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DEFINING RELATIONS FOR CERTAIN INTEGRALLY
PARAMETERIZED CHEVALLEY GROUPS

W. P. WARDLAW

For each faithful finite dimensional irreducible representa-
tion R of a finite dimensional simple Lie algebra L over the
complex field, this paper treats the integrally parameterized
subgroup Gz of the Chevalley Group G over the rational field
Q. For L of type Aι, Dι, or Eι, Lie algebraic methods are
used to extend a result of J. Nielson on SL(β, Z) to obtain
a finite set of defining relations for Gz Similar relations
augmented by defining relations for Gz(B2) are shown to define
Gz when L is of type Bι, Cι, or FA. (The relations for Gz(B2)
are not listed here.)

Defining relations for the ^-dimensional group of lattice transforma-
tions have been given by W. Magnus in [4]. His method easily yields
relations for the group SL(n, Z) respectively PSL(n, Z) isomorphic to
the universal respectively adjoint group Gz for L of type An^. H.
Klingen [2] has proven the existence of a finite set of defining rela-
tions for Sp(2n, Z), which is essentially the group Gz for L of type
Cw. Hence, the defining relations in § 2 extend Magnus' result to Gz

of types Dx and Eι and Klingen's result to Gz of types Bι and F4.
It might be helpful to the reader to note that a displayed equation

is referred to by a symbol in parentheses, e.g., "(3.1)" or "(B)" and
a theorem, lemma, or corollary is referred to by its title and a number
without parentheses, e.g., "Lemma 3.1".

2* Statement of results* Let R be a faithful finite dimensional
irreducible representation of a finite dimensional simple Lie algebra L
over the complex field C, and let Σ be the set of nonzero roots of L
with respect to some Cartan subalgebra. L has a Chevalley basis {Xp,
Hp: peΣ} as defined in [1, p. 24, Th. 1] or [9, p. 6, Th. 1]. The L
module V associated with R contains a lattice M which is invariant
under the action of the Chevalley basis. If M is properly chosen and
K is an arbitrary field, the automorphism xp(t) — exp tR(Xp) on Vκ —
K (x)z M can be defined for each p in Σ and t in K. The group Gκ

generated by all of these automorphisms is the Chevalley group over
the field K of type L corresponding to the representation R. Gκ is
the adjoint respectively universal Chevalley group if R is the adjoint
respectively universal representation of L. (See [9, pp. 42-45].)

We will be concerned with the rational Chevalley group GQ (hence-
forth denoted by G) and its subgroup, the integrally parameterized
Chevalley group Gz generated by the xp(t) with p in Σ and t in Z.
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236 W. P. WARDLAW

The relations xp(s)xp(t) = xp(s + t) in G show the finite set {xP(l): pe
Σ} suffices to generate Gz. Our goal is to find defining relations for
Gz in terms of these generators.

We will let P denote the set of positive roots and Π, the set of
simple roots with respect to some (henceforth fixed) regular ordering
(as defined in [1, p. 20] or [9, p. 266]) of Σ. Greek letters a and β
will denote arbitrary simple roots, and 7, d, p, σ, and τ will be generic
symbols for any roots.

A set S of roots is called closed if p, σe S and p + σe Σ implies
that p + σ e S. A closed set S of roots is an admissible system if — p e
S whenever pe S. S is a positive set of roots if S is closed and pe S
implies — ρ$ S. If S is a positive set of roots, it is possible to find
a regular ordering of Σ which makes all of the roots in S positive;
such a regular ordering will be called a relative ordering corresponding
to the positive set S, to distinguish it from the fixed regular ordering.
Finally, we define LR to be the additive group generated by the set
of all weights of the representation R.

Consider the abstract generators {xp: pe Σ) and define wp = xpxzpxp

and hp — wp for each pe Σ. Designate the following relations:

(A') (xp, xσ) = Πxifctf-* (p,σeΣ,p + σ^0)

where (x, y) denotes the commutator xyx~ιy~~λ and the product is over
all positive integers i and j such that ip + jσ eΣ, taken in increasing
order of the roots ip + jσ. The C(i, j ; p, σ) are integers depending only
on i, j , p, σ, the choice of Chevalley basis, and the structure of L.
(See [1, p. 27] or [9, p. 22].)

( A " ) •

(B) i

(C) J

wp%pw~ι =

VP = 1

Πha = 1 if

(peΣ).
(peΣ)

11 \ — JL ) = 1 for all μeL

where c(β, a) is the Cartan integer 2(β, a)/(a, a) and both products
are over an increasing sequence (a) of (not necessarily all) simple roots.
Let (A) denote the relations (A') respectively (A") when rk Σ > 1
respectively rk Σ = 1 (rk means rank). If L is of type Al9 Du Eu or
G2, let (D) be the empty set of relations. If L is of type Bu C,, or
F4, let a and β be the simple roots forming a system of type B2 with
long root β, and let Gz(a, β) be the subgroup of Gz generated by
{xa(l), &-α(l)> ̂ (1), x-β(l)}. In this case, let (D) be the relations in {xa,
α?_α, xβ, x-β} obtained by replacing each a^(l) by xp in a set of defining
relations for Gz(a, β). The principal result is

MAIN THEOREM. Let L be a finite dimensional simple Lie algebra
over C which is not of type G2. Then the integrally parameterized
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Chevalley group Gz is isomorphίc (by the canonical map defined by
xp H-> xP(l)) to the abstract group G' generated by {xp: p e Σ) subject to
the relations (A), (B), (C), and (D).

