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A GENERAL PHILLIPS THEOREM FOR C*-ALGEBRAS

AND SOME APPLICATIONS

DONALD CURTIS TAYLOR

In this paper Phillips's theorem is extended to a C*-aIgebra
setting and, by virtue of this extension, several results on
interpolation are generalized and improved.

l Introduction* Let N be the set of positive integers with the
discrete topology and let m(N) denote the bounded complex functions
on N We may identify m(N) with C(βN), where βN denotes the
Stone-Cech compactification of N A well known and useful result
due to Phillips is the following.

THEOREM. Let {fn} be a sequence in the dual of C(βN) that con-
verges weak* to zero. Then

limΣ

uniformly in n, where δp is the characteristic function of the set {p}.

In §3 we extend this result to a C*-algebra setting and we give
several applications of this result. For example, we extend and im-
prove several results on interpolation due to Bade [3] and Akemann
[2]. A commutative version of our result was proved by Con way [7].

2* Preliminaries* Let A be a C*-algebra. By a double centra-
lizer on A, we mean a pair (R, S) of functions from A to A such that
aR(b) = S(a)b for α, b in A, and we denote the set of all double cen-
tralizers on A by M(A). If (R, S) e M(A), then R and S are continu-
ous linear operators on A and | | i ί | | = | |S | | . So M(A) under the usual
operations of addition, multiplication, and involution is a C*-algebra,
where ||(j?, S)| | = ||i2||. If we define the map μQ:A-+M(A) by the
formula μo(a) = (Lα, J?α), where La(b) = ab and Ra(b) = ba for all be A,
then μQ is an isometric ^-isomorphism from A into M(A) and μo(A) is
a closed two-sided ideal of M(A). Hence throughout this paper we
will view A as a closed two-sided ideal of M(A). For a more detailed
account of the theory of double centralizers on a C*-algebra, we refer
the reader to [4] and [13].

Let B be a C*-algebra and let A be a closed two-sided ideal of B.
We define the strict topology βA for B to be that locally convex topology
generated by the seminorms (λα)αe^ and (pa)aeΛ9 where Xa(x) = | |α#||
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and ρa(x) = \\xa\\, and we let BβA denote B under the strict topology
generated by A. When A and B are understood (specifically, when B=
M{A)) we let β denote the strict topology for B generated by A. The
topological algebra M(A)β is complete and the unit ball of A is β dense
in the unit ball of M(A).

We will now state a result due to Busby that is very useful in
computing the double centralizer algebra of a C*-algebra.

THEOREM 2.1. Let B be a C*-algebra, let A be a closed two-sided
ideal of B, and let A0 = {xe B|xA = 0}. Let the map μ:B—> M(A)
be defined by μ{x) = (Lz, Rx), where Lx(a) = xa and Rx(a) = ax for each
a in A. Then the following statements are true:

(1) The map μ is a *-homomorphism of B into M(A); consequently t

μ is an isometry if and only if A0 = 0.
(2) // A0 = 0 and every βA-Cauchy net in the unit ball of A con-

verges in the βA topology to some element of the unit ball of B, then
μ is an isometric *-isomorphism of B onto M(A).

Proof. For a proof, see [4, Proposition 3.7, p. 83].

COROLLARY 2.2. If B is a W*-algebra and A0 — 0, then μ is an
isometric ""-isomorphism of B onto M(A).

Proof. Let {aa} be a /3 -̂Cauchy net in the unit ball of A. Since
the unit ball of B is compact in the weak operator topology, we can
assume that {aa} converges in the weak operator topology to some
element x in the unit ball of B. Since {aa\ is /2 -̂Cauchy, it is straight-
forward by [4, Th. 3.9(i), p. 84] to show that {aa} converges to x in
the /S^-topology. The conclusion now follows from Theorem 2.1.

If B is a TF*-algebra, then it is straightforward to show that A0

is a two-sided ideal of B that is closed in the weak operator topology.
Hence A° has an identity q that commutes with each element of B.
If follows that the quotient algebra B/A° is isometrically *-isomorphic
to the TF*-algebra (1 - q)B(l - q). Now define the map μ'\ B/A°->
M(A) by the formula μ'(x + A0) = μ(x) for each x in B. Since ker μ =
A\ we see that μ' is well defined. Due to the fact that {x e B/A° \ x{A/A°) =
0} = {0}, we get

COROLLARY 2.3. If B is a W*-algebra, then M(A) is a W*-algebra
and the map μf is an isometric *-isomorphism of B/A° onto M(A); that
is, M(A) ~ M(A/A°).

