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PROJECTIVE LATTICES AND BOUNDED
HOMOMORPHISMS

ALAN KOSTINSKY

The main purpose of this paper is to prove that a finitely
generated lattice is protective iff it is imbeddable in a free
lattice. This result appears as a consequence of a more
general theorem, in which a sufficient condition for projecti-
vity is given in terms of the notion (due to Ralph McKenzie)
of bounded homomorphism.

In [1, Theorems 4.1, 4.4] Baker and Hales completely describe
the distributive protective lattices and obtain as a corollary the fact
that a finite distributive lattice is projective iff it is imbeddable in
a free lattice. This last result has been improved by McKenzie, who
finds in [6, proof of Theorem 6.3] that for any finite lattice L, L is
projective iff it is imbeddable in a free lattice. McKenzie's proof uses
some ideas due to B. Jόnsson. To extend the theorem to finitely
generated lattices we sharpen arguments of [6]. As stated above,
we use the notion of bounded homomorphism; this idea is defined by
McKenzie in [6], and it plays an important role in that paper.
Theorem 3.4 below was first announced in the author's abstract [4].

1* Preliminaries* We regard a lattice as an algebraic structure
<X, +, •)> in which the sum (join) and product (meet) satisfy the
usual equational axioms. It will not cause confusion to refer to a
lattice by naming its universe. We denote by ^ the ordering of
the lattice L, that is, the partial ordering naturally associated with
L (x < y means x ^ y and x Φ y). If the greatest lower bound (least
upper bound) of a subset U of L exists in L, it is denoted A U (A U).

The notation and terminology used for maps is largely standard.
By an epimorphism of a lattice L into a lattice M we mean a
homomorphism of L onto M. For any sets L> M, N, and any maps
f:L—>M and g: M—> N, the composite map (of L into N) is denoted
g°f. (In the arrow notation, maps—whether homomorphisms or not—
which are onto may be indicated by the use of a double-headed arrow,

A chain is a lattice whose ordering is a linear ordering. A chain
is bounded iff it has a least element and a greatest element. Any
ordinal a may be viewed as the chain whose ordering is the natural
ordering of a. The set of all natural numbers is denoted ω.

We regard Boolean algebras as lattices (thus, zero, one, and com-
plementation are not primitive operations).

ill
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The terms of the language of lattice theory are built up from
individual variables v0, vl9 and the binary operation symbols V
and Λ (interpreted in lattices as + and , respectively). The notion
of length of a term is assumed familiar. Let τ be a term of lattice
theory with variables among v0, •••, v»; let L be a lattice and
x0, ' *,xneL. Then by τ[L, x0, — ',xn] we mean the denotation of
τ in L under the assignment v{ —* x{ (i ^ n). If τ is a term of lattice
theory, L and M are lattices, x0, , xn e L, and / is a homomorphism
of L into ikf, then /(τ[L, a?0, , »»]) = r[j|f, /^o, , /a?*].

The free lattices are especially important for our present work.
For any nonempty set X, we let FL{X) denote some fixed lattice
freely generated by X. Recall that if JSΓ0, X1 are disjoint nonempty
subsets of X, and if xi is in the sublattice of FL(X) generated by
Xi (i = 0, 1), then xo-xι < xQ < x0 + x, in FL(X).

Whitman's famous solution to the word problem for lattices, in
[7], provides a characterization of the free lattice as follows. Suppose
L is a lattice generated by X Φ 0 . Then L is freely generated by
X (that is, L = FL(X)) iff all of the following hold in L: (WO) for
all x, x' e X, if x ^ xf then a? - xf; (Wl) for all a e X and all a,beL, if
α δ ^ a; then a <£ a? or 6 <Ξ #, and if a; ^ α + δ then x <; α or a; <£ 6;
(W2) for all α, δ, c, d 6 L, if α δ ^ c + d then α ^ c + d or 6 ^ c + ώ
or a' b <£ c or α 6 <£ ώ. The latter two properties (which we refer to
as Whitman's (Wl) and (W2)) are frequently used below. Note that
(W2) makes no reference to a generating set; for any lattice L, there
is no ambiguity in saying that Whitman's (W2) holds (or does not
hold) in L.

