A GENERAL PHILLIPS THEOREM FOR *C**-ALGEBRAS AND SOME APPLICATIONS

DONALD CURTIS TAYLOR

In this paper Phillips's theorem is extended to a C^* -algebra setting and, by virtue of this extension, several results on interpolation are generalized and improved.

1. Introduction. Let N be the set of positive integers with the discrete topology and let m(N) denote the bounded complex functions on N. We may identify m(N) with $C(\beta N)$, where βN denotes the Stone-Cech compactification of N. A well known and useful result due to Phillips is the following.

THEOREM. Let $\{f_n\}$ be a sequence in the dual of $C(\beta N)$ that converges weak* to zero. Then

$$\lim_{m\to\infty}\sum_{p=m}^{\infty}|f_n(\delta_p)|=0$$

uniformly in n, where δ_p is the characteristic function of the set $\{p\}$.

In §3 we extend this result to a C^* -algebra setting and we give several applications of this result. For example, we extend and improve several results on interpolation due to Bade [3] and Akemann [2]. A commutative version of our result was proved by Conway [7].

2. Preliminaries. Let A be a C*-algebra. By a double centralizer on A, we mean a pair (R, S) of functions from A to A such that aR(b) = S(a)b for a, b in A, and we denote the set of all double centralizers on A by M(A). If $(R, S) \in M(A)$, then R and S are continuous linear operators on A and ||R|| = ||S||. So M(A) under the usual operations of addition, multiplication, and involution is a C*-algebra, where ||(R, S)|| = ||R||. If we define the map $\mu_0: A \to M(A)$ by the formula $\mu_0(a) = (L_a, R_a)$, where $L_a(b) = ab$ and $R_a(b) = ba$ for all $b \in A$, then μ_0 is an isometric *-isomorphism from A into M(A) and $\mu_0(A)$ is a closed two-sided ideal of M(A). Hence throughout this paper we will view A as a closed two-sided ideal of M(A). For a more detailed account of the theory of double centralizers on a C*-algebra, we refer the reader to [4] and [13].

Let *B* be a *C*^{*}-algebra and let *A* be a closed two-sided ideal of *B*. We define the strict topology β_A for *B* to be that locally convex topology generated by the seminorms $(\lambda_a)_{a \in A}$ and $(\rho_a)_{a \in A}$, where $\lambda_a(x) = ||ax||$ and $\rho_a(x) = ||xa||$, and we let B_{β_A} denote B under the strict topology generated by A. When A and B are understood (specifically, when B = M(A)) we let β denote the strict topology for B generated by A. The topological algebra $M(A)_{\beta}$ is complete and the unit ball of A is β dense in the unit ball of M(A).

We will now state a result due to Busby that is very useful in computing the double centralizer algebra of a C^* -algebra.

THEOREM 2.1. Let B be a C*-algebra, let A be a closed two-sided ideal of B, and let $A^0 = \{x \in B | xA = 0\}$. Let the map $\mu: B \to M(A)$ be defined by $\mu(x) = (L_x, R_x)$, where $L_x(a) = xa$ and $R_x(a) = ax$ for each a in A. Then the following statements are true:

(1) The map μ is a *-homomorphism of B into M(A); consequently, μ is an isometry if and only if $A^{\circ} = 0$.

(2) If $A^0 = 0$ and every β_A -Cauchy net in the unit ball of A converges in the β_A topology to some element of the unit ball of B, then μ is an isometric *-isomorphism of B onto M(A).

Proof. For a proof, see [4, Proposition 3.7, p. 83].

COROLLARY 2.2. If B is a W^{*}-algebra and $A^0 = 0$, then μ is an isometric *-isomorphism of B onto M(A).

Proof. Let $\{a_{\alpha}\}$ be a β_{A} -Cauchy net in the unit ball of A. Since the unit ball of B is compact in the weak operator topology, we can assume that $\{a_{\alpha}\}$ converges in the weak operator topology to some element x in the unit ball of B. Since $\{a_{\alpha}\}$ is β_{A} -Cauchy, it is straightforward by [4, Th. 3.9(i), p. 84] to show that $\{a_{\alpha}\}$ converges to x in the β_{A} -topology. The conclusion now follows from Theorem 2.1.

If B is a W*-algebra, then it is straightforward to show that A° is a two-sided ideal of B that is closed in the weak operator topology. Hence A° has an identity q that commutes with each element of B. If follows that the quotient algebra B/A° is isometrically *-isomorphic to the W*-algebra (1-q)B(1-q). Now define the map $\mu': B/A^{\circ} \rightarrow M(A)$ by the formula $\mu'(x + A^{\circ}) = \mu(x)$ for each x in B. Since ker $\mu = A^{\circ}$, we see that μ' is well defined. Due to the fact that $\{x \in B/A^{\circ} | x(A/A^{\circ}) = 0\} = \{0\}$, we get

COROLLARY 2.3. If B is a W*-algebra, then M(A) is a W*-algebra and the map μ' is an isometric *-isomorphism of B/A° onto M(A); that is, $M(A) \cong M(A/A^{\circ})$.