EXAMPLE. Let H be a Hubert space, let B(H) be the bounded
linear operators on H, and let B0(H) be the compact linear operators
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on H. It is well known that B0(H) is a closed two-sided ideal of B(H).
Since B(H) is a TF*-algebra and {xeB(H)\xB0(H) = 0} = {0}, we have
that B{H) is the double centralizer algebra of B0(H).

EXAMPLE. Let B be a finite dimensional C*-algebra, let S be a
locally compact paracompact Hausdorff space, and let β(S) denote the
Stone-Cech compactification of S. Let C(β(S), B) denote the space of
all B-valued continuous functions on β(S) and let C0(S, B) = {x e
C(β(S),B)\x(t) = 0,teβ(S) — S}. It is clear that under the usual
pointwise operations and sup-norm that C(β(S), B) is a C*-algebra and
C0(S, B) is a closed two-sided ideal of C(/3(S), B). Now it is straight-
forward to show that a /3-Cauchy net in the unit ball of CQ(S, B) con-
verges to a jB-valued continuous function on S that is uniformly
bounded. Since a bounded i?-valued continuous function on S can be
uniquely extended to B-valued continuous functions on β{S), Theorem
2.1 gives us that C(β(S), B) is the double centralizer algebra of
Co(S, B).

PROPOSITION 2.4. Let B be a C*-algebra and A a closed two-sided
ideal of B. Then B*A, the dual of BβA, can be identified under the
natural mapping as a closed subspace of J5*.

Proof. The proof will follow from a variation of the argument
given for [13, Corollary 2.3, p. 635].

PROPOSITION 2.5. Let B be a C*-algebra and let A be a closed
two-sided ideal of B. If f is a bounded linear functional on B, then
there exists a unique decomposition f = f° + f1 such that f° e B*A and
f1 G A1. Consequently, B* = B$A 0 A1.

Proof. For a proof, see [14, Corollary 2.7].

REMARK. For each / e 5* we will always let f° and f1 denote
those unique linear functionals in BfA and AL respectively that satisfy

/ = Γ + A

DEFINITION. Let A be a C*-algebra. A subset K of M(A)* is
said to be tight if K is uniformly bounded and if for some, or for
each, approximate identity {ex} for A we have

\\(l-eλ)f(l-eλ)\\->0

uniformly on K. Here (1 - eλ)f(l - eλ)(x) = /((I - eλ)x(l - eλ)) for
each x e M(A).
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THEOREM 2.6. Let A be a C*-algebra. Then a subset K of M(A)f
is β-equicontinuous if and only if K is tight.

Proof. For a proof, see [13, Theorem 2.6, p. 636].

3* A general Phillips theorem for C*^algebras* In this section
we will study sequential convergence in the dual of a double centralizer
algebra. In particular, we prove a general Phillips theorem for C*-
algebras and we give some applications of it.

DEFINITION. An approximate identity {eλ\λ6 A) for the C*-algebra
A is said to be well behaved if and only if the following properties
are satisfied.

(1) ^ ^ 0 for each λ e A.
(2) If λ2 > λlf then eheh = eh.
(3) If λ1? λ2, is a strictly increasing sequence in A and λ e A,

then there exists a positive integer N such that for all n, m > N we
have ez(eXn - exj = 0.

REMARK. If S is a locally compact paracompact Hausdorff space,
then S can be expressed as the union of a collection {Sa\ae 1} of
pairwise disjoint open and closed o -compact subsets of S. Since each
C*-algebra C0(Sa) has a countable approximate identity and CQ(S) =
(Σ Co(Sa))o, it follows by Proposition 3.1 and Proposition 3.2 that C0(S)
has a well behaved approximate identity. Now let H be a Hubert
space and {pa}aeI be a maximal family of orthogonal projections on H.
It is straightforward to show that {va}eIa is a series approximate
identity for B0(H), the space of all compact operators on H, conse-
quently, by Proposition 3.1, B0(H) has a well behaved approximate
identity. Finally, suppose A is a C*-algebra such that M(A) is iso-
metrically isomorphic to A**, the bidual of A. By some recent results
of E. McCharen or by [15, Theorem 5.1, p. 533] A is dual, conse-
quently, A = (Σ B0(Ha))0, where {Ha} is a family of Hubert spaces (see
[11]). Hence by Proposition 3.2 A has a well behaved approximate
identity.