The relations (C) can be omitted if G is the universal Chevalley
group. If G is the adjoint Chevalley group, then LR — ZΠ and can
be replaced by // in the relations (C).

The main theorem is proved by showing (in §4) that a normal
form for writing elements of Gz (given in Theorem 3.3) can be duplicated
in the abstract group G'.

In accomplishing the latter, it is shown that a set E of compatible
relations (See §4.) containing (A), (B), and (C) suffices to define Gz

if it suffices to define the rank two subgroups of Gz. This technique
of parlaying defining relations for the rank two subgroups to defining
relations for the whole group is reminiscent of Magnus' extension in
[4] of Nielsen's result [6] and of Klingen's treatment in [2] of Sp(2n, Z).

An explicit set of defining relations for Sp{4, Z) would probably
allow the relations (D) for L of type Bu Cu and F4 to be explicitly stated,
as suggested by R. Ree's identification PSp(4, Q) ~ GZ(C2) ~ GZ(B2)
in [7]. It seems likely that the relations (D) are in fact unnecessary.

3* A normal Form for G and Gz. In this section we develop
several notions, notations, and a normal form in the concrete group
Gz which we will use to study the abstract group in §4. Many of
the results displayed in this section are known, and most of them
appear in sources such as [1], [8], [9], and [10].

Let U be the subgroup of G generated by {xP(r): p e P, r e Q} and
Uz the subgroup of Gz generated by {xP(ϊ): pεP} Corresponding to
each root p we define the one parameter subgroups Hp — {xP(r): reQ}
of G and %(Z) = {xP(r): reZ} of Gz. More generally, for any S g
Σ, 9£5 respectively 3LS(Z) is the subgroup of G respectively Gz generated
by {xP(r): peS.reQ} respectively {xp(l): p e S}. Then G(ρ, σ, •) =
%s and Gz(p, σ, •••) = Ίίs(Z), where S is the admissible system of
roots generated by p, σ, .

Consider the homomorphism φp from SL(2, Q) into G defined (See
[1, pp. 33-37].) for each peΣ by

/I 0\ (1 r\

(3.1) φP f i j = x_p(r)f φP ̂  l J = xP(r) (reQ).

φp maps SL(2, Q) onto G{ρ). Its restriction to SL(2, Z), which we
also denote by φp, is a homomorphism into Gz. Since ί-j Λ and (Λ -i)
generate SL(2, Z) (See [6, p. 8] or [3, vol. 2, Appendix B].), φp maps
SL(2, Z) onto the subgroup Gz{p) of Gz generated by ^-^(1) and ^(1).
Now define
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(3.2) hp(t) = φp (* °r), Wp{t) = φ

for each peΣ and £eQ*, where Q* is the set of nonzero elements of

Q. Then H respectively Hz is the subgroup of G respectively Gz

generated by {hp(t): peΣ, teQ*} respectively {hp(— 1): peΣ}, and N

respectively Nz is the subgroup of G respectively Gz generated by

{Wp(t): p e Σ, te Q*} respectively {wp(ϊ): p e Σ}.

The identities

(3.3a) wp(t) = xP{t)x_p{- rι)xp(t) (peΣ,te Q*) ,

(3.3b) hp(t) = wp(t)wp(- 1) (p 6 Σ, t e Q*) ,

follow from corresponding identities in SL(2, Q).

R. Steinberg showed in [9, p. 66 Th. 8 and p. 43 Lemma 28] (Also

see [8].) that the group G is defined by the generators {xp(r): peΣ,

r e Q} subject to the relations

(3.4a) xp(r)xp{s) — xp(r + s)

(3.4b) (xp(r), xσ(s)) = Πx%p+dσ(C(i, j; p, σysj) (p + σ Φ 0)

(3.4b') wp(t)xp(r)wp(tyι = <&_„(- fr)

(3.4c) hp{t)hp{tf) = hp(tt')

(3.4d) Πha(ta) = 1 if Πte

a

{μ'a) = 1 for every μeLR ,

where wp(t) and hp(t) are defined by (3.3ab), p, σ e Σ, r, s e Q, t, t\ ta e

Q*. The product (3.4b) is over all positive integers i, j such that

ip + jσ is a root, taken in increasing root order, and the product in

(3.4d) is taken over all a e II in increasing root order. The relations

(3.4b) respectively (3.4b') can be omitted if rk Σ = 1 respectively

rk Σ > 1, and the relations (3.4d) can be omitted if G is the universal

Chevalley group. If R is the adjoint representation, it suffices to

have ίltc

a

{μ'a) = 1 for all μell in (3.4d).