EXAMPLE. Let H be a Hilbert space, let B(H) be the bounded linear operators on H, and let $B_0(H)$ be the compact linear operators on *H*. It is well known that $B_0(H)$ is a closed two-sided ideal of B(H). Since B(H) is a W*-algebra and $\{x \in B(H) | xB_0(H) = 0\} = \{0\}$, we have that B(H) is the double centralizer algebra of $B_0(H)$.

EXAMPLE. Let B be a finite dimensional C^* -algebra, let S be a locally compact paracompact Hausdorff space, and let $\beta(S)$ denote the Stone-Cech compactification of S. Let $C(\beta(S), B)$ denote the space of all B-valued continuous functions on $\beta(S)$ and let $C_0(S, B) = \{x \in C(\beta(S), B) | x(t) = 0, t \in \beta(S) - S\}$. It is clear that under the usual pointwise operations and sup-norm that $C(\beta(S), B)$ is a C^* -algebra and $C_0(S, B)$ is a closed two-sided ideal of $C(\beta(S), B)$. Now it is straightforward to show that a β -Cauchy net in the unit ball of $C_0(S, B)$ converges to a B-valued continuous function on S that is uniformly bounded. Since a bounded B-valued continuous function on $\beta(S)$, Theorem 2.1 gives us that $C(\beta(S), B)$ is the double centralizer algebra of $C_0(S, B)$.

PROPOSITION 2.4. Let B be a C*-algebra and A a closed two-sided ideal of B. Then $B^*_{\beta_A}$, the dual of B_{β_A} , can be identified under the natural mapping as a closed subspace of B^* .

Proof. The proof will follow from a variation of the argument given for [13, Corollary 2.3, p. 635].

PROPOSITION 2.5. Let B be a C*-algebra and let A be a closed two-sided ideal of B. If f is a bounded linear functional on B, then there exists a unique decomposition $f = f^0 + f^1$ such that $f^0 \in B^*_{\beta_A}$ and $f^1 \in A^{\perp}$. Consequently, $B^* = B^*_{\beta_A} \bigoplus A^{\perp}$.

Proof. For a proof, see [14, Corollary 2.7].

REMARK. For each $f \in B^*$ we will always let f^0 and f^1 denote those unique linear functionals in $B^*_{\beta_A}$ and A^{\perp} respectively that satisfy $f = f^0 + f^1$.

DEFINITION. Let A be a C*-algebra. A subset K of $M(A)_{\beta}^{*}$ is said to be *tight* if K is uniformly bounded and if for some, or for each, approximate identity $\{e_{i}\}$ for A we have

$$||(1-e_{\lambda})f(1-e_{\lambda})|| \to 0$$

uniformly on K. Here $(1 - e_{\lambda})f(1 - e_{\lambda})(x) = f((1 - e_{\lambda})x(1 - e_{\lambda}))$ for each $x \in M(A)$.

THEOREM 2.6. Let A be a C^{*}-algebra. Then a subset K of $M(A)_{\beta}^*$ is β -equicontinuous if and only if K is tight.

Proof. For a proof, see [13, Theorem 2.6, p. 636].

3. A general Phillips theorem for C^* -algebras. In this section we will study sequential convergence in the dual of a double centralizer algebra. In particular, we prove a general Phillips theorem for C^* algebras and we give some applications of it.

DEFINITION. An approximate identity $\{e_{\lambda} | \lambda \in A\}$ for the C*-algebra A is said to be *well behaved* if and only if the following properties are satisfied.

(1) $e_{\lambda} \geq 0$ for each $\lambda \in \Lambda$.

(2) If $\lambda_2 > \lambda_1$, then $e_{\lambda_2}e_{\lambda_1} = e_{\lambda_1}$.

(3) If $\lambda_1, \lambda_2, \cdots$ is a strictly increasing sequence in Λ and $\lambda \in \Lambda$, then there exists a positive integer N such that for all n, m > N we have $e_{\lambda}(e_{\lambda_m} - e_{\lambda_m}) = 0$.