We also use the following theorem, derived by Jόnsson from a
result of Whitman [7]:

THEOREM 1.1. (Jόnsson [3, Lemma 2.6, p. 262]) In any free lattice
FL(X), the following hold: for all u, a, b, ce FL(X), if u = a b = a c
then u = a (b + c); ifu = a + b = a + c then u = a + 6 c.

Finally we recall some basic facts about linear sums of lattices.
Let ζEy ^> be a linearly ordered structure and let ζLe:eeEy be a
system of lattices such that e Φ e' implies Le(~) Le, = 0* Then the
linear sum ΣELe is the lattice L completely determined by the following:
L = \J{Le:ee E}; for each eeE, Le is a sublattice of L; and when-
ever e Φ e\ xeLei yeLe', then x < y in L iff e < e' in E. Roughly
speaking, L is constructed simply by stacking up the Le in accordance
with the ordering of E.

A lattice is linearly indecomposable iff it is not the linear sum
of two lattices. For any lattice L there are a linearly ordered struc-
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ture E (unique up to isomorphism) and a system of lattices ζLe:
eeEy (with range {Le:eeE} uniquely determined by L) such that
each Le is linearly indecomposable and L = ΣELe; the Le are called
the linear components of L.

2* Projectivity and bounded homomorphisms*

DEFINITION 2.1. A lattice L is protective (in the category of all
lattices and lattice homomorphisms) iff for any lattices M> N, and
any lattice homomorphisms h:L—*N and g:M-^N (g onto), there is
a homomorphism f:L—>M such that gof = h.

It is well-known that there are simpler descriptions of projectivity
than 2.1; in particular, we have:

NOTE 2.2. For any lattice L the following three conditions are
equivalent:

(1) L is protective;
(2) for any lattice M and any epimorphism /: Af-»L, there is

a homomorphism g: L-~* M such that fog is the identity map on L;
(3) there are a free lattice FL(X), an epimorphism/: FL{X) -»

L, and a homomorphism g: L —> FL(X) such that /o# is the identity
map on L.

We shall use formulation (3) in this paper; (2) is used in [1].
Note that every projective lattice is isomorphic to a sublattice

of a free lattice (the map g of (3) clearly must be one-to-one). Also,
every free lattice is obviously projective. Baker and Hales [1, Theo-
rem 3.1, p. 473] prove that a countable lattice is projective iff each
of its linear components is projective.

In [2, Theorem 6, p, 271] Galvin and Jόnsson show that a dis-
tributive lattice L is imbeddable in a free lattice iff L is countable
and each linear component of L is one of the following: a one-element
lattice, an eight-element Boolean algebra, or an isomorphic image of the
direct product of a countable chain and a two-element chain. Using this
result, Baker and Hales [1, Theorem 4.1, p. 474] characterize the dis-
tributive projective lattices as follows: a distributive lattice L is pro-
jective iff L is countable and each linear component of L is one of the
following: a one-element lattice, an eight-element Boolean algebra, or an
isomorphic image of the direct product of a countable bounded chain
and a two-element chain.

As to non-projective lattices, the above remarks readily yield
many examples. Thus, all the non-distributive modular lattices are
non-pro jective1, for they are not imbeddable in free lattices (recall
1 This fact was pointed out by the referee.
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that the five-element lattice with three mutually incomparable ele-
ments is imbeddable in every non-distributive modular lattice; apply
Jόnsson's Theorem 1.1). And, as observed in [1], the above-mentioned
results on distributive lattices show that the direct product 2 x ω
is a distributive non-projective lattice imbeddable in FL(ω) (and hence
imbeddable in FL(3), by Whitman [8, Theorem 6, p. 109]).

DEFINITION 2.3 (McKenzie [6, Definition 5.2]) Suppose L, M are
lattices and / is a homomorphism of L into M. We say / is upper
bounded iff for each be M, {aeLifa^b} either is empty or has a
greatest element; / is lower bounded iff for each b e M, {a e L: b <^ fa}
either is empty or has a least element. We say / is bounded iff it
is both upper and lower bounded.

N. B. These notions are defined with respect to the entire co-
domain M of /, not merely with respect to the range of /. The
intended codomain will be specified below in the rare cases where
there is ambiguity.

NOTE 2.4. Suppose L, M are lattices and / is a homomorphism
of L into M; suppose that /, viewed as a homomorphism of L into M,
is bounded. Then if N is any sublattice of M which includes the range
of /, / is also bounded as a homomorphism of L into N. (Trivial.)