PROPOSITION 3.1. Let A be a C*-algebra and suppose one of the
following conditions holds:

(1) A has a countable approximate identity]
(2) A has a series approximate identity (see [2, p. 527]).

Then A has a well behaved approximate identity.

Proof. It is straightforward to verify that A has a well behaved
approximate identity when (2) holds. Therefore assume A has a
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countable approximate identity {cn}. We can also assume cn ^ 0, since
c*cn is an approximate identity for A. Let b = ΣSU β»/2n Then b is
a strictly positive element of A in the sense of [1, p. 749]. Hence
A contains a countable increasing abelian approximate identity {dn}
[1, Theorem 1, p. 749]. Let Ao denote the maximal commutative
subalgebra of A that contains {dn}. Then we can view Ao as C0(^f),
the complex-valued continuous functions that vanish at °o on the
maximal ideal space Λ€ of Ao. Since Ao has a countable approximate
identity {dn}, it follows by [5, Theorem 4.1, p. 160] that ^ t is σ-
compact. It is straightforward to show that Ao has a well behaved
countable approximate identity {en}. We now wish to show that {en}
is an approximate identity for A. Let a e A and ε > 0. Choose a
positive integer m so that \\a — c?mα|| < ε|2 and then choose a positive
integer N so that \\(dm — endm)\\ < e/2||α|| for integers n^>N. It
follows that \\a - eΛα|| ^ | |(1 - en)(a - dma)\\ + \\{dm - Mm)α|| < ε for
n^> N. Hence {en} is a well behaved approximate identity for A and
the proof is complete.

PROPOSITION 3.2. Let {Aδ\δeA} be a family of C*-algebras. If
each Aδ has a well behaved approximate identity, then the sub-direct
sum (ΣδejAδ)0 has a well behaved approximate identity (see [12, p. 106]
for definition of (Σ*

Proof. For each Bed let {eδλ\XeΛδ} be a well behaved approxi-
mate identity for Aδ, and let ^ denote the family of all finite sub-
sets of Δ. Let Σ denote the set of all functions σ whose domain
Dσ e a?" and has the property that σ(d) e Λδ for each δ e Dσ. We define
the binary relation ^ in Σ by the following formula: σ2 ^ σ1 if and
only if Do% ̂  DOl and σ2(8) ^ δ^d) for each δ e Dσi. It is straight-
forward to verify that Σ under ^ is a directed set. Now for each
σeΣ define dσ in CLδejAδ)0 by the following formula dσ(δ) = eδ,σ(δ) for
each δ e Dσ and dσ(δ) = 0 otherwise. It is straightward to verify that
{dσ\σeΣ} is a well behaved approximate identity for (Σi

The next result extends Phillips' theorem to a C*-algebra setting.
A commutative version of this result was proved by Con way [7,
Theorem 2.2, p. 55].

THEOREM 3.3. Suppose A is a C*-algebra with a well behaved
approximate identity. If {fn} is a sequence in M(A)* that converges
weak* to zero, then {fl} is tight and converges weak* to zero.

Proof. It is clear that {fn} is uniformly bounded, so without loss
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of generality we can assume {fn} is uniformly bounded by 1. Since
IIΛII ^ IIΛIAH = | | /J |A | | = | |/J | | , we have that {/«} is also uniformly
bounded by 1. Let {eλ\XeΛ} be a well behaved approximate identity
for A and suppose {/°} is not tight. Then there exists an ε > 0 such
that {XeΛ: sup% | |(1 — ex)fn(l — eλ)\\ >̂ 4ε} is cofinal in A and since a
cofinal subnet of a well behaved approximate identity is also one, we
may assume

(3.1) sup | | ( 1 - β j ι ^ ( l - β θ | | ^ 4 e
n

for all XeΛ. We may then define inductively sequences ^ 1 < n 2 < and
λ1<λ,< such that \\(l-eλk)fik(l-eλk)\\^4εanά \\eXk+ίf*keλk+ι-f°k\\<
e by using the following: (3.1); lim, || (1 - eλ)g(l - eλ) \\ = 0, g e M(A)f;

\\eλgeλ — g\\ = 0, geM(A)*. It then follows that

^ 3ε .

