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THE OPEN MAPPING THEOREM FOR SPACES
WITH UNIQUE SEGMENTS

JAMES D. STEIN, JR.

If X and Y are spaces with unique segments, an affine
map from X into Y is a map which takes segments into seg-
ments. The purpose of this paper is to give conditions on
spaces X and Y such that we can prove the following versions
of the Open Mapping and Closed Graph Theorems: (1) a con-
tinuous affine map of X onto Y is open, and (2) an affine map
of X onto Y with closed graph is continuous.

Let X and Y be spaces with unique segments, with Φ(x, y, t)
(0 ^ t^ΐ) denoting the intrinsically parametrized segment from x to y.
A map T between two such spaces is said to be affine if T(Φ(x, y, t)) =
Φ(Tx, Ty, t), and a subset A is convex if x, y e A, 0 <£ t ^ l=>Φ(x, y, t) e

A. The purpose of this paper is to prove versions of the Open Mapping
and Closed Graph theorems for classes of spaces with unique segments.

Throughout this paper, all metric spaces will be spaces with unique
segments (unique curves of minimal, realizing the distance, length
between any two points). The open sphere with center x and radius
ε will be denoted by S(x, ε).

DEFINITION 1. (X, d) is said to be regular if it is complete, the
closure of convex sets is convex, open spheres are convex, and xn—»
x0 => Φ(z, xn, a) —> Φ(z, xQ, a) for z e X, a e [0, 1].

DEFINITION 2. A sphere S(xQ, e) is said to be thick if for any

y e S(xQ, e) and xe X, x Φ y, there is a 2G S(xOy s) and ae (0, 1] such

that y = Φ(z, x, a).

It is always possible to extend geodesies into thick spheres.

DEFINITION 3. A sphere S(x0, e) is said to be round if, given x e

S(x09

 ε ) , V e S(x, ε — d(x0, a?)), and λ such that d(x, y) < λ < ε — d(x0, x) =>

there is a z e S(x, ε — d(x0, x)) and a e (0, 1) such that d(x, z) — λ, y =

Φ(x, z, a).

Given any sphere S(x, d) contained in a round sphere S(x0, ε) and
any y e S(x, δ), y lies on a geodesic connecting x and a point in S(x, δ)
whose distance from x is arbitrarily close to δ. It should be noted
that both thickness and roundness are hereditary properties; that is,
if S(x0, ε) is thick (round) and S(x, δ) g S(xQ, ε) then S(x, δ) is thick
(round).

We now prove an Open Mapping theorem.
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THEOREM 1. Let (X, d) and (X, d') be regular, and assume that
each point in X is the center of a thick sphere, and each point in Y
is the center of a round sphere. Assume further that, for each open
Ug= Y,ye Y and ae (0, 1], the set {Φ(y, u, ά)\ue U} is open. Let T
be continuous affine map of X onto Y. Then T is open.

Proof. Let U be an open subset of X, let xQ e U, and let ε > 0
such that S(x0, ε) is thick and a subset of U. Let Uk = S(x0, k), k =
1,2, •••; since T is into, Y= U"=i T(Uk). By the Baire Category
Theorem, some T(Uk) contains an S(Tx', ε'). Since Uk is convex and
T is affine, T{Uk) is convex, and so T{Uk) is convex. Since thickness
is hereditary, we can assume ε < k. Choose x e S(x0, ε) and a e (0, 1]
with x0 = Φ(x, x', a); letting z — Tx we have Tx0 — Φ(z, TV, a), and
ze T(Uk). Now TxQ e {Φ(z, u, a)\ue S(Tx', ε')}, which is open by hypo-
thesis and also a subset of T(Uk). We can therefore find a round
sphere S(Tx0, ε") c T(U*).

If d\y, Tx0) < ε", let 7 - l/2(ε" + d\y, Tx0)); since S(TxQ, ε") is
round and 7 < ε", there is a zeS(Tx0, ε") with d'{z, Tx0) = 7 and y =
Φ(Tx0, z, a), clearly a — Ί~ιd\y, TxQ). Now ze T(Uk), so choose {xn\n =
1, 2, •} with d(x0, xn) < k and Txn-+ z; let zn — Φ(xQ, xn, a). Now Tzn —
T(Φ(x0, xn, a)) = Φ(Tx0, Txn, a)->Φ(Tx0, z, a) = y, and d(x0, zn) = ad(x0, xn) =
Ί-]d'(y, Txo)d(xo, xn) = 2df{y, Txo)d(xo, xn)/(s"+d'(y, TxQ)) ̂  (2k/ε")d'(y, Tx0).

