# COMPLEX CHEBYSHEV ALTERATIONS 

S. J. Poreda


#### Abstract

P. Chebyshev's famous Alternation Theorem for best uniform approximation to continuous real valued functions on an interval is generalized to include best approximation to a class of continuous complex valued functions on an ellipse.


1. Preliminary remarks and definitions. For a continuous complex valued function $f$ defined on a compact set $E$ in the plane and, for $n \in Z^{+}$, let $p_{n}(f, E)$ denote the polynomial of degree $n$, of best uniform appoximation to $f$ on $E$ and let;

$$
\rho_{n}(f, E)=\max _{z \in E}\left|f(z)-p_{n}(f, E)(z)\right|
$$

Chebyshev's Alternation Theorem [1, p. 29] states that if $f$ is a continuous real valued function on an interval $[a, b]$, and $p_{n}$ is a polynomial of degree $n, n \in Z^{+}$, then $p_{n}=p_{n}(f,[a, b])$ if and only if, there exists $n+2$ points,
$\left\{x_{i}\right\}_{i=1}^{n+2}, a \leqq x_{1}<x_{2}<\cdots<x_{n+2} \leqq b$, with the property that $\left|f(x)-p_{n}(x)\right|$ attains its maximum on $[a, b]$ at these points and $f\left(x_{i}\right)-p_{n}\left(x_{i}\right)=$ $-\left[f\left(x_{i+1}\right)-p_{n}\left(x_{i+1}\right)\right]$ for $i=1,2, \cdots, n+1$.

The sets we consider here are ellipses which are of course a generalization of intervals. So, for $a \geqq 0$, let $E_{a}=\{z+a / z:|z|=1\}$. Now let $\mathscr{F}_{n}\left(E_{n}\right)$ denote those complex valued functions $f$, not themselves polynomials of degree $n$, continuous on $E_{a}$, having the property that there exists $n+2$ points $\left\{\xi_{k}\right\}_{k=1}^{n+2}$ in $E_{a}$, such that $p_{n}\left(f, E_{n}\right)=$ $p_{n}\left(f,\left\{\xi_{k}\right\}_{k=1}^{n+2}\right)$. It is known [1, p. 22] that there always exists a set $D \subset E_{a}$, consisting of $n+k$ points, $2 \leqq k \leqq n+3$, such that $p_{n}\left(f, E_{a}\right)=p_{n}(f, D)$. Furthermore, to this author's knowledge, every example of best uniform approximation to rational functions on infinite sets in the plane (e.g., [3], [4] and [5]) is one in which such a set consisting of $n+2$ points exists or, can be shown equivalent to such an example.
2. Main theorem. Given $n+2$ points $\left\{\xi_{k}\right\}_{k=1}^{n+2}$ in $E_{a}$ let $z_{k}$ be such that $\xi_{k}=z_{k}+a / z_{k},\left|z_{k}\right|=1$ and if $a=1,0 \leqq \operatorname{Arg} z_{k} \leqq \pi$ for $k=$ $1,2, \cdots, n+2$. The $z_{k}^{\prime} \mathrm{s}$ are uniquely determined. Now let

$$
\Phi_{k}=z_{k}{ }^{-n / 2} \prod_{\substack{j=1 \\ j \neq k}}^{n+2}\left[\left(z_{k} z_{j}-a\right) /\left|z_{k} z_{j}-a\right|\right] \text { for }
$$

$k=1,2, \cdots, n+2$ where $0 \leqq \arg z^{1 / 2}<\pi$.

Theorem 1. If $f$ is continuous on $E_{a}$ and $p_{n}$ is a polynomial of degree $n, n \in Z^{+}$, then $f \in \mathscr{F}_{n}\left(E_{a}\right)$ and $p_{n}=p_{n}\left(f, E_{a}\right)$ if and only if there exists $n+2$ points $\left\{\xi_{k}\right\}_{k=1}^{n+2}$ in $E_{a}$, with $0 \leqq \operatorname{Arg} \xi_{1}<\operatorname{Arg} \xi_{2}<$ $\cdots<\operatorname{Arg} \xi_{n+2}<2 \pi$ if $a \neq 1$ or $-2 \leqq \xi_{1}<\xi_{2}<\cdots<\xi_{n+2} \leqq 2$ if $a=1$, where $\left|f(\xi)-p_{n}(\xi)\right|$ attains its maximum on $E_{a}$ and, $\left[f\left(\xi_{i}\right)-p_{n}\left(\xi_{i}\right)\right] / \Phi_{i}=$ $-\left[f\left(\xi_{i+1}\right)-p_{n}\left(\xi_{i+1}\right)\right] / \Phi_{i+1}$ for $i=1,2, \cdots, n+1$ where the $\Phi_{i}$ 's are defined in terms of the $\xi_{i}$ 's as above.

Proof. In order to prove our theorem we make use of a lemma which is a reformulation of a result [2] due to T. S. Motzkin and J. L. Walsh.

