4.16b) g = " DxV oe. grimigt (m > 0)
or
(4.16¢) g: = aomWasV e pimgt ! (m=0),

where 7(j) and s(j) are positive integers, k is an integer, and « is
the simple root such that w; = w,. A subset of G’ is completely
decomposable (c.d.) if every one of its elements is c.d. We denote by
Y, the set of all elements ¢, in G'(a) which can be written in the
form (4.16b) or (4.16c).

The expressions (4.16) are more conveniently treated in terms of
the following generators of G'.

LEmMMA 4.12. G’ ts generated by {x,, w.c G': ae ll}.

Proof. Let G* be the subgroup of G’ generated by {x,, w,c G":
aell}. For any pe P, we show by induction on hit(0o) that x, and
z_, are in G*. If ht(p) = 1, pe Il implies 2, and x_, = w,x;'w," are
in G*. If ht(o) > 1, there is a root aell such that o' = w,(0) is a
positive root with ht(0’) < ht(0). (See [9, p. 267 (10), (11)].) Thus,
T, ®_, € G* implies that z, = war** w;', x_, = wa™" w;' e G* by
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(4.5). Since the »,(0e?2) generate G', G* = G'.

Now, the identity of G’ is trivially c.d., and it follows inductively
that G’ is c.d. if it can be shown for each ¢ G’ that x c.d. implies
atw and wiw(aell,t = + 1) are c.d. We use this to prove

LemMMma 4.13. G’ s c.d. if G'(a, B) s c.d. for every «, Bell.

Proof. Let xex(BwB) be c.d., let &« be a simple root, and let
t = + 1. For every minimal representation w = w, --- w,, ¥ can be
put in the corresponding normal form (4.16) = hw ¢, --- ¢,. Writing
athuw = h'u’ ¢ B’ in the form (4.15), xlx = A'w/g, -+- g, is in the form
(4.16) corresponding to the minimal representation w = w, --- w, of
w, and w(xix) e BwB. Thus, 2l2 is c.d.

Now, consider w'x. The normality of H’ in W’ implies w,H' =
H'w!, = H'w;', where we use w, = h,w;' if ¢t =1. By Lemma 4.1,
any element we U’ can be written in the form w = (/[x5)xi, where
the product //x ' is taken over all pe P — {a}. Since w (P — {a}) =
P — {a} (See [9, p. 267, (11)].), the relations (4.5) imply v’ = w, (/[ 25 )w,
is in U'. Thus, wia = Kuw'wi'zltg = Muw'x=*w;'g, with I’ and %’ in the
forms (4.15b) and (4.15¢), respectively, and ¢ in the form g = ¢, --- ¢,
is obtainable for every form x = hug, --- ¢, for x. Noting that ¢, =
x fwy" is in the form (4.16¢), we see that wix = h'u’g.9, -+~ ¢, is in the
normal form (4.16) if w,w, -+- w, is a minimal representation for w,.
If not, then there is a minimal representation for w which begins
with w,.. (See {9, p. 270, (21)].) Since 2z is c.d., we can assume that
¢ = hug, --- g, with g, e Y,. Since G'(o) = G'(«, «) is c.d. by hypothe-
sis, we can write ¢.g, = hau,g, in the normal form (4.16) with ¢/ = 1
or in the form (4.16b) or (4.16¢). In either case,

Wt = hw'hu,ggs -+ g, = h"u'gg, - gn

can be put in the normal form (4.16), since both w, --- w, and w, - - -
w, are minimal representations. The proof that w'x is c.d. is com-
pleted in the following lemma, which shows that the decomposition
(4.16) can be obtained corresponding to every minimal representation
of the related Weyl group element.

LEmMmA 4.14. Let G'(a, B) be c.d. for every «, Bell. Suppose
that w = w, - w, = w, «-+ w, are two minimal representations of w e
W, and that ¢,, -+, g, are elements of G’ such that g, € Y. when w; =
w,.. Then there exist he H', ue U’, and ¢, such that ¢g.e Y, when

’

W, = W, and ¢, +++ g, = hug! ++- g,.

Proof. By [5], w!---w, can be obtained from w, --- w, by succes-
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sive substitutions of terms w,w;w, - -- of k factors by terms wsw,w; « -+
of k factors, where k is the order of w,w;, so it suffices to prove the
lemma in the case

Wy *os WW MWWy *+* Wigpoey *0° Wy = Wy oo WjWgWoWs *** Wipppy *** Whye
Since G'(a, B) is c.d., we can write
Gier e Give = WUWGG <+ Gipr s

with ¢;.:, 95150 € Yo and ¢4y, 95450, € Y; for odd integers ¢ between 1
and k.

Now we complete the proof by showing that the factor A'w’ can
be “commuted” to the left to get

G+ g =hug --- g%,

by showing that for any vell, g,€ Y/, Ve H', and w' e U’, g.h'v’ =
W'u'"g, with b e H', w” ¢ U’, and ¢, e Y;. First, since g, is a product
of powers of x, and x_,, and 4’ is a product of %, (o€ Z), we see by
(4.8) that g, = h'g, where ge G'(v) can be written g = hu,g, with
97/ € Y/, since G'(v) is c.d. and n(g) € Bw,B.