We then, for each k, choose bk = bt in ball A such that \fnic((eλfc+1 —
exk)bk(e*k+1 - %)) I ̂  e Define ak = {ehk+1 - ehk)b2k{ehk+1 - ehk) and let

9k = fn2k- Then we have:
( i ) \gk(ajc)l^s; ( ϋ ) a,flu = 0 for j Φ k; (iii) for each XeΛ,
there exists a positive integer N such that akeλ = 0 for k ^ N.

Now let α = {αα}Γ=i be an element of l°°. By virtue of (ii) and
(iii) the sequence of partial sums {^t=iakak} is uniformly bounded by
||α||βo and is /5-Cauchy. Since M(A)β is complete [4, Proposition 3.6,
P 83], { Σ L i W j has a /S-limit Σ?=i α * α * that is also bounded by
||α|joo. Next, define the bounded linear map T\l°°-+M{A) by the
formula

T(a) =
k=i

for each a e l°°. Let Γ* denote the adjoint of T. Since T is continuous,
Γ* is a weak* continuous mapping of M(A)* into (i~)*. From our
hypothesis on {fn} it follows that {Γ*(flrfc)} converges to 0 weak*.
Hence, by Phillips theorem [8, p. 32],

lim Σ I T*gk(δq) I = lim Σ \ffk(aq) I — 0

uniformly in A, where δfc is the Kronecker delta function. Therefore
there exists a positive integer m such that |#m(αm) | ^ Σ ^ = m |flr»(αg) | < ε .
This contradicts ( i ) , so {fl} is tight.

Note that {/£} is now equicontinuous on M(A)β and converges
pointwise on a dense subset and hence (by a well known result) con-
verges weak*. The proof is now complete.
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By virtue of Proposition 3.1 and the previous remark, the following
^result is an improvement of [13, Theorem II, p. 634]

COROLLARY 3.4. Suppose A has a well behaved approximate
identity. If K is a relatively weak"" countably compact subset of M(A)f,
then K is tight. Consequently, M(A)β is a strong Mackey space (hence,
in particular, is a Mackey space).

Proof. The proof that K is tight is similar to the one given for
Theorem 3.3. Since M(A)β is a strong Mackey space if and only if
each weak* compact subset of M(A)f is /3-equicontinuous, it follows
from Theorem 2.6 that M(A)β is a strong Mackey space.

REMARK. In [6, p. 481] Conway showed that if S is the ordinals
less than the first uncountable ordinal and A — C0(S), then M(A)β is
not even a Mackey space. Therefore it follows that C0(S) does not
have a well behaved approximate identity.

The next result extends [5, Theorem 5.1, p. 161].

COROLLARY 3.5. // A has a well behaved approximate identity,
then (MA)* is weakly sequentially complete.

Proof. If {fn} is a weak* Cauchy sequence in M(A)*, then there
exists a unique linear functional / in M(A)* with fn—>f weak*. It
follows that fn - / -»0 weak*. Thus, by Theorem 3.3, (fn - f)° -• 0
weak*. But by virtue of Proposition 2.5 (fn - f)° =f«-f°=fn- f\
This implies that fn —> f° weak*. Hence f = f° and the proof is com-
plete.

The next result generalizes and improves results due to Bade [3,
Theorem 1.1, p. 149] and Akemann [2, Theorem 2.3, p. 527] (see our
Corollaries 3.9 and 3.8).

THEOREM 3.6. Suppose A is a C*-algebra with a well behaved
approximate identity {ex\XeA}. If X is a Banach space and T: X—*
M(A) is a bounded linear map with T(X) + A = M(A), then there
exists a λe A such that (1 - eλ)M(A)(l - eλ) = (1 - eλ)T(X)(l - eλ).