Lemma. A necessary and sufficient condition that the given numbers $\left\{\sigma_{k}\right\}_{k=1}^{n+2}$ be the deviations of some function $f$ defined on the $n+2$ points $\left\{\xi_{k}\right\}_{k=1}^{n+2}$ and its polynomial of degree $n$ of best uniform approximation to $f$ on these points is that for some $\rho \geqq 0$;
(1) $\left|\sigma_{k}\right|=\rho$ for $k=1,2, \cdots, n+2$ and,
(2) $\arg \sigma_{k}=\arg \omega^{\prime}\left(\xi_{k}\right)+\theta_{0}$ for $k=1,2, \cdots, n+2$ if $\rho>0$ where

$$
\omega(\xi)=\prod_{k-1}^{n+2}\left(\xi-\xi_{k}\right) \text { and } \theta_{0}=\arg \left[\sum_{k=1}^{n+2} f\left(\xi_{k}\right) / \omega^{\prime}\left(\xi_{k}\right)\right]
$$

The necessary portion of our theorem will then follow if it is shown that;

$$
\begin{equation*}
\arg \left\{\left[\omega^{\prime}\left(\xi_{i}\right) / \Phi_{i}\right] /\left[\omega^{\prime}\left(\xi_{i+1}\right) / \Phi_{i+1}\right]\right)=\pi \text { for } \tag{2.1}
\end{equation*}
$$

$i=1,2, \cdots, n+1$. Now substituting $z_{j}+a / z_{j}$ for $\xi_{j}$ and using the definition of the $\Phi_{j}$ 's we can show the (2.1) is equivalent to;

$$
\begin{equation*}
\arg \left\{\left(z_{i+1}^{n / 2} / z_{i}^{n / 2}\right) \prod_{\substack{j \neq i, i+1 \\ j=1}}^{n+2}\left[\left(z_{i}-z_{j}\right) /\left(z_{i+1}-z_{j}\right)\right]\right\}=0 \tag{2.2}
\end{equation*}
$$

But, (2.2) follows since $z_{i}$ and $z_{i+1}$ are by virtue of their definition adjacent on the unit circle $U$ (i.e., $z_{i}$ and $z_{i+1}$ are on a connected arc in $U$ containing none of the other $z_{j^{\prime} \mathrm{s}}$ ) and since; $\arg \left(z_{i+1} / z_{i}\right)=$ $\left.-2 \arg \left[z_{i}-z_{j}\right) /\left(z_{i+1}-z_{j}\right)\right]$ for $j \neq i, i+1$.

In order to prove the converse of our theorem we simply work backwards and show that; $\arg \left[f\left(\xi_{k}\right)-P_{n}\left(\xi_{k}\right)\right]=\arg \omega^{\prime}\left(\xi_{k}\right)+\theta_{0}$ for some $\theta_{0}$ and $k=1,2, \cdots, n+2$ and apply the aforementioned result of Motzkin and Walsh.
3. Special cases and applications. Chebyshev's Alternation Theorem follows as a special case of Theorem 1, when $a=1$, since it is known [1, p. 22] that all real functions, not themselves polynomials of degree $n$, continuous on $[-2,2]$ are in the class $\mathscr{F}_{n}([-2,2])$.

Also of interest because of its simple form is the case where $a=0$ or $E_{a}=U$ is the unit circle and where $n$ is even. In this case our main theorem appears to provide us with a valuable tool in determining if a given function $f$ is in $\mathscr{F}_{2 m}(U)$ and if it is, in finding $p_{2 m}(f, U)$.

Corollary 1. If $f$ is continuous on $U$ and $p_{2 m}$ is a polynomial of degree $2 m, m \in Z^{+}$, then $f \in \mathscr{F}_{2 m}(U)$ and $p_{2 m}=p_{2 m}(f, U)$ if and only if there exists $2 m+2$ points, $\left\{z_{k}\right\}_{k=1}^{\}^{2 m+2}}$, with $0 \leqq \operatorname{Arg} z_{1}<\cdots<\operatorname{Arg}$ $z_{2 m+2}<2 \pi$ where $\left|f(z)-p_{2 m}(z)\right|$ attains its maximum on $U$ and where $\left[f\left(z_{k}\right)-p_{2 m}\left(z_{k}\right)\right] / z_{k}^{m}=-\left[f\left(z_{k+1}\right)-p_{2 m}\left(z_{k+1}\right)\right] / z_{k+1}^{m}$, for $k=1,2, \cdots, 2 m+1$.

Corollary 1 can be used to obtain a recently discovered example of best approximation [3], namely, if $f(z)=(\alpha z+\beta) /(z-\alpha)(1-\bar{a} z)$, $|a|>1$, then;

$$
p_{2 m}(f, U)(z)=\left[\alpha z+\beta-K_{1} z^{2 m}(1-\bar{a} z)^{2}-K_{2}(z-\alpha)^{2}\right] /(z-\alpha)(1-\bar{a} z)
$$

where

$$
K_{1}=(\alpha a+\beta) / a^{2 m}\left(1-|a|^{2}\right)^{2}
$$

and,

$$
K_{2}=\bar{a}(\alpha+\beta \bar{a}) /\left(1-|a|^{2}\right)^{2} .
$$

## References

1. G. G. Lorentz, Approximation of Functions, Holt, Rinehart and Winston, 1966.
2. T. S. Motzkin and J. L. Walsh, On the derivative of a polynomial and Chebyshev approximation, Proc. Amer. Math. Soc., 4 (1953), 76-87.
3. S. J. Poreda, An example of best uniform approximation in the complex plane, Notices Amer. Math. Soc., 17 (1970), 569.
4. T. J. Rivlin, Some explicit polynomial approximations in the complex domain, Bull. Amer. Math. Soc., 73 (1967), 467-469.
5. T. J. Rivlin and H. S. Weiss, Some best polynomial approximations in the plane, Duke Math. J., 35 (1968), 475-482.

Received December 4, 1970. This work represents part of the author's doctoral dissertation that was directed by Professor Mishael Zedek at the University of Maryland.
Clark University