REMARK. If S is a locally compact paracompact Hausdorff space, then S can be expressed as the union of a collection $\{S_{\alpha} | \alpha \in I\}$ of pairwise disjoint open and closed σ -compact subsets of S. Since each C^* -algebra $C_0(S_{\alpha})$ has a countable approximate identity and $C_0(S) \cong$ $(\sum C_0(S_a))_0$, it follows by Proposition 3.1 and Proposition 3.2 that $C_0(S)$ has a well behaved approximate identity. Now let H be a Hilbert space and $\{p_{\alpha}\}_{\alpha \in I}$ be a maximal family of orthogonal projections on H. It is straightforward to show that $\{p_{\alpha}\}_{\in I_{\alpha}}$ is a series approximate identity for $B_0(H)$, the space of all compact operators on H, consequently, by Proposition 3.1, $B_0(H)$ has a well behaved approximate identity. Finally, suppose A is a C^{*}-algebra such that M(A) is isometrically isomorphic to A^{**} , the bidual of A. By some recent results of E. McCharen or by [15, Theorem 5.1, p. 533] A is dual, consequently, $A \cong (\sum B_0(H_\alpha))_0$, where $\{H_\alpha\}$ is a family of Hilbert spaces (see [11]). Hence by Proposition 3.2 A has a well behaved approximate identity.

PROPOSITION 3.1. Let A be a C^* -algebra and suppose one of the following conditions holds:

(1) A has a countable approximate identity;

(2) A has a series approximate identity (see [2, p. 527]).

Then A has a well behaved approximate identity.

Proof. It is straightforward to verify that A has a well behaved approximate identity when (2) holds. Therefore assume A has a

countable approximate identity $\{c_n\}$. We can also assume $c_n \ge 0$, since $c_n^*c_n$ is an approximate identity for A. Let $b = \sum_{n=1}^{\infty} c_n/2^n$. Then b is a strictly positive element of A in the sense of [1, p. 749]. Hence A contains a countable increasing abelian approximate identity $\{d_n\}$ [1, Theorem 1, p. 749]. Let A_0 denote the maximal commutative subalgebra of A that contains $\{d_n\}$. Then we can view A_0 as $C_0(\mathcal{M})$, the complex-valued continuous functions that vanish at ∞ on the maximal ideal space \mathcal{M} of A_0 . Since A_0 has a countable approximate identity $\{d_n\}$, it follows by [5, Theorem 4.1, p. 160] that \mathcal{M} is σ compact. It is straightforward to show that A_0 has a well behaved countable approximate identity $\{e_n\}$. We now wish to show that $\{e_n\}$ is an approximate identity for A. Let $a \in A$ and $\varepsilon > 0$. Choose a positive integer m so that $||a - d_m a|| < \varepsilon |2$ and then choose a positive integer N so that $||(d_m - e_n d_m)|| < \varepsilon/2 ||a||$ for integers $n \ge N$. It follows that $||a - e_n a|| \leq ||(1 - e_n)(a - d_m a)|| + ||(d_m - e_n d_m)a|| < \varepsilon$ for $n \ge N$. Hence $\{e_n\}$ is a well behaved approximate identity for A and the proof is complete.

PROPOSITION 3.2. Let $\{A_{\delta} | \delta \in \Delta\}$ be a family of C*-algebras. If each A_{δ} has a well behaved approximate identity, then the sub-direct sum $(\sum_{\delta \in d} A_{\delta})_0$ has a well behaved approximate identity (see [12, p. 106] for definition of $(\sum_{\delta \in d} A_{\delta})_0$).

Proof. For each $\delta \in \Delta$ let $\{e_{\delta \lambda} \mid \lambda \in \Lambda_{\delta}\}$ be a well behaved approximate identity for A_{δ} , and let \mathscr{F} denote the family of all finite subsets of Δ . Let Σ denote the set of all functions σ whose domain $D_{\sigma} \in \mathscr{F}$ and has the property that $\sigma(\delta) \in \Lambda_{\delta}$ for each $\delta \in D_{\sigma}$. We define the binary relation \geq in Σ by the following formula: $\sigma_{2} \geq \sigma_{1}$ if and only if $D_{\sigma_{2}} \geq D_{\sigma_{1}}$ and $\sigma_{2}(\delta) \geq \delta_{1}(\delta)$ for each $\delta \in D_{\sigma_{1}}$. It is straightforward to verify that Σ under \geq is a directed set. Now for each $\sigma \in \Sigma$ define d_{σ} in $(\sum_{\delta \in A} A_{\delta})_{0}$ by the following formula $d_{\sigma}(\delta) = e_{\delta,\sigma(\delta)}$ for each $\delta \in D_{\sigma}$ and $d_{\sigma}(\delta) = 0$ otherwise. It is straightward to verify that $\{d_{\sigma} \mid \sigma \in \Sigma\}$ is a well behaved approximate identity for $(\sum_{\delta \in A} A_{\delta})_{0}$.

The next result extends Phillips' theorem to a C^* -algebra setting. A commutative version of this result was proved by Conway [7, Theorem 2.2, p. 55].

THEOREM 3.3. Suppose A is a C*-algebra with a well behaved approximate identity. If $\{f_n\}$ is a sequence in $M(A)^*$ that converges weak* to zero, then $\{f_n^0\}$ is tight and converges weak* to zero.