We now pause for a brief recapitulation. Given a point x0, if
there is an integer n and a λ > 0 such that S(TxQ, λ) is round and
S(Tx0, λ) c T(S(x0, n)), then given zeS(Tx0, λ) and η > 0 there is an
xeX with d(£, a?0) ^ (2n/X)d'(z, Tx0) and cZ'(Ta;, 2) < rj. We now show
that a similar approximation can be performed uniformly in a neigh-
bourhood of x0.

Since T is continuous at α?0> there is a δ > 0 such that d(x0, y) <
d => d'(Tx0, Ty) < λ/2. Let ?/ 6 Sfe, min (δ, w)). If z e S(Ty, λ/2), then
d'(z, Tx0) ^ d'(z, Ty) + d\Ty, Tx0) < λ, so

S(Ty, λ/2) c S(Tx0, λ) c

Now z e S(x0, n) => rf(^, 1/) ^ d(z, xQ) + d(xQ, y) < 2n, so S(α?0, π) c S(y, 2n),
and so S(Ty, λ/2) c Γ(S(y, 2Λ)). Since S(2V, λ/2) c S(T^0, λ), S(Ty, λ/2)
is round, and by repeating the previous computation, given ze
S(Ty, λ/2) and η > 0, there is an x e X with

d(x, y) £ [2(2n)/(\./2)]d'(z, Ty) = (ψ)d'(z, Ty)

and df{Tx, z) < η.
Therefore, for any x0 e X, there are constants δ, ε and M such

that <Z(B0, y) < δ, d'(^, ΓT/) < ε and η > 0 => there is an x e X such that
d(x, y) ^ Jlfd'(«, Γ2/) and d'(Tx, z) < 97.
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Let <5, ε, and M be defined as above. We now show T is open
by showing T(S(xQ, p)) contains the sphere S(TxOJ a), where a =
1/2 min (ε, δ/2M, p/2M). For n = 1, 2, . . . let

η% = λ min (ε, δ/2n+1M, p/2n+1M) .
Δ

Let zεS(Tx0, a).
Since d!{z, Tx0) < ε, choose xxe X with

d(xQ, xd ^ Md'(Tx0, z), d'(Txlf z)<ηt.

Now d(xQ, x,) ^ Md'(TxQ, z) < aM < δ and d'(Tx19 z) < ηx < ε, so we can
choose x2eX with d(xu x2) ^ Mdr(zf Tx,) and d'(Γaj2> «) < η2 Induc-
tively, assume we have chosen x2j ••-,»» such t h a t , for 2 <^ j <L n,
dixj-!, Xj) ^ Md'(z, TXj-ύ and d'{Txh z) < %. Now d{x0, xn) ^ d(a?0, ^0 +
d(x19 «,) + ••• + dfe-!, a?») ^ Md'(TxO1 z) + I Σ ^ ' f e T ^ ) < Mα +
ΛfΣ5=ί % < M(δ/2M) + MΣiU (§I2J+ι M) - Σi^J δ/2^+1 < δ, and also
d'(Txn, z)<rjn<

ε» so we can choose a?n+1 e X with eZ(a?Λ, a?n+1)^Md'(«, Txn)
and d'(Txn+1, z) < τjn+1.

lΐ 1 ^ n < m, then

eί(ίc«, «m) ^ d(»», »»+i) + + rf(^m-i, xn)

=n v, < $/2n

by completeness there is an xe X such that xn —> a Since ^w —> 0,
Tx% —>«, by continuity T#w —> T», so Tx = «. We are done if we can

show that d(xQ, x) < p. For n ^ 1, d(a?0> ^) ^ (̂»o> ^i) H h ̂ fe+i, »») +
, a;) ^ Md'(TxQ, z) + Af Σ?=ί ώ '(^. Γ»y) + d(xn, x) < Ma + Λf Σ?=ί % +

n, x) < M(pβM) + J l ί Σ S (p/3 2dM) + dfe, a;), so, since xn-*x, we
have d(a;c, x) ^ ^ 3 + ΣΓ=i (pβ'%) = 2ι°/3 < ^, completing the proof.