Usually we shall deal with epimorphisms. If / is an epimorphism
of L into M, clearly / is upper iff for each beM, {aeL:fa = b} has
a greatest element; similarly for the other two notions of 2.3.

DEFINITION 2.5. Let s-3; be the class of all lattices which are
bounded epimorphic images of free lattices. (L e & iff there are
a free lattice FL{X) and an epimorphism /: FL{X) -» L such that /
is bounded.)

Trivially every free lattice is in &. It follows readily from
McKenzie [6, Lemma 5.2] that every finitely generated sublattice of
a free lattice is in & (see also the proof of Theorem 3.4 below).

An element of .ζ& need not be imbeddable in a free lattice. Thus,
according to [6, remarks following Theorem 5.1], every finite Boolean
algebra is in &\ but, by the Galvin-Jόnsson result stated above, a
Boolean algebra with more than eight elements is not imbeddable in
a free lattice. Those elements of <S& which are not imbeddable in
free lattices are, of course, not protective; we shall see that all other
elements of & are protective (Theorem 3.3).

In Corollary 5.3 of [6], McKenzie shows that the two properties
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of free lattices described in Jόnsson's Theorem 1.1 carry over to the
lattices of &; it follows that every non-distributive modular lattice
fails to be in έ$.

Recall from above that Baker and Hales have shown that if L
is countable and is a linear sum of protective lattices, then L is pro-
jective. The situation is quite different for &, as we shall see in
Lemma 2.7. For the moment we remark that every countably infinite
chain is protective, but is not in .ζ&.

LEMMA 2.6. Suppose f is a homomorphism of a free lattice FL{X)
into a lattice L. Then the following hold:

(1) if f is upper bounded then for each be Ly {xe X: fx ^ b} is
finite;

(2 ) if f is lower bounded then for each be L, {x e X: b ̂  fx} is
finite.

Proof. We prove (1) ((2) is similar). Suppose {xeXifx^b} is
infinite. Let z be any element of {a e FL(X):fa ^ b}; let Xr be a
finite subset of X such that z is in the sublattice of FL(X) generated
by X'; and choose x0 e {x e X:fx ^ b) ~ X'. Then f(z + x0) ̂  δ, and
z < z 4- xQ in FL(X) (see § 1). Thus / is not upper bounded.

LEMMA 2.7. Suppose L = ΣELe, where E is any infinite linearly
ordered structure and the Le are any lattices. Then L <έ &.

Proof. Say /: FL(X) -» L. We show that / cannot be bounded.
For every nonempty subset S of E, \J{Le:eeS} is a sublattice of
L; hence / must map an element of X into every Le. For each
eeE, choose xee X such that fxe e Le, The xe are distinct. Let
deE. For each e e E, fxe is comparable to fxd in L; hence either
{x e X: fx ^ fxd} or {xeX:fxd^fx} is infinite. Thus, by 2.3 and 2.6,
/ is not bounded.

3* Main results. Lemma 3.1 and Theorem 3.3 below are closely
based on Lemma 5.2 of McKenzie's paper [6]; 3.1 generalizes that
lemma.

LEMMA 3.1. Suppose L is a lattice generated (not necessarily
freely) by a set X, and suppose f is a homomorphism of L into a
free lattice FL(Y). Then the following hold:

(1) if for each be FL(Y), {xe X:fx ^ 6} is finite, then f is
upper bounded;

(2 ) if for each b e FL{ Y), {x e X: b ̂  fx} is finite, then f is lower
bounded.
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Proof. We prove (1); a dual argument works for (2). Assume
the hypothesis of (1). Let T be the set of all elements b of FL(Y)
such that {aeLifa ^ b} either is empty or has a greatest element.
As in [6, Lemma 5.2], we show inductively that T = FL(Y); we use
the fact that Whitman's (Wl) and (W2) hold in free lattices (see § 1).