Proof. It is clear that $\{f_n\}$ is uniformly bounded, so without loss

of generality we can assume $\{f_n\}$ is uniformly bounded by 1. Since $||f_n|| \ge ||f_n|A|| = ||f_n^{\circ}|A|| = ||f_n^{\circ}||$, we have that $\{f_n^{\circ}\}$ is also uniformly bounded by 1. Let $\{e_{\lambda}|\lambda \in \Lambda\}$ be a well behaved approximate identity for A and suppose $\{f_n^{\circ}\}$ is not tight. Then there exists an $\varepsilon > 0$ such that $\{\lambda \in \Lambda: \sup_n ||(1 - e_{\lambda})f_n^{\circ}(1 - e_{\lambda})|| \ge 4\varepsilon\}$ is cofinal in Λ and since a cofinal subnet of a well behaved approximate identity is also one, we may assume

(3.1)
$$\sup ||(1-e_{\lambda})f_{n}^{\circ}(1-e_{\lambda})|| \geq 4\varepsilon$$

for all $\lambda \in \Lambda$. We may then define inductively sequences $n_1 < n_2 < \cdots$ and $\lambda_1 < \lambda_2 < \cdots$ such that $||(1-e_{\lambda_k})f_{n_k}^{\circ}(1-e_{\lambda_k})|| \ge 4\varepsilon$ and $||e_{\lambda_{k+1}}f_{n_k}^{\circ}e_{\lambda_{k+1}}-f_{n_k}^{\circ}|| < \varepsilon$ by using the following: (3.1); $\lim_{\lambda} ||(1-e_{\lambda})g(1-e_{\lambda})|| = 0$, $g \in M(A)_{\beta}^{*}$; $\lim_{\lambda} ||e_{\lambda}ge_{\lambda} - g|| = 0$, $g \in M(A)_{\beta}^{*}$. It then follows that

$$\| (1 - e_{\lambda_k}) e_{\lambda_{k+1}} f^0_{n_k} e_{\lambda_{k+1}} (1 - e_{\lambda_k}) \| = \| (e_{\lambda_{k+1}} - e_{\lambda_k}) f_{n_k} (e_{\lambda_{k+1}} - e_{\lambda_k}) \| \ge 3\varepsilon$$
.

We then, for each k, choose $b_k = b_k^*$ in ball A such that $|f_{n_k}((e_{\lambda_{k+1}} - e_{\lambda_k})b_k(e_{\lambda_{k+1}} - e_{\lambda_k}))| \ge \varepsilon$. Define $a_k = (e_{\lambda_{2k+1}} - e_{\lambda_{2k}})b_{2k}(e_{\lambda_{2k+1}} - e_{\lambda_{2k}})$ and let $g_k = f_{n_{2k}}$. Then we have:

(i) $|g_k(a_k)| \ge \varepsilon$; (ii) $a_j a_k = 0$ for $j \ne k$; (iii) for each $\lambda \in \Lambda$, there exists a positive integer N such that $a_k e_{\lambda} = 0$ for $k \ge N$.

Now let $\alpha = \{\alpha_a\}_{k=1}^{\infty}$ be an element of l^{∞} . By virtue of (ii) and (iii) the sequence of partial sums $\{\sum_{k=1}^{n} \alpha_k \alpha_k\}$ is uniformly bounded by $||\alpha||_{\infty}$ and is β -Cauchy. Since $M(A)_{\beta}$ is complete [4, Proposition 3.6, p. 83], $\{\sum_{k=1}^{n} \alpha_k \alpha_k\}$ has a β -limit $\sum_{k=1}^{\infty} \alpha_k \alpha_k$ that is also bounded by $||\alpha||_{\infty}$. Next, define the bounded linear map $T: l^{\infty} \to M(A)$ by the formula

$$T(\alpha) = \sum_{k=1}^{\infty} \alpha_k \alpha_k$$

for each $\alpha \in l^{\infty}$. Let T^* denote the adjoint of T. Since T is continuous, T^* is a weak* continuous mapping of $M(A)^*$ into $(l^{\infty})^*$. From our hypothesis on $\{f_n\}$ it follows that $\{T^*(g_k)\}$ converges to 0 weak*. Hence, by Phillips theorem [8, p. 32],

$$\lim_{m\to\infty}\sum_{q=m}^{\infty} |T^*g_k(\delta_q)| = \lim_{m\to\infty}\sum_{q=m}^{\infty} |g_k(a_q)| \to 0$$

uniformly in k, where δ_k is the Kronecker delta function. Therefore there exists a positive integer m such that $|g_m(a_m)| \leq \sum_{q=m}^{\infty} |g_m(a_q)| < \varepsilon$. This contradicts (i), so $\{f_n^0\}$ is tight.

Note that $\{f_n^0\}$ is now equicontinuous on $M(A)_\beta$ and converges pointwise on a dense subset and hence (by a well known result) converges weak^{*}. The proof is now complete.