Let W denote the Weyl group of Σ and let ωp denote the reflection

in the hyperplane perpendicular to the root p. For p, σ e Σ, σr = ωp(σ),

c — c(σ', p), d = c(σ, p), t, se Q*, and n = n(ρ, σ) = ± 1, the relations

(3.5a) Wp(t)xσ(s)wp(— t) = xa,{ntcs) ,

(3.5b) Wp{t)wo{s)Wp{— t) = wσ.(ntcs) ,

(3.5c) Wp(t)ha{s)wp(- t) - hσ,(ntes)hσ.(nte)~λ ,

(3.5d) hp(t)xa{s)hp{t)~ι = xσ(tds) ,

(3.5e) hp(t)wσ(s)hp(t)-1 = wσ(tds) ,

(3.5f) hp{t)hσ{s)hp{tyι = hσ(tds)hσ(tdrι ,

hold in G. (See [1], [8, p. 119], or [9, p. 67] (3.5c) corrects a misprint

in [8].) The last five relations are immediate from the first and the
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properties

(3.6) n(p, σ) = n(p, - σ) = ( - l)c^^n(p, <τ'), Mp, P) = ~ 1 ,

of the function n: Σ x Σ-+{- 1, 1}, using (3.3ab).
Now it is clear from (3.5d) that B — HU respectively Bz — HZUZ

is a group containing U respectively Uz as a normal subgroup, and, by
[1, p. 42], UΠ H = Uz Π Hz = {1}. An element b of B can be uniquely
represented in the form

(3.7) b = hu

with h e H and u e U expressed as

(3.7a) h = Πha(Q (taeQ*),

(3.7b) u = Πxp(rp) (rp e Q) ,

where the product in (3.7a) is over all aeΠ in increasing root order
and the product in (3.7b) is over all peP in increasing root order.
The expression (3.7b) is unique, and (3.7a) is unique modulo the rela-
tions (3.4d). (See [8, p. 122] and [1, p. 39, Lemme 6].) Moreover, by
[9, p. 114, Lemma 49, and p. 115 Cor. 3], Bz = B Π Gz, Hz = H Π Gz,
JJZ = UΠ Gz, and an element b — hu in the form (3.7ab) is in Bz if
and only if each ta = ± 1 and each rp e Z.

We will have use for the following easily proved result.

LEMMA 3.1. Let the group X be a product X = £L Hn of sub-
groups 7ίl9 , Hn such that (ϊ f, 3£y) S Uk^j %k and uniqueness holds for
the representation x — x1 xn (x{ e X )̂, and let p be any permutation
of the numbers 1, 2, •• ,n. Then X = Xptl) ϊ p ( n ) with uniqueness of
representation.

Now if S is a positive set of roots it follows from (3.4ab) that

Ίίs = Πlίpίp

where the product is over all pe S taken in increasing relative order.
Since 3is £ Ur = XP/ where Pf is a positive system of roots containing
S, the representation (3.7b) (for Uf instead of U) of u e X5 is unique,
so (3 4b) and Lemma 3.1 show that any element u e X5 can be uniquely
expressed in the form u = Πxp(rp), with the product taken over all
p 6 S in any fixed order.

There is a unique homomorphism ζ of N onto the Weyl group W
of L, with kernel H, such that w X,, e Q-Xω(p) when ζ(w) = ω. (Recall
that Xp is an element of the Chevalley basis of L, and that elements
of G act as automorphisms on L. See [1, p. 37, Lemma 3] or [9, pp.
29-31, Lemmas 20 and 22].) Thus ψ: N/H-* W: Hw^ζ(w) is an
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isomorphism onto W. Moreover, for any £ G Q * , Hwp{t) — Hwp(l) and
ψ{Hwp(t)) = ζ(wp(ΐ)) = ωp. It is clear that Hz is the kernel of the
restriction of ζ to Nz and ζ(Nz) = W. Thus ψz: Nz/Hz — W: Hzw\^
ζ{w) is an isomorphism onto W.

A set JV* of representatives of N modulo H (as well as Nz modulo
Hz) can be chosen in Nz so that wp(ϊ) e iV* for each peP. For each
ω e W there is a unique representative w(ω) e iV* such that ζ(w(ω)) =
ω. Henceforth, the elements ω e W are frequently identified with the
representatives w(ω), and both are denoted by w. We will also denote
the reflection ωp by wp.

The Chevalley group G has Bruhat decomposition

(3.8) G = U BwBU
weW

into disjoint double cosets BwB = BwUw, where Uw is the group gene-
rated by the xp such that p > 0 and w(p) < 0. This provides the
normal form

(3.9) x = bwu (beB,weN*,ueUw)

for uniquely expressing any element xeG. Since (3.9) is invalid in Gz

(since we might have x = bwueGz with b,u$Gz), we must modify
this normal form to a normal form for G which applies to Gz as well.