Proof. For each λ e A let Ex denote the uniform closure of the
linear space {exa + aeλ — exaex\ae M(A)} and let Tx: X—> M(A)/EX be the
bounded linear map defined by Tλ(x) = T(x) + Eλ. We will now show that
there exists a λ in A so that Tλ maps X onto M(A)/EX. Suppose no
such λ exists. Let \eΛ. By virtue of [10, 487-8] and the fact
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that (M(A)/Eχ)* is isometrically isomorphic to Ei, we can choose fx

in Eλ\ so that \\f,\\ = 1 and || T*(fd || < 1, where T* denotes the adjoint
of T. Having defined λlf λ2, , λw and ft, /2, •••,/„ we can choose, by
virtue of [13, Corollary 2.2, p. 635], λw+1 > λw so that

(3.2) K+/^Vκ-/*il<-

Now as before choose fn+1 in E£n4ml so that

(3.3) ll/ +ill = l and || Γ*(/.+ 1) | |< -±— .
n + 1

We will now show that the sequence {fn} converges weak* to 0.
Let ae M(A) and let ε > 0. By our hypothesis there exists a n m e l
and a c e i such that a= T(x) +c. Now choose λ e A so that ||c—eλc || <
e/3. Next choose a positive integer N such that for each integer
n^Nwe have (e^+1 - eλjeλ = 0, ||α?||/τ&<ε/3, and \\c\\/n<ε/3. It fol-
lows from (3.2), (3.3), and the fact fne E^n that for each integer n^N

^ \UT(x))\ + \fl{eλc)\ + \fl{c - eλc)\

^ | |Γ*/J | INII + Ik - β i c | | + 1(1 - e j / i ( l - eλn)eλc)\

Hence Λ—*0 weak*.
Since /»—>0 weak*, we have by Theorem 3.3 that {/£} is tight

and converges weak* to zero. Moreover, we will show that ||/2||—*0.
Let ε > 0. Choose XeΛ so that | |(1 - eλ)fϊ(l - eλ)\\ < ε/2 for each
positive integer n. Next choose a positive integer N so that for each
integer n ^ N, eλ(eλn+ι - exj = 0 and Z/n < ε/2. Since fneEϊn, it is
straightforward to verify that/£ = (1 — eλι)fl(l — e ; j . It follows that
for n^ N

Replacing/° in t h e second t e r m by eλn+1f
o

neλn+1-gny gn = -f°n + eλn+1f°neλn+1,

we get

| | / : II < ε / 2 + \\eλeλn+1f°nez%
n+1fnez%+1

< ε/2 + 0 + ε/2

< ε
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for n^N. Hence ||/°|| — 0 .
Since the map (x, c) —• T(x) + c is a bounded linear map from x@A

onto Λf(A) by hypothesis, the open mapping theorem gives a constant
k such that if aeM(A) and | | α | | <£ 1, then there exists a n ί u e l and
ce^4 with ||α?|| + | | c | | ^ A and T(x) + c = a. Then we have

11/51111*11

l).

This implies that | | / J | ^ fc(l/n + | |/°| |). It follows that | | / J | - * 0 ,
which contradicts the fact that | | / J | = 1. Hence there exists a λ0 in
A so that Tλo maps X onto M(A)/Eλo.

Finally choose λ > λ0. Let aeM(A). Since TχQ maps X onto
M(A)/Eχ0, there exists an x e X and 6 e EλQ such that Γ(a?) — a + 5.
Due to the fact that (1 - eλ)b(l - eλ) = 0, we have (1 - eλ)T(x)(l - eλ) =
(1 - β,)α(l - β,) Hence (1 - eλ)T{X){l - e,) = (1 - eλ)M{A){l - eλ) and
our proof is complete. The idea of this proof comes from [2, Theorem
2.3, p. 527].

The next result is a generalization of Phillips theorem that cQ is
not complemented in l°°. It also shows ( i ) (using Conway's result
that C0(S) is complemented in C(S) implies S is pseudo-compact) that
A = C0(S) is never complemented in C(S) when S is paracompact and
noncompact, (ii) the compacts are uncomplemented in B(H) unless
H is finite dimensional.

COROLLARY 3.7. Let A be a C*-algebra with well behaved approxi-
mate identity. If A is without an identity, then A is not comple-
mented in M{A).

Proof. Suppose A is complemented in M(A); that is, suppose there
exists, a closed subspace X of M(A) such that I φ i = M(A). Then
by Theorem 3.6 there exists a Xe Λ such that (1 — eλ)X{l — eλ) —
(1 — eλ)M(A)(l — eλ). Since eλ is not an identity for A, there exists an
ae A such that (1 — eλ)a(l — eλ) Φ 0. It follows that there exists an
x in X such that (1 — eλ)x(l — ex) = (1 — ex)a(l — eλ), or equivalently,
x = (1 — eλ)a(l — eλ) + eλxeλ — eλx — xeλ. But this implies t h a t x = 0,

since xe An X. This contradicts the fact that (1 — β^)α(l — eλ) Φ 0.
Hence A is not complemented in M(A) and the proof is complete.