By virtue of Proposition 3.1 and the previous remark, the following result is an improvement of [13, Theorem II, p. 634].

COROLLARY 3.4. Suppose A has a well behaved approximate identity. If K is a relatively weak* countably compact subset of $M(A)_{\beta}^*$, then K is tight. Consequently, $M(A)_{\beta}$ is a strong Mackey space (hence, in particular, is a Mackey space).

Proof. The proof that K is tight is similar to the one given for Theorem 3.3. Since $M(A)_{\beta}$ is a strong Mackey space if and only if each weak* compact subset of $M(A)_{\beta}^*$ is β -equicontinuous, it follows from Theorem 2.6 that $M(A)_{\beta}$ is a strong Mackey space.

REMARK. In [6, p. 481] Conway showed that if S is the ordinals less than the first uncountable ordinal and $A = C_0(S)$, then $M(A)_\beta$ is not even a Mackey space. Therefore it follows that $C_0(S)$ does not have a well behaved approximate identity.

The next result extends [5, Theorem 5.1, p. 161].

COROLLARY 3.5. If A has a well behaved approximate identity, then $(MA)_{\beta}^*$ is weakly sequentially complete.

Proof. If $\{f_n\}$ is a weak* Cauchy sequence in $M(A)_{f}^*$, then there exists a unique linear functional f in $M(A)^*$ with $f_n \to f$ weak*. It follows that $f_n - f \to 0$ weak*. Thus, by Theorem 3.3, $(f_n - f)^0 \to 0$ weak*. But by virtue of Proposition 2.5 $(f_n - f)^0 = f_n^0 - f^0 = f_n - f^0$. This implies that $f_n \to f^0$ weak*. Hence $f = f^0$ and the proof is complete.

The next result generalizes and improves results due to Bade [3, Theorem 1.1, p. 149] and Akemann [2, Theorem 2.3, p. 527] (see our Corollaries 3.9 and 3.8).

THEOREM 3.6. Suppose A is a C*-algebra with a well behaved approximate identity $\{e_{\lambda} | \lambda \in \Lambda\}$. If X is a Banach space and $T: X \rightarrow M(A)$ is a bounded linear map with T(X) + A = M(A), then there exists a $\lambda \in \Lambda$ such that $(1 - e_{\lambda})M(A)(1 - e_{\lambda}) = (1 - e_{\lambda})T(X)(1 - e_{\lambda})$.

Proof. For each $\lambda \in \Lambda$ let E_{λ} denote the uniform closure of the linear space $\{e_{\lambda}a + ae_{\lambda} - e_{\lambda}ae_{\lambda} | a \in M(A)\}$ and let $T_{\lambda} \colon X \to M(A)/E_{\lambda}$ be the bounded linear map defined by $T_{\lambda}(x) = T(x) + E_{\lambda}$. We will now show that there exists a λ in Λ so that T_{λ} maps X onto $M(A)/E_{\lambda}$. Suppose no such λ exists. Let $\lambda_{1} \in \Lambda$. By virtue of [10, 487-8] and the fact

that $(M(A)/E_{\lambda})^*$ is isometrically isomorphic to E_{λ}^{\perp} , we can choose f_1 in $E_{\lambda_1}^{\perp}$ so that $||f_1|| = 1$ and $||T^*(f_1)|| < 1$, where T^* denotes the adjoint of T. Having defined $\lambda_1, \lambda_2, \dots, \lambda_n$ and f_1, f_2, \dots, f_n we can choose, by virtue of [13, Corollary 2.2, p. 635], $\lambda_{n+1} > \lambda_n$ so that

$$(3.2) ||e_{\lambda_{n+1}}f_n^0e_{\lambda_{n+1}}-f_n^0|| < \frac{1}{n}.$$

Now as before choose f_{n+1} in $E_{\lambda_{n+1}}^{\perp}$ so that

(3.3)
$$||f_{n+1}|| = 1 \text{ and } ||T^*(f_{n+1})|| < \frac{1}{n+1}.$$

We will now show that the sequence $\{f_n\}$ converges weak* to 0. Let $a \in M(A)$ and let $\varepsilon > 0$. By our hypothesis there exists an $x \in X$ and a $c \in A$ such that a = T(x) + c. Now choose $\lambda \in A$ so that $||c - e_i c|| < \varepsilon/3$. Next choose a positive integer N such that for each integer $n \ge N$ we have $(e_{\lambda_{n+1}} - e_{\lambda_n})e_{\lambda} = 0$, $||x||/n < \varepsilon/3$, and $||c||/n < \varepsilon/3$. It follows from (3.2), (3.3), and the fact $f_n \in E_{\lambda_n}^{\perp}$ that for each integer $n \ge N$