First we show that FgΞ T. Suppose y e Y and {ae L:fa ^ y) Φ
0 . Since L is generated by X, repeated application of Whitman's
(Wl) to a relation fa ^ y (a e L) yields an x e X such that fx <̂  y.
This, together with the hypothesis of (1), shows that α0 = \/ {xeX:
fx ^ y) exists in L and that fa0 ^ y. We claim that for all a e L,
if fa ^ y then a ^ a0. To see this, let S be the set of a e L for
which the claim is true. Obviously X g S] and if a, a' e S then,
trivially, a + a'e S. It a, a'e S and fa-fa' <̂  y, then by Whitman's
(Wl), /α ^ y or /α' ^ ?/, so that α ^ α0 or α' ^ αo; hence a-ar ^ aQ.
Therefore S = L, as claimed. Thus α0 is the greatest element of
{a e L: fa ^ y}, and K G Γ .

It is easy to see that T is closed under product. If b0, bλe T
and {a e L:fa <Ξ δo δj is nonempty, then both {α e L:fa ^ b0} and {α G L:
/α ^ 6J are nonempty, hence have largest elements α0, α1} respectively.
Clearly αo-^ is the largest element of {aeL:fa <£ δo δ j .

Finally we show that T is closed under sum. Suppose 60, δL e Γ
and {a G L:/α ^ δ0 + δj ^ 0 . For i G {0, 1}, in case {a e L:fa ^ δj ^
0 , let a{ be its largest element. Next consider the set {xeXifx^
b0 + δj ; if this set is empty then there is a term τ of lattice theory
of some minimum length > 1 such that for some x0, « , ^ e l ,
f(τ[L, x0, , .τ%]) ^ δ0 + δx; r must have the form r0 Λ r l t so that
τo[FL(Y), fx0, , fxn] τ\FL{Y), fxOy , fxn] ^ b0 + 6,; but r ,[FL(F),
/ίc0, ••,/»«] S h + δx for je{0, 1}; hence, by Whitman's (W2) in
F L ( F ) , for i = 0 or i — 1, f(τ[L, x0, , xw]) ^ 6̂ . Therefore, we seε
that at least one of the three elements α0, aly V {x G X: fx ^ 60 + δj
is defined in L; let α2 be the sum of those that are defined.

Clearly /α2 rg δ0 + b±. Now we claim that for all a e L, if /α ^
60 + bL then a ^a2. Let S be the set of ae L for which this is true.
Obviously X g S; and if a, a' e S then α + α ' e S . If α , α ' e S and

./α /α' ^ δ0 + δL, then by Whitman's (W2) in FL(Y), we have at least
one of the following: fa ^ δ0 + δx, /α' ^ δ0 + δ1? fa-fa' ^ 615 fa-fa' ^
δL; in the first case α ^ α2 by assumption aeS, so α α ' ^ α 2 ; in the
last case av must be defined and a-a' ^ aι ^ α2; the other cases are similar,
so a-af e S. Therefore S ~ L, as claimed. It follows that δ0 + bι G Γ

Thus, T = FL(Γ), that is, / is upper bounded.

COROLLARY 3.2. Suppose f is a homomorphism of a free lattice
FL(X) into a free lattice FL(Y). Then f is bounded iff for each
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be FL(Y), {xe X:fx is comparable to 6} is finite. (Immediate from
2.6 and 3.1.)

THEOREM 3.3. Suppose L e & and Whitman's (W2) holds in L.
Then L is projective.

Proof. We are given /: FL{X) -» L, / a bounded homomorphism.
Define a and β, maps of L into FL(X), as follows: for each beL,
ab is the greatest element of {a e FL(X):fa ^ &}, βb is the least
element of {a e FL(X):fa ^ b}. Certain properties of a and β are
immediate. Thus, for each be L, fβb = fab = b and βb ^ ab. Also,
β preserves sum and a preserves product; that is for any b0, bι e L,
β(b0 + &0 = βb0 + βb, and a(bo-b,) = abo ab,. And both a and β are
order-preserving.

We claim an additional property for β. Let 60, 6X e L. By Lemma
2.6, the set S = {xe X: bo-b, ̂  fx) is finite. Our claim is that β(bo-b,) =
(A{xeX: b«-b,^fx})*βb,.βb, if SΦ 0 , and β(bo-b,) = /̂ o β&i if S =
0 . Let α0 denote the right-hand element; that is, α0 — (A^'βh'βh
if S Φ 0 , α0 = βbo βb, if S = 0 . Clearly /α0 = h-b,. We show that
for all αGFL(I), if b^b^fa then α0 ^ α. Let T be the set of
a e FL{X) for which this is true. Obviously I g Γ and T is closed
under product. If a, a' e T and 6O-6X ^ / α + /α', then, by Whitman's
(W2) in L, we have at least one of the following: b0 <̂  fa + /α', δx ^

/α + /α', 60 δi ^ fa, bQ b1 ^ /α'; in the first case have a + a' ^ /9δ0 ^α o ;
in the third case aQ^a by assumption ae T, so α0 ̂  α + α'; the other
cases are similar, so that a + ar e T. Thus T = FL(X), and α0 =
βih-b,), as desired.