A reflection wa in W corresponding to a simple root a is called
a simple reflection. It is well known that the simple reflections gen-
erate the Weyl group W. For each root p> let

a

where <p/. SL(2, Q) —-> G(̂ o) is the canonical homomorphism described above
(3.1). Then i% is a system of representatives for B\BwpB, and we have

LEMMA 3.2. For every we W choose a minimal expression w =
wawβ•• wδ as a product of simple reflections. Then

(3.10) BwB = BYaYβ-- Yδ

with uniqueness of expression on the right.

Lemma 3.2 is a special case of [9, pp. 99-100, Theorem 15 and
Lemma 43]. (A more detailed proof for the special case was given
in [10].)

For any rational number r, define
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Consider A = (a %) e SL(2, 2) with 0 ^ α < c. If α = 0, then c = 1,

6 = — 1, and A — y(— d)Ω~\ If α > 0, there is a positive integer τ1

such that c = rλa + c1 with α > cι ^ 0 and c£ = rj> + dx. If cγ — 0,

then α = dγ = 1 and A — 2/(̂ )05(6); if cx > 0, there is a positive integer

«! such that α = S A + αx with c1 > aγ >̂ 0, b = s^ + 6n and A =

^ ( r O Φ i ) ^ with A, = (£ J 1) 6 SL(2, 2) with c > cx > a, ^ 0. By in-

duction on c, repeated application of the division algorithm will yield

A = yir^xisj) y{r%^x{sn^y{rn)x{k)

or

A = ^(rXSi) ^(s^O^/ίrn)x(sn)y(k)Ω~ι ,

where n ^ 0, r< and s< are positive integers which do not appear if
n = 0, and /b is an integer. Clearly, the integers n, ri9 si9 and k are
uniquely determined by A. In view of (3.1) and (3.2), transforming
the above result by the homomorphism φp shows that every element
gp of Yp can be expressed in exactly one of the forms

(3.11a) gp = x^r^Xpis^ a?_ί,(rŵ 1)ajit,(sw_1)ίc_ί(,(rn)α?<0(A;)

or

(3.11b) gP = ^ ( r j a v t a ) .τ^s^jx .^r jα ^ s j ^ ^ f c ) ^ ^ - 1) ,

where the integers n ;> 0, the positive integers r{ and ŝ  (which do
not occur if n — 0) and the integer k are uniquely determined by gp.
Thus we have

THEOREM 3.3. For every g e G, there is a unique w e W such
that geBwB. Thus, for any minimal decomposition w — wawβ *wγ

of w as a product of simple reflections wpf g can be expressed as a
product of generators xP(r)y hδ(t), and wδ(l) (pel, δ e Π) by writing

(3.12) g = bgagβ - - - gr

with b in the form (3.7ab), and each gδ e Yδ in one of the forms (3.11).
Moreover, g e Gz if and only if every parameter rp is an integer in
(3.7b) and every parameter t{— ± 1 in (3.7a). Thus, (3.12) provides
a normal form for Gz.

4. The abstract group* In this section, we will consider several
abstract groups generated by the symbols xp (p e Σ) and defined by
different sets of relations. A set E of relations among the generators
xp (p e Σ) is called compatible if the corresponding relations in Gz,
obtained by replacing each xp by xP(ί), are valid. Henceforth, E will
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denote a compatible set of relations which contains the relations (A)
of §2, and G' will denote the abstract group generated by the symbols
xp (p e Σ) and defined by the relations E. Thus the mapping xp \-+ xp(l)
extends to an epimorphism π: Gf —> Gz, which we call the canonical
projection of G' onto Gz.

For each S = {σu σ2, ..} s Σ\ let X'(S) = X ' K σ2, . . . ) be the
subgroup of G' generated by feeff: σeS}, and let G\σu σ2, •••) =
X'(S), where S is the admissible system generated by S.

LEMMA 4.1. Let S be any positive set of roots. Then

(4.1a) X'(S) - ML'(σ) ,

and any element xe%'(S) can be expressed in the form

(4.1b) x = Π xk

σ

{a) ,

where both products are taken over all roots σ in S in any (fixed)
order, and k(σ) are uniquely determined by x and the order in which
the product is taken.

Proof. First, induction on the cardinality m of S is used to show
that X'(S) = /7X'(σ) with uniqueness of expression, where the product
is taken in increasing order (by some fixed relative ordering associated
with S) of a e S. If m = 1, this is clear. Suppose m > 1. Let 7 be
the smallest and δ the largest root of S with respect to the relative
ordering. Denote S' = S - {T}, 3£'(S) - X', Ϊ'(S') = X". S' is a positive
set of roots with cardinality m — 1, so the lemma holds for £". Now,
7 + δ > (5, so 7 + £ $ S, and hence 7 + ^ $ 2\ since S is closed. Since
S contains at least two linearly independent roots, rk Σ > 1 and the
relations (A') hold in G'. Thus (#r, x§) — 1 and &71 xδxr = xδ e ϊ " . Sup-
pose that for some σ e S', xjιxpxr e 36" for every pe S' with p > σ. Then
(ffr, O = /7^ ( p ) (p > σ, ^oeS') is in X", so (xσ, ^ ! ) = α;7ι(α;,, . τ j ^ =
// (xjιxpxr)