$$egin{aligned} |f_n(a)| &\leq |f_n(T(x))| + |f_n^0(e_\lambda c)| + |f_n^0(c - e_\lambda c)| \ &\leq ||T^*f_n|| \, ||x|| + ||c - e_\lambda c|| + |(1 - e_{\lambda_n})f_n^0(1 - e_{\lambda_n})e_\lambda c)| \ &\leq arepsilon / 3 + arepsilon / 3 + ||f_n^0 - e_{\lambda_{n+1}}f_n^0e_{\lambda_{n+1}}|| \, ||c|| \ &+ |(e_{\lambda_{n+1}} - e_{\lambda_n})f_n^0(e_{\lambda_{n+1}} - e_{\lambda_n})(e_\lambda c)| \ &< arepsilon \, . \end{aligned}$$

Hence $f_n \rightarrow 0$ weak*.

Since $f_n \to 0$ weak^{*}, we have by Theorem 3.3 that $\{f_n^o\}$ is tight and converges weak^{*} to zero. Moreover, we will show that $||f_n^o|| \to 0$. Let $\varepsilon > 0$. Choose $\lambda \in \Lambda$ so that $||(1 - e_{\lambda})f_n^o(1 - e_{\lambda})|| < \varepsilon/2$ for each positive integer *n*. Next choose a positive integer *N* so that for each integer $n \ge N$, $e_{\lambda}(e_{\lambda_{n+1}} - e_{\lambda_n}) = 0$ and $3/n < \varepsilon/2$. Since $f_n \in E_{\lambda_n}^{\perp}$, it is straightforward to verify that $f_n^o = (1 - e_{\lambda_n})f_n^o(1 - e_{\lambda_n})$. It follows that for $n \ge N$

$$\||f_n^{\scriptscriptstyle 0}\| \leqq \|(1-e_{\scriptscriptstyle \lambda})f_n^{\scriptscriptstyle 0}(1-e_{\scriptscriptstyle \lambda})\| + \|e_{\scriptscriptstyle \lambda}f_n^{\scriptscriptstyle 0}+f_n^{\scriptscriptstyle 0}e_{\scriptscriptstyle \lambda}-e_{\scriptscriptstyle \lambda}f_n^{\scriptscriptstyle 0}e_{\scriptscriptstyle \lambda}\| \; .$$

Replacing f_n^0 in the second term by $e_{\lambda_{n+1}}f_n^0e_{\lambda_{n+1}}-g_n$, $g_n = -f_n^0 + e_{\lambda_{n+1}}f_n^0e_{\lambda_{n+1}}$, we get

$$\begin{split} ||f_{n}^{0}|| &< \varepsilon/2 + ||e_{\lambda}e_{\lambda_{n+1}}f_{n}^{0}e_{\lambda_{n+1}} + e_{\lambda_{n+1}}f_{n}^{0}e_{\lambda_{n+1}}e_{\lambda} - e_{\lambda}e_{\lambda_{n+1}}f_{n}^{0}e_{\lambda_{n+1}}e_{\lambda}|| \\ &+ 3||f_{n}^{0} - e_{\lambda_{n+1}}f_{n}^{0}e_{\lambda_{n+1}}|| \\ &< \varepsilon/2 + 0 + \varepsilon/2 \\ &\leq \varepsilon \end{split}$$

for $n \ge N$. Hence $||f_n^0|| \to 0$.

Since the map $(x, c) \to T(x) + c$ is a bounded linear map from $x \bigoplus A$ onto M(A) by hypothesis, the open mapping theorem gives a constant k such that if $a \in M(A)$ and $||a|| \leq 1$, then there exists an $x \in X$ and $c \in A$ with $||x|| + ||c|| \leq k$ and T(x) + c = a. Then we have

$$egin{aligned} |f_n(a)| &\leq |f_n(T(x))| + |f_n(c)| \ &\leq ||\, T^*f_n\,||\, ||\, x\,|| + ||f_n^{\,_0}\,||\, ||\, c\,|| \ &\leq k \Big(rac{1}{n} + ||f_n^{\,_0}\,|| \Big)\,. \end{aligned}$$

This implies that $||f_n|| \leq k(1/n + ||f_n^0||)$. It follows that $||f_n|| \to 0$, which contradicts the fact that $||f_n|| = 1$. Hence there exists a λ_0 in Λ so that T_{λ_0} maps X onto $M(A)/E_{\lambda_0}$.

Finally choose $\lambda > \lambda_0$. Let $a \in M(A)$. Since T_{λ_0} maps X onto $M(A)/E_{\lambda_0}$, there exists an $x \in X$ and $b \in E_{\lambda_0}$ such that T(x) = a + b. Due to the fact that $(1 - e_{\lambda})b(1 - e_{\lambda}) = 0$, we have $(1 - e_{\lambda})T(x)(1 - e_{\lambda}) = (1 - e_{\lambda})a(1 - e_{\lambda})$. Hence $(1 - e_{\lambda})T(X)(1 - e_{\lambda}) = (1 - e_{\lambda})M(A)(1 - e_{\lambda})$ and our proof is complete. The idea of this proof comes from [2, Theorem 2.3, p. 527].