Consider w' = a3 II,.,x5”. Since G'(7) is c.d., we can write g’z; =
b9, with be B’ and g, Y;. Let peS= P — {v}. Then po +gveS
for any positive integers p and ¢ such that po &= ¢ve 3. Hence, z =
I, @t e ¥/ (S) implies that 2%, x 237 = I, 5(2%,, 5)xk@ is in X'(S)
by (4.2). Since g; is a product of powers of z, and z_,, it follows
that &' = gyxg; e ¥'(S) & U'.

Combining the above results and applying Corollary 4.9 to #’hu,b2’ €
B’, we obtain

g = Whuba'g, = h'u"g,

with »”’e H',u" € U’, and g;e Y]. This completes the proof.

Now, if G’ is ec.d., © gives a one-to-one correspondence between
the normal form (4.16) in G’ and the normal form of Theorem 3.3 in
G,, modulo the subgroup B’ of G’. Thus the kernel of 7 is the sub-
group of H' described in Lemma 4.10, and, if E contains the relations
(B) and (C), then z is an isomorphism of G’ onto G,. We utilize this
notion and Lemma 4.13 to complete the proof of the main theorem,
by showing that each G'(«, B) (o, Bell) is c.d. when E contains the
relations (B), (C), and (D).

Case 1. «a = gand G'(a, B) = G'(w). By [6, p. 8] the group SL(2,
Z) is generated by x = ((]3 i) and y = G (1)> subject to the relations
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yrlyxy e = (xy et = 1.

Substituting «, for « and x_, for y, w, = x,2°,x,, and h, = w?, these
relations are

W_,W, = h: =1,

which hold in G'(«) by (4.8b) and (B). Since SL(2, Z) is c.d. (by proof
of Theorem 3.3) in terms of its generators x and y, G'(«) is also c.d.

Case 2. «a,pBell, (a, 8) = 0. In this case, every element of G'(«)
commutes with every element of G'(8) by Lemma 4.11. Thus, G'(«,
B) = G'(a)G'(B) and this case follows from Case 1 and the above com-
mutativity property.

Case 8. «a, g form a system of type A,. The admissible set of
roots generated by ¢ and gis ¥ ={—a—- 5, — B, —a,a, B, a + B},
and G'(a, B) is generated by {z,: o2 }. For this case, it can be
shown that the structural constants satisfy C(¢, j; o, 0) = 0 if (3, j) #
1,1, c1,1;p0,0)=N,,, N,, = n(o,0) if p+0¢e%, and N,, =0 if
o0+ o0¢ZX, for every p,0e 3, Moreover, n(a, B) = — n(B, a) = n(G,
a—}_le): _n(aya+/8):n(a+ﬁvﬁ): "*77/(“‘}‘,3»“)’”(:0’9):”(40’
—p0) = —1, and n(p, 0) = n(o, — 0) = — n(— p, o) for any p,0e 2,
with o # =+ 0. Thus, all of the constants are determined by the value
of n(a, B). We assume n(a, 8) = 1, renaming « and B, if necessary.

To parallel the notation of [6, §2], we let the roots o in 2%,
correspond to subscripts 45 as follows:

a— 12, B——23, a+ g——13,
—a—21, - B— 32, —a—pRg—31.

For p — i, we write z, = x;;, w, = w;;, and h, = h;;. Different letters
will always denote different subscripts. In writing down the following
relations, which are numbered to match corresponding relations from
[6], we will put a reference to the relations implying them to the
right. With this notation, the following relations hold in G'(a, B):

(Al)  wi = hy; = by w? = h, and (4.11) ,
(A2) wjw; =1 (4.3b) ,

(A3) W; Wi = Wi, Wiy (4.6) ,

(A4 hy =1 (4.11) ,

(AB)  hyhj = hjh; (4.14) ,

(A6)  hphyh, =1 (A1), (4.9), (4.7), (A4),
B7)  wiw; = a (4.5) ,

(B8) w;}t]xijwik = xkj (4.5) y
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B9  wiw;w; = Ty 4.5),
(B10) A = x5k (4.8) ,
(B11) Az by = iy 4.8) ,
(B12) hjiw by = o3 4.8) ,
(C13) wijw xyia; =1 Wo = Ty LT 5
(C14) (x;j, wy) =1 (A",
(C15) (xij, wy) = 1 (A",
(C16) (w5, x;1) = @i (A) .

The proof that these relations define PSL(3, Z) = SL(3, Z) proceeds
almost exactly as in [6, §2]. R. Ree has shown PSL(3, Z) = G,(A4,)
in [7]. Since one can obtain a “canonical” isomorphism of G'(«, B)
onto G,(A4,), the group G'(a, B) is c.d.

Case 4. «a, 8 form a system of type B, with long root 8. Then
the relations (D) show that the “canonical” projection z': G'(«, B) —
G(B;) defined by z,+ z,(1) (in G,(B,)) is an isomorphism onto the
c.d. group G,(B,), and hence, G/(a, Q) is c.d.

This completes the proof of the main theorem.
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