Mp) (p > σ, pe S') is in X". Hence α ? ^ ^ 1 = (xn xa)xσ and
xjιXaXr = (xσ, xy1)'1 Xo are in X" for every σ e S'. Thus the elements
of X'(τ) can be commuted to the left in any product of elements of
X', leaving an element of X" to the right, and the factors of this
element can be taken in increasing root order by the induction hy-
pothesis. Hence, the product x = 77 xk

σ

{σ) can be taken in increasing
root order. Since the k(σ) are uniquely determined in the image
τr(α?) = Πxσ{k{σ)) of x under the canonical projection π, the k(σ) are
uniquely determined by x. (Note that this shows π is biunique when
restricted to X'(S).) The result for arbitrary root order now follows
from Lemma 3.1.
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COROLLARY 4.2. Let S be a positive set of roots. Then the

subgroup ?ί'(S) of Gf is isomorphic by the canonical projection π to

the corresponding subgroup π(V(S)) = Xv(J£) of Gχ.

COROLLARY 4.3. The relations

(4.2) (x;, x*) = Hx(ΐnί:jσ"'σ)rί*J (p, σ, e 1\ p + σ Φ 0, r, s, e Z) ,

where the product is taken over all positive integers i and j such that

ip -f- jσ e Σ in increasing order of the roots ip -f- jσ, hold in Gf.

Proof. S -- {ip ~- jσeΣ: i and j are nonnegative integers} is a

positive set of roots, so the result follows from the isomorphism π

and the corresponding relations in ?ls(Z).

We now investigate various other relations in Gr. First, it will

be useful to show the equivalence of three formulas (4.3 abc). The

definition ιυ,, = x(txz),x(, (pel) gives the identity wpw__p — wpxpwp

]x_.p,

and ho — uή, by definition, so the relation

(4.3a) wpX(,wp

x — x::]o

is equivalent to

(4.3b) Wpiυ_p = hΊh-f> — 1

The latter yields 1 = w^pwp = x^pw,;'xpwp, and so wP

]xpwp = x:_),. Con-

jugating this last relation or (4.3a) with appropriate powers of wp

and using (4.3b) gives

(4.3c) wPxowμ

ι = xz]

σ (σ = ±p, t -^ ± 1) .

Clearly, for any p e Σ, the relations (4.3abc) are equivalent. Moreover,

the relation (4.3a) and the definition ha = w\ implies

(4.4) (wσxσy - hi (σ = ± p) .

We will now imitate the methods of [8] to discover more of the

structure of G\

LEMMA 4.4. Let p, σ e Σ, σr = ωpσ, c = c(σ\ p), t = ± 1, and s e Z.

Then

(4.5) WpX^Wp1 - xnjp>a)tc°

in Gf, where n(p, σ) — n(p, — σ) = ± 1 depends only on p and σ.

The proof of Lemma 4.4 is quite similar to the proof of Lemma

7.2 in [8, p. 118], and is hence omitted. It is perhaps helpful to note

that when considering the case p = ± σ for the integrally parame-
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terized group, one uses the existence of roots 7 and δ such that (xrr

xδ) = χ°9lV with v — ± 1 occurs among the relations (A').
Note that for any peΣ, (4.5) specializes to (4.3a), which implies

that (4.3abc) and (4.4) hold in G'.
Utilizing Lemma 4.4 and the definitions of wp and hpi we get

the next corollary.

COROLLARY 4.5. Let the notation be as in Lemma 4.4, and let
d = c(σ, p). Then the following relations hold in G':

(4.6) wlw'lWp* = wl(p'a)tCs ,

(4.7) w j λ ; < = hnjp>σ)tcs ,

(4.8) hfahj* = xσ

{-1)ds ,

(4.9) h<pw'σh? = w{~ι)ds ,

(4.10) hph oh? = h(-1)ds .

The next corollary is immediate from the relations (B), (4.3b)r

(4.4), (4.7) and (4.10).

COROLLARY 4.6. Let the notation be as in Lemma 4.4. // the
defining relations E of G' contain the relations (B), then the following1

relations hold in G':

(4.11) hp - Kγ = h_p ,

(4.12) (wpxpγ = 1 ,

(4.13) wlKw? - K ,

(4.14) h p h σ = hσhP .

We define N' (respectively H') to be the subgroup of Gf generated
by the elements wp (respectively hp) for all roots pel. For each root
p, H'(p) is the subgroup of Hf generated by hp. It is easy to show
that ΈLf is a normal subgroup of Nf and that the mapping H'wp i^
ωp (p e Σ) extends to an isomorphism of N'jH' onto the Weyl group
W, but we will not need this fact here.