The next result is a generalization of Phillips theorem that c_0 is not complemented in l^{∞} . It also shows (i) (using Conway's result that $C_0(S)$ is complemented in C(S) implies S is pseudo-compact) that $A = C_0(S)$ is never complemented in C(S) when S is paracompact and noncompact, (ii) the compacts are uncomplemented in B(H) unless H is finite dimensional.

COROLLARY 3.7. Let A be a C^{*}-algebra with well behaved approximate identity. If A is without an identity, then A is not complemented in M(A).

Proof. Suppose A is complemented in M(A); that is, suppose there exists, a closed subspace X of M(A) such that $X \bigoplus A = M(A)$. Then by Theorem 3.6 there exists a $\lambda \in \Lambda$ such that $(1 - e_{\lambda})X(1 - e_{\lambda}) = (1 - e_{\lambda})M(A)(1 - e_{\lambda})$. Since e_{λ} is not an identity for A, there exists an $a \in A$ such that $(1 - e_{\lambda})a(1 - e_{\lambda}) \neq 0$. It follows that there exists an x in X such that $(1 - e_{\lambda})x(1 - e_{\lambda}) = (1 - e_{\lambda})a(1 - e_{\lambda}) = (1 - e_{\lambda})a(1 - e_{\lambda}) + e_{\lambda}xe_{\lambda} - e_{\lambda}x - xe_{\lambda}$. But this implies that x = 0, since $x \in A \cap X$. This contradicts the fact that $(1 - e_{\lambda})a(1 - e_{\lambda}) \neq 0$. Hence A is not complemented in M(A) and the proof is complete.

COROLLARY 3.8. Let B be a W*-algebra and let A be a closed two-sided ideal of B with a well behaved approximate identity $\{e_{\lambda} | \lambda \in A\}$. If X is a Banach space and T: $X \to B$ is a bounded linear map such that T(X) + A = B, then there exists a λ in Λ such that

$$(1 - e_{\lambda})T(X)(1 - e_{\lambda}) = (1 - e_{\lambda})B(1 - e_{\lambda})$$

Proof. Let $A^{\circ} = \{x \in B \mid xA = 0\}$. Since A° is a two-sided ideal of *B* that is closed in the weak operator topology, A° has an identity qthat commutes with each element of *B*. Let $X_0 = \{x \in X \mid qT(x) = 0\}$. Then define the bounded linear map $T_0: X_0 \to B/A^{\circ}$ by the formula $T_0(x) = T(x) + A^{\circ}$ for each x in X_0 . We now wish to show that $T_0(X_0) + A/A^{\circ} = B/A^{\circ}$. Let $a \in B$. It is clear that $a + A^{\circ} = a - qa + A^{\circ}$. By hypothesis, there exists an $x \in X$ and a $c \in A$ such that T(x) + c =(1 - q)a. This means qT(x) = q(1 - q)a - qc = 0, so $x \in X_0$. Hence $T_0(X_0) + A/A^{\circ} = B/A^{\circ}$. By Corollary 2.3 $M(A) = B/A^{\circ}$. Therefore, by Theorem 3.6, there exists λ in Λ such that

$$(3.4) (1-e_{\lambda})B(1-e_{\lambda})/A^{\circ} = (1-e_{\lambda})T(X_{\circ})(1-e_{\lambda})/A^{\circ}.$$

We will now show that $(1 - e_{\lambda})B(1 - e_{\lambda}) = (1 - e_{\lambda})T(X)(1 - e_{\lambda})$. Let $a \in B$. Then by virtue of (3.4) there exists an $x \in X_0$ and $c \in A^0$ such that $(1 - e_{\lambda})a(1 - e_{\lambda}) = (1 - e_{\lambda})T(x)(1 - e_{\lambda}) + c$. This implies $(1 - e_{\lambda})(1 - e_{\lambda}) = (1 - e_{\lambda})T(x)(1 - e_{\lambda})$. Hence

$$(3.5) (1-e_{\lambda})(1-q)B(1-e_{\lambda}) = (1-e_{\lambda})T(X_{0})(1-e_{\lambda}).$$

Now let $b \in B$. By hypothesis there exists a $y \in X$ such that qT(y) = qb. Set a = b - T(y). By (3.5) there exists an $x \in X_0$ such that

$$(1-e_{\lambda})T(x)(1-e_{\lambda}) = (1-e_{\lambda})(1-q)a(1-e_{\lambda})$$
.