Now let the endomorphism h: FL(X) —> FL{X) be the extension
of the map α? —> α/α;, α; e X. We claim that for each a e FL(X), βfa ^
ha ^ α/α (so that fha = fa). The property is obvious for xe X. Pro-
ceeding inductively, suppose βfa{ ^ / ^ ^ α/α^ for i e {0, 1}; then, using
the properties of a and β established above, we have βf(a0 + αj =
β{fao +faL) = βfa, + βfa, ^ feα0 + ha, = h(aQ + αx) ̂  α/α0 + α/αx ̂  a(fa0 +
/ α j ; similarly, βf{a^aλ) ^ h(aQ'aγ) ^ af(a^aγ).

Define the map g: L-~* FL(X) by g = hoβ. We show that g is a
homomorphism of L into FL(X). Since /? and h preserve sum, so
does g. Now for δ0, bLeL, we must show that hβφo bj) = hβbo hβb^
it suffices to show h{βb^βbλ) ^ hβ{bQ-b^. If βty^b) = βh-βb, this is
trivial; thus we may assume by above that {# e X: 60 ί>i ̂  /̂ } ^ 0
and that hβφ.-b) = {/\{hx: xe X and b.-b,^ fx^-hβb^hβb,. There-
f o r e , i t s u f f i c e s t o s h o w t h a t h{βbQ βb?) ^ h x w h e n e v e r x e X a n d
δo δi ^ Λ% But for any such x, Aβh βb,) = fβb^fβb, = b,-b1S fx, so

that βbo βh ^ afx = Aα; (see definition of h); thus, using the claim
of the preceding paragraph, we have h(βbQ βb,) ^ hhx ^ afhx = α/x =
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hx, as desired. Thus g is a homomorphism of L into FL{X).
To prove L projective it remains only to show that for each

be L, fgb = b. In fact, fgb = fhβb = fβb = 6, as desired (the middle
equality holds by our claim concerning h). This completes the proof
of 3.3.

THEOREM 3.4. A finitely generated lattice is projective iff it is
imbeddable in a free lattice.

Proof. We already know that a projective lattice is imbeddable
in a free lattice. Now suppose that L is a sublattice of FL{Y), L
finitely generated. For some sufficiently large finite X, there is an
epimorphism / of FL(X) onto L. By Corollary 3.2, /, viewed as a
homomorphism into FL(Y), is bounded; by Note 2.4, / is bounded as
an epimorphism onto L. Thus L e &; and L inherits Whitman's (W2)
from FL(Y). It follows from 3.3 that L is projective.

Notice that, by Theorem 3.3 and the earlier remarks, for a lattice
L of . Γ̂ , L is projective iff L is imbeddable in a free lattice iff
Whitman's (W2) holds in L.

We have a fair amount of information on the relationship be-
tween <%} and the class of projective lattices. Our spscific examples
above include lattices which are in both classes, in neither, in one
class but not the other. From [1] we have the example 2 x a), a
denumerable distributive non-projective lattice imbeddable in FL{2);
it is now clear from Theorem 3.3 that 2 x α>g.^ In [5, Figure
5B, p. 49] we display a denumerable non-modular sublattice of FL(3)
which also is non-projective and not in &. We sketch a proof of
the following additional fact:

THEOREM 3.5. Suppose L is a distributive Ixttice, L e .&, and
Whitman's (W2) holds in L. Then L is a finite projective lattice.

Proof. We know that L is projective by Theorem 3.3. By
Lemma 2.7, L is a linear sum of just finitely many linear components*
The Galvin-Jόnsson result mentioned earlier implies that any infinite
linear component of L must be isomorphic to the direct product of a
countable chain and a two-element chain. An argument similar to
that of Lemma 2.7 now shows that there is no infinite linear com-
ponent of L. Thus L is a finite projective lattice.
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