LEMMA 4.7. For any p e Σ, H'(ρ) is a normal subgroup of H\ and
H' — ΠH'(ά), where the product is taken over all simple roots a. If
E contains the relations (B), then H' is abelian.

The proof of Lemma 4.7 is omitted because of its similarity to
the proof of [8, 7.7, p. 120].

Now, let U' — ϊ'(P) be the subgroup of Gr generated by {xp: pe P}
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and let Bf be the subgroup of Gr generated by H' (J U'.

LEMMA 4.8. UΉ' = H'U'= Br and U' Π N' = U' Π H' = {1}.

Proo/. ΌΉ' = HfUf = Br by (4.8). Since ττ( £7' Π N') = UZΓ\NZ = {1}
in G^ and π is an isomorphism on Uf by Corollary 4.2, U' Π AT' = {1} in G\

COROLLARY 4.9. Aw?/ element b in Bf can be uniquely decomposed
in the form

(4.15a) b = to (h eH',ue U') .

-4̂ 2/ he H' can be written in the form

(4.15b) h = I1KW (t(a) e ̂ ) ,

where the product is over all ae Π in increasing root order. Any
u e Uf can be written in the form

<4.15c) u = Πxk

p

(p) (k(p) e Z) ,

where the product is over all peP in any order. The k(p) in (4.15c)
are uniquely determined by u and the order in which the product is
taken. Furthermore, the integers t(a) in (4.15b) can be chosen in {0,
1} if E contains the relations (B).

Proof. (4.15a), (4.15b), and (4.15c) are immediate from Lemmas
4.8, 4.7, and 4.1, respectively.

COROLLARY 4.10. An element b in B' is in the kernel of π if and
only if b = llh^a) with Π{- \γ^c^^ = 1 for every μeLB, where both
products are taken over all aeίl (in any order). // E contains the
relations (B) and (C), then π restricted to Bf is an isomorphism of
B' onto Bz.

Proof. Expressing 6 in the form (4.15a), we have π(b) = π(h)π(u) —
1, so π(u) lies in Uz Π Hz = {1}. Thus π(u) — 1 implies u — 1 by
Corollary 4.2, and b = h can be written in the form (4.15b).
Now, π(hp) — π(w2

o) = ^ ( l ) 2 = wp(— l)wp(— 1) = hp(— 1), so π(h) =
Πha{{-l)t{a)) = 1 if and only if Π{- l ) ' ^ / ^ = 1 for every μeLRJ by
(3.4d) and [9, p. 43, Lemma 28(c)]. If E contains the relations (B) and
(C), the relations (B) "reduce'' the ta to 0 or 1, and then the condition
for b to be in the kernel of π implies b = 1 by the relations (C), so π
restricted to Bf is an isomorphism.

Corollary 4.9 establishes a normal form for elements of Bf which
corresponds to the normal form in Bz under the canonical projection
π. Following the next technical lemma, we will seek to extend this
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normal form to all of G'.

LEMMA 4.11. Let p, σ e Σ be simple roots relative to some ordering
of Σ. Then every element of G'(p) commutes with every element of
G'(σ) if and only if (p, σ) = 0.

Proof. Since p, σ are simple roots in the relative ordering, p — σ
and σ — p are not roots, and p + σ is not a root if and only if — q =
c(ρy σ) = 0. Thus, (p, σ) = 0 implies there are no roots ip + jσ e
Σ (i, j e Z) except ± p and ± σ, so (xPJ xσ) = (xp, x_σ) = (x_p, xσ) =
(x-p, x-o) = 1 by (A'). If (p, σ) Φ 0, (xp, xβ) Φ 1, since p + a is a root
and the right hand product in (A') has the factor xp+σ with A: = C(l,l;
p, σ) = ± 1 , and hence cannot be 1 because of the uniqueness in (4.15c).

We now try to duplicate the normal form of Theorem 3.3 for Gz

in the abstractly defined group G\ An element x in G' such that
π(x) 6 BwB is called completely decomposable (c.d.) if, for every minimal
representation w = w^z wn of w in terms of simple reflections wi9

x can be written in the normal form

(4.16a) x = hugγg2 gn ,

where h and u are in the forms (4.15b) and (4.15c), respectively, and
for each i = 1, 2, , n, either

or

^ . l Ό L ^ y ^ — rl/_a JUa ^/α •v—«tVa { lib ^- \J) i

where r(j) and s(j) are positive integers, k is an integer, and a is
the simple root such that wt = wα. A subset of G' is completely
decomposable (c.d.) if every one of its elements is c.d. We denote by
Y'a the set of all elements g{ in G'(a) which can be written in the
form (4.16b) or (4.16c).

The expressions (4.16) are more conveniently treated in terms of
the following generators of G'.

LEMMA 4.12. G' is generated by {xai wae G': ae Π).