It follows that

$$\begin{aligned} (1-e_{\lambda})b(1-e_{\lambda}) &= (1-e_{\lambda})((1-q)b+qb)(1-e_{\lambda}) \\ &= (1-e_{\lambda})((1-q)b+qT(y))(1-e_{\lambda}) \\ &= (1-e_{\lambda})((1-q)b-(1-q)T(y)+T(y))(1-e_{\lambda}) \\ &= (1-e_{\lambda})((1-q)(b-T(y)))(1-e_{\lambda}) \\ &+ (1-e_{\lambda})T(y)(1-e_{\lambda}) \\ &= (1-e_{\lambda})T(x)(1-e_{\lambda}) + (1-e_{\lambda})T(y)(1-e_{\lambda}) \\ &= (1-e_{\lambda})T(x+y)(1-e_{\lambda}) . \end{aligned}$$

Hence $(1 - e_{\lambda})B(1 - e_{\lambda}) = (1 - e_{\lambda})T(X)(1 - e_{\lambda})$ and our proof is complete.

Let B be a C*-algebra, let Ω be a compact Hausdorff space, and let $C(\Omega, B)$ denote the space of all B-valued continuous functions on Ω . Let Q be a closed subset of Ω . A linear subspace X of $C(\Omega, B)$ is said to interpolate C(Q, B) if X|Q = C(Q, B). More briefly, we call Q an interpolation set for X. In [3] Bade investigated a class of theorems which state for appropriate B, Ω , Q, and X that if X interpolates C(Q, B), then X interpolates C(V, B) for some closed neighborhood V of Q. In paticular, Bade showed (see [3, Theorem 1.1, Theorem 2.1, pp. 149, 157]) that this happens whenever the following hold: B is the complex numbers; $\Omega = \beta(S)$, where S is a locally compact, σ -compact or discrete, Hausdorff space; $Q = \beta S - S$; X is a closed linear subspace of $C(\Omega, B)$. We will now give a natural specialization of Theorem 3.6 that extends Bade's results to a noncommutative setting.

COROLLARY 3.9. Let B be a finite dimensional C*-algebra and let S be a locally compact paracompact Hausdorff space. Let X be a closed linear subspace of $C(\beta(S), B)$ such that $X | \beta(S) - S = C(\beta(S) - S, B)$. Then there exists a closed neighborhood V of $\beta(S) - S$ in $\beta(S)$ such that X | V = C(V, B).

Proof. It is straightforward to show that $C_0(S, B)$ has a well behaved approximate identity $\{e_{\lambda} | \lambda \in A\}$ such that each e_{λ} has compact support. Since the double centralizer algebra of $C_0(S, B)$ is $C(\beta(S), B)$, the conclusion follows from Theorem 3.6.

References

1. J. F. Aarnes and R. V. Kadison, Pure states and approximate identities, Proc. Amer. Math. Soc., 21 (1969), 749-752.

2. C. A. Akemann, Interpolation in W*-algebras, Duke Math. J., 35 (1968), 525-534.

3. W. G. Bade, *Extensions of interpolating sets*, *Functional Analysis*, Proceedings of a Conference held at the University of California, Irvine, edited by B. R. Gelbaum, Thompson Book Company, Washington, 1967.

4. R. C. Busby, Double centralizers and extensions of C*-algebras, Trans. Amer. Math. Soc., 132 (1968), 79-99.

5. H. S. Collins and J. R. Dorroh, *Remarks on certain function spaces*, Math. Annalen, **176** (1968), 157-168.

6. J. B. Conway, The strict topology and compactness in the space of measures, Trans. Amer. Math. Soc., **126** (1967), 474-486.

7. _____, A theorem on sequential convergence of measures and some applications, Pacific J. Math., **28** (1969), 53-60.

8. M. M. Day, Normed linear spaces, Springer-Verlag, Berlin, 1958.

9. J. Dixmier, Les algèbres d'opérateurs dans l'éspace Hilbertien, Gauthier-Villars, Paris, 1957.

10. N. Dunford and J. T. Schwartz, *Linear operators*, Part I, Interscience, New York, 1958.

11. T. Ogasawara and K. Yoshinaga, A characterization of dual E*-algebras, J. Sc. Hiroshima Univ., 18 (1954), 179-182.

12. C. E. Rickart, General theory of Banach algebras, Van Nostrand, Princeton, N. J., 1960.

13. D. C. Taylor, The strict topology for double centralizer algebras, Trans. Amer. Math. Soc., **150** (1970), 633-643.

14. _____, Interpolation in algebras of operator fields, J. Functional Analysis, (to appear).

15. B. Tomiuk and P. K. Wong, The Arens product and duality in B*-algebras, Proc. Amer. Math. Soc., 25 (1970), 529-535.

Received June 22, 1970. This research was supported in part by the National Science Foundation, under grant No. GP-15736.

UNIVERSITY OF MISSOURI AND LOUISIANA STATE UNIVERSITY

488