COROLLARY 3.8. Let B be a W*-algebra and let A be a closed
two-sided ideal of B with a well behaved approximate identity {eλ |λ e A).
If X is a Banach space and T: X—• B is a bounded linear map such
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that T(X) + A = B, then there exists a λ in A such that

(1 - eλ)T(X)(l - ex) = (1 - ex)B(l - e;) .

Proof. Let A0 = {x e B \ xA = 0}. Since A0 is a two-sided ideal of
2? that is closed in the weak operator topology, A0 has an identity q
that commutes with each element of B. Let XQ = {xe X\qT(x) = 0}.
Then define the bounded linear map To: Xo —> B/A° by the formula
T0(x) — T(x) + A° for each x in Xo. We now wish to show that
Γ0(X0) + A/A0 = B/A°. Let α e ΰ . It is clear that a + A0 = α - g α + A0.
By hypothesis, there exists an xe X and a ee A such that Γ(α?) + c =
(1 — q)a. This means qT(x) = g(l — g)α — gc = 0, so xe Xo. Hence
T0(XQ) + A/A0 = B/A°. By Corollary 2,3 M(A) = JB/A° Therefore, by
Theorem 3.6, there exists λ in A such that

(3.4) (1 - ex)B(l - eλ)/A° = (1 - e,)Γ(X0)(l

We will now show that (1 - eλ)B(l - ex) = (1 -
Let aeB. Then by virtue of (3.4) there exists an xe Xo and ce A°
such that (1 — ex)a(l — ex) = (1 — ex)T(x)(l — β̂ ) + c. This implies
(1 - ex)(l - ff)α(l - ex) = (1 - β^Γ(α?)(l - β*). Hence

(3.5) (1 - ex)(l - ί)JB(l - ex) = (1 -

Now let 6e J5. By hypothesis there exists a, ye X such that qT(y)
qb. Set α = 6 — Γ^/). By (3.5) there exists an xe Xo such that

(1 - ex)T(x)(l - β;) = (1 - ex)(l - ?)α(l - β,) .

It follows that

(1 - ex)b(l - ex) = (1 -

- ex)

- q)b - (1 -

+ (1 -
(l - β;) + (1 - eλ)T{y){l - eλ)

Hence (1 — ex)B(l — ex) = (1 — ex)T(X)(l — ex) and our proof is com-
plete.

Let B be a C*-algebra, let Ω be a compact Hausdorff space, and let
C(Ω, B) denote the space of all I?-valued continuous functions on Ω.
Let Q be a closed subset of Ω. A linear subspace X of C(Ω, B) is
said to interpolate C(Q, B) if X | Q = C(Q, 5) . More briefly, we call Q
an interpolation set for X. In [3] Bade investigated a class of theorems
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which state for appropriate B, Ω, Q, and X that if X interpolates
C(Q, B), then X interpolates C(V, B) for some closed neighborhood V
of Q. In paticular, Bade showed (see [3, Theorem 1.1, Theorem 2.1,
pp. 149, 157]) that this happens whenever the following hold: B is
the complex numbers; Ω — β(S), where S is a locally compact, α -com-
pact or discrete, Hausdorff space; Q = βS — S; X is a closed linear sub-
space of C(Ω, B). We will now give a natural specialization of Theorem
3.6 that extends Bade's results to a noncommutative setting.

COROLLARY 3.9. Let B be a finite dimensional C*-algebra and let
S be a locally compact paracompact Hausdorff space. Let X be a closed
linear subspace of C(β(S), B) such that X\β{S) - S= C(β(S) - S, B).
Then there exists a closed neighborhood V of β(S) — S in β(S) such
that X\V= C(V,B).

Proof. It is straightforward to show that C0(S, B) has a well
behaved approximate identity {eλ\XeΛ} such that each ex has compact
support. Since the double centralizer algebra of C0(S, B) is C(β(S), B),
the conclusion follows from Theorem 3.6.
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