Proof. Let G* be the subgroup of G' generated by {xa, wa e G':
aeΠ}. For any peP, we show by induction on ht(ρ) that xp and
x_p are in G*. If ht(ρ) = 1, pe Π implies xp and X-P — wpx~p

γWpι are
in G*. If ht(ρ) > 1, there is a root aeΠ such that p' = wa(ρ) is a
positive root with ht(ρr) < ht(ρ). (See [9, p. 267 (10), (11)].) Thus,
xP>, x-p> 6 G* implies tha t xp = waxpa'pf)w~\ x_p = waxlpp/) w~ι e G* by
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(4.5). Since the xP(ρeΣ) generate G', G* = G'.
Now, the identity of G' is trivially c.d., and it follows inductively

that G' is c.d. if it can be shown for each x e G' that x c.d. implies
x*ax and wf

ax (a e 11, t — ± 1) are c.d. We use this to prove

LEMMA 4,13. Gf is c.d. if G'(a, β) is c.d. for every a, βe II.

Proof. Let xeπ~~ι(BιvB) be c.d., let a be a simple root, and let
t =. ± 1. For every minimal representation w = wι ιvn, x can be
put in the corresponding normal form (4.16) x — hu gι gn. Writing
xfjιu = h'u'e B' in the form (4.15), xf

ax = h!u'gι ••• gn is in the form
(4.16) corresponding to the minimal representation w — %ι\ - ιvn of
w, and π(xf

ax) e BwB. Thus, xι

ax is c.d.
Now, consider w1

ax. The normality of Hr in W implies ι&ΛH' —
Hfw\x — H'w~a

[, where we use wa = haιv~ι if t — 1. By Lemma 4.1,
any element tie Uf can be written in the form u = {ίlxιy!>;)x';n where
the product fix1;/- is taken over all peP— {a}. Since wa(P — {a}) =
P - {a} (See [9, p. 267, (11)].), the relations (4.5) imply u' = w^illx^jw.
is in £/'. Thus, w{

ax — hfu'w~γxk

ag = h'ufxzk

aw~ιg, with K and u' in the

forms (4.15b) and (4.15c), respectively, and g in the form g — g] gn

is obtainable for every form x = hugί gn for x. Noting that gn =
%-aWaι is in the form (4.16c), we see that w^x = h'u'gagι gn is in the
normal form (4.16) if wawx wn is a minimal representation for waw.
If not, then there is a minimal representation for w which begins
with wa. (See [9, p. 270, (21)].) Since x is c.d., we can assume that
x = hugι gn with gγ e Y'a. Since G'{a) — G'(a, a) is c.d. by hypothe-
sis, we can write gagι = h{ϊivg\ in the normal form (4.16) with g\ — 1
or in the form (4.16b) or (4.16c). In either case,

w'ax = hfurh]uιg\g2 gn = h"u"g[g2 gn

can be put in the normal form (4.16), since both wι wn and w2

wn are minimal representations. The proof that w\x is c.d. is com-
pleted in the following lemma, which shows that the decomposition
(4.16) can be obtained corresponding to every minimal representation
of the related Weyl group element.

LEMMA 4.14. Let G\a, β) he c.d. for every a,βell. Suppose
that w = wι wn = w[ w'n are two minimal representations of w e
W, and that gu , gn are elements of G' such that g% £ Y'a when w{ =
wa. Then there exist h e H'', u e U\ and g[ such that g\ e Y'a when
w[ = wa and ^ gn = hug\ g'n.

Proof. By [5], w[ > w'n can be obtained from w\ wn by succes-
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sive substitutions of terms wawβwa of k factors by terms wβwawβ *
of k factors, where k is the order of wawβ, so it suffices to prove the
lemma in the case

Wλ WjWaWβWa Wj+k+ι Wn = Wγ WdWβWaWβ Wj+k+L - Wn.

Since G'(a, β) is c.d., we can write

9j+ι 9j+k = h'u'g'j+1 flr;+fc ,

with gj+ii g'j+i+ι e Y'a and g'j+i, gj+i+ι e Yβ for odd integers i between 1
and k.

Now we complete the proof by showing that the factor h'u' can
be "commuted" to the left to get

Qi Qn = hu g[ g'l ,

by showing that for any yeΠ, gre Y% h' e H', and ur e U', gyh'u' =
h"u"g'r with h" e Hf, u" e U\ and g\ e F/. First, since gr is a product
of powers of xr and #_r, and Λ' is a product of fe^ doel 7), we see by
(4.8) that grh' — h'g, where g e G'(Ύ) can be written g = h^g" with
g" e Yγy since G'(y) is c.d. and π(g) e BwrB.

Consider w' = x* Πp^rx
k

p

{p}. Since G'(7) is c.d., we can write g'/xs

r =
b&r with b, e B' and ^ e Γ/. Let peS = P - {τ} Then pρ±qyeS
for any positive integers p and ^ such that pp ± qye Σ. Hence, x =
ΠpeSxyp)e1L'(S) implies t h a t xr

±r xxzr

r = ΠpeS(xr

±r, xk

p

{p))xk

p

{p) is in ϊ ' ( S )
by (4.2). Since g\ is a product of powers of xγ and ίc_r, it follows
that xf = flrj&flr'r1 e ϊ '(S) £ C/'.