If the hypotheses seem somewhat cumbersome, it should be re-
memebered that the Uniform Boundedness and Open Mapping Theorems
in linear topological spaces also place heavy restrictions on the topo-
logies involved.

We conclude by making some remaks relevant to the Closed Graph
Theorem, one of the most useful consequences of the Open Mapping
Theorem. Call a space (X, d) which satisfies all the hypothesis listed
in Theorem 1 a normal space. Given two normal spaces (X, d) and
(Y, df), if we can show that the product (X x Y, d") (where dff((xl9 yj,
fe, 2/2)) = d((xlf x2) + d'(y19 y2)) is normal, standard techniques (for ex-
ample, [1] p. 100 and p. 116) will prove that, if T: X-~> Y is aίRne
with closed graph, then T is continuous.

The verification that the product (X x Y, d") of normal spaces
(X, d) and (F, dr) follows quickly from the following lemma.
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LEMMA 2. (X x Y, d") is a space with unique segments.

Proof. Given a path X in X and a path 7 in Y, define λ x j(t) =
(λ(ί), 7(ί)), and if μ is a path in X x Γ, define πx{μ) and πr(μ) by μ(£) =
(πx(μ)(t), πγ(μ)(t)). Given a path p of finite length, its length will be
denoted by l(p), and the variation of p over a partition P of [0, 1] will
be denoted by l(p; P). We assert that, if πx{μ) and πγ(μ) have finite
length, then l(μ) = l{πx{μ)) + l{πγ{μ)). Since ί(μ; P) = l(πx(μ); P) +
l(πγ(μ); P), clearly ϊ(μ) <£ l{πx{μ)) + l(πY(μ)) The reverse inequality is
proved by choosing ε > 0, finding partitions Px and PΓ which approxi-
mate l{κx{μ)) and l(πγ(μ)) to within ε/2, letting P denote the common
refinement of Px and P r will yield l(μ) + ε > l(πx(μ)) + l{πγ{μ)). If
λ and 7 are geodesies in X and Γ respectively, then l(X x 7) =
ϊ(λ) + ϊ(7). If JM is a path in X x F with ϊ(μ) < l(X x 7), then
l{πx{μ)) + l(πγ(μ)) < l(λ) + ί(τ) => either l{πx{μ)) < Z(λ) or l{πγ{μ)) >
Z(τ), a contradiction. Similarly, if l(μ) = l(X x 7), then l(πx(μ)) = l(X)
and l{πγ(μ)) = l(j), which shows that τrx(μ) = λ and πγ(μ) = 7, so
μ = x x 7 and geodesies in (X x F, d") are unique.

In conclusion, it is interesting to note that the hypothesis that
S(xQ, ε) is convex is clearly analogous to the assumption that a linear
topological space is locally convex. It is clear that many standard
concepts in linear topogical space theory are geodesicaily defined (such
as an absorbing neighbourhood), and consequently are easily translated
into the theory of spaces with unique segments. In addition to the
question of which theorems from normed linear spaces hold in suitably
restricted spaces with unique segments, the following problem arises
quite naturally: is there a category whose objects include both linear
topological spaces and spaces with unique segments, and whose mor-
phisms are the "affine" maps? A reasonable condidate would be topo-
logical spaces X with a geodesic-like structure such as a map Φ: X x
X x /—> X (where I = [0, 1]) satisfying such conditions as (1) for fixed
x,yeX, Φ(x, y, t) is a continuous function of t, (2) Φ(x, x, t) = x, and
(3) Φ(Φ(x, y, s), Φ(x, y, t), u) = Φ(x, y, (1 — u)s + ut). Some work has
been done on spaces with convexity structures, but from a purely
algebraic standpoint. It would be extremely interesting to find out to
what extent such theorems as the Open Mapping Theorem and the
Uniform Boundedness Theorem can be generalized.
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