Combining the above results and applying Corollary 4.9 to h'h^&x' e
Bri we obtain

flrrfeV = h'hyUfi&'g'γ = h"u"g'r

with h" G ίΓ', u " G ί/7, and ^ G F/ This completes the proof.
Now, if G' is c.d., 7Γ gives a one-to-one correspondence between

the normal form (4.16) in G' and the normal form of Theorem 3.3 in
Gzi modulo the subgroup Bf of G'. Thus the kernel of π is the sub-
group of H' described in Lemma 4.10, and, if E contains the relations
(B) and (C), then π is an isomorphism of G' onto Gz We utilize this
notion and Lemma 4.13 to complete the proof of the main theorem,
by showing that each G'(a, 0) (a, βe Π) is c.d. when E contains the
relations (B), (C), and (D).

Case 1. a = β and G'(a, β) = G'(α). By [6, p. 8] the group SL(2,

Z) is generated by x = (Q ̂ ) and 2/ = (i i ) subject to the relations
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yx~ιyxy~ιx — (xy~ιxy — 1 .

Substituting xa for x and x_a for y, wp — xpxzι

pxpi and hp = wl, these
relations are

w_awa = /£ = 1 ,

which hold in G'(a) by (4.3b) and (B). Since SL(2, Z) is c.d. (by proof
of Theorem 3.3) in terms of its generators x and y, G'{a) is also c.d.

Case 2. a, βeΠ, (a, 0) = 0. In this case, every element of G'{a)
commutes with every element of Gf(β) by Lemma 4.11. Thus, G'(α,
β) = G'{a)G'{β) and this case follows from Case 1 and the above com-
mutativity property.

Case 3. a, β form a system of type A2. The admissible set of
roots generated by a and β is Σo = {— a — β, — β, — a, a, β, a + β],
and G'(a, β) is generated by {xp: p e ΣQ}. For this case, it can be
shown that the structural constants satisfy C(ί, j ; p, σ) = 0 if (i, i) ^
(1, 1), C(l,l; p, σ) = Np,0, Np,σ = n(/o, σ) if ^ + σ e Σo, and Np,σ = 0 if
/? + σ $ 2Ό, for every p, σ e Σo. Moreover, n(a, β) = — n(β, a) = n(β9

a + β) = - n(a, a + β) = n(a + β, β) = - n{a + β, a), n(p, p) = n{p,
— p) — — 1, and n{p, σ) — n(p, — σ) — — n(— p, σ) for any p, σe Σo

with p Φ ± σ. Thus, all of the constants are determined by the value
of n(a, β). We assume n(a, β) = 1, renaming α: and ̂ 8, if necessary.

To parallel the notation of [6, §2], we let the roots p in ΣQ

correspond to subscripts ίj as follows:

12,

2 1 ,

β< •23 ,
32,

a +
— a —

β<—>

β<—•

1 3 ,
3 1 .— a «-

For p <-+ ij, we write xp = xij9 wp = wij9 and hp — hi5. Different letters
will always denote different subscripts. In writing down the following
relations, which are numbered to match corresponding relations from
[6], we will put a reference to the relations implying them to the
right. With this notation, the following relations hold in G'(α, β):

(Al)
(A2)

(A3)

(A4)

(A5)

(A6)

(B7)

(B8)

w.jWj. — i

W -W u — W uW h.

hij — 1

Khjιιt = 1

wrjXijWv = xjΐ

w^'Xi-Wa = xk-

w\ = hf

(4.3b) ,

(4.6) ,

(4.11) ,

(4.14) ,

(Al), (4,

(4.5) ,

(4.5) ,

, and (4.11) ,

.9), (4.7), (A4) ,
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(B9)

(BIO)

(Bll)

(B12)

(C13)

(C14)

(C15)

(C16)

h <r — r

h£χtihih =

hjixuhit =

WT/XuXjϊXi

(Xij, Xik) =

(xijf xhS) =

(Xij, Xβk) =

W. P. WARDLAW

= *&ik

'• Xij"

-• XT/

. = 1

1

1
: Xik

(4.5) ,

(4.8) ,

(4.8) ,

(4.8) ,

wfi =

(A'),

(A'),

(A')

The proof that these relations define PSL(3, Z) = SL(3, 2) proceeds
almost exactly as in [6, §2]. R. Ree has shown PSL(3, Z) ~ GZ(A2)
in [7]. Since one can obtain a "canonical" isomorphism of'G'(a,β)
onto Gz(A2), the group G'(α, /5) is c.d.

Case 4. α, β form a system of type B2 with long root β. Then
the relations (D) show that the "canonical" projection π'\ G'(a, β) —•
GZ(B2) defined by xp i—> ^(1) (in Gz{Bo)) is an isomorphism onto the
c.d. group GZ(B2), and hence, G'(α:, /S) is c.d.

This completes the proof of the main theorem.
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