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FIXED POINT AND COINCIDENCE SETS OF

BICONNECTED MULTIFUNCTION ON TREES

HELGA SCHIRMER

Various properties of fixed point sets of monotone single-
valued mappings on dendrites have been studied by L. E.
Ward, Jr. and the author. Some of them are extended here
to coincidences of two mappings between two trees, and to
biconnected multifunctions. Examples are given which show
that others are no longer true in these cases.

1* Introduction* We know several properties of fixed point sets
of monotone mappings onto dendrites, A theorem by G E Schweigert
[5] and L. E. Ward, Jr. [6] states that every monotone mapping of
a dendrite onto itself which leaves one end point fixed also leaves at
least one other point fixed. Further results are contained in [3],
where e.g., monotone mappings which leave all end points or all but
finitely many end points fixed are investigated. It is shown in [3]
that the fixed point set contains all branch points of order Ξ>w if it
contains all but n of the end points.

The theorem by Schweigert and Ward has been extended in [4]
in two directions: from fixed points to coincidences of two mappings,
and from monotone single-valued mappings to biconnected multifunc-
tions. The purpose of the present paper is an attempt to extend
results from [3] in a similar way. But this is not entirely possible.
In the Main Theorem (see §3) we only prove that points of order
^ n + 3 rather than order ^>n are invariant, and examples in §4 show
that this statement cannot be sharpened to include points of order
^n + 2. Neither can another result from [3], namely the non-exist-
ence of a fixed point set consisting of two points of order two for
monotone surjections of dendrites, be extended to coincidences or to
biconnected multifunctions, as can be seen from two examples given
at the end.

A dendrite is a metric tree. The conclusions of this paper are
valid for trees, as a metric is not needed in the proofs.

2* Trees and multifunctions* A tree is a continuum (i.e., com-
pact connected Hausdorίf space) in which every pair of points is separated
by a third one. We use the partial order structure of trees which
was developed by L. E. Ward, Jr. [6, 7]. It is obtained by selecting
an arbitrary point r e T a s root, and defining x ^ y if x = r, x = y, or
x separates r and y. Let
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L(x) =
M(x) = {ye T\x^ y}.

Then L(x) and M(x) are closed for every x e T, and M(x)\{x} is open.
If x < y, then the (linearly ordered) set [x, y] = M(x) Π L(y) is connected
[6]. A connected subset A of Γ which contains the points £ and y,
where α; < y, also contains [a?, j/], for M(z)\{z} and T\Λf(s) would induce
a separation of A if z e [x, y] but z$A.

A point m e A is called a maximum of the subset A of T if m < a?
for every a e i . A root r e i is a point such that r ^ x for every
» G 4 . Every nonempty closed subset of T has a maximum [6, Theo-
rem 1], and every nonempty closed connected subset has a root [1,
Lemma 2]. We define the order of a point ae T as the number of
components of T\{a}. An end point is a point of order one, a branch
point is a point of order ΞΞ>3.

The following lemma will be needed in the proof of the Main
Theorem.

LEMMA. If a e T, then every component of T\{a} contains either
the root or an end point.

Proof. This lemma was proved in [3, Lemma 5.2] for dendrites.
It is easy to adapt the proof given there to the nonmetric case.

A multifunction φ\X~*Xf from a space X into a space X' is a
correspondence which assigns to each point of X a nonempty subset
of X'. We say that φ is point-closed if φ(x) is closed for every x e X.
It is called connected if φ{A) = U {φ{x) \ x e A) is a connected subset of Xf

whenever A is a connected subset of X, inverse-connected if <p~\A') =
{xe X\φ(x)Γ\A' Φ φ) is a connected subset of X whenever A! is a con-
nected subset of X', and biconnected if it is both connected and inverse-
connected. If φ:T—*T is a point-closed and biconnected multifunc-
tion from a tree T into a tree T", then φ{x) is a nonempty, closed and
connected subset of T for every xe T and hence has a root, which we
denote by f(x). The function / : T—>T is single-valued, but in general
not continuous. If / transforms the root of T onto the root of I",
then / is isotone (i.e., x ^ y in T implies f(x) S f{y) in T)9 as the
proof of Lemma 2 in [4] stillh olds for point-closed instead of upper
semicontinuous (use) multi-functions.

3* Results. We shall now state and prove the theorem which is
the main result of this paper. It concerns coincidences of multifunc-
tions, and specializes to fixed points.
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DEFINITION. A fixed point of a multifunction φ: X—• X is a point
xeX with x e φ(x). A coincidence of two multif unctions φ,ψ:X—» X*
is a point x e X with φ(x) Π ψ(^) ^ <j>.

MAIN THEOREM. Le£ <p, ψ: T -» Γ' δe £wo point-closed and bicon-
nected multifunctions from a tree T onto a tree Tf. If all but n of
the end points are coincidences, then all points of order ^ n + 3 are
coincidences.

Proof. If b e T is a branch point of order ^ n + 3, then Γ\{δ}
consists of at least w + 3 components. Therefore we see from the
Lemma in §2 that T has at least n + 2 end points. By assumption
all but n of these are coincidences, hence we can select a point e0 as
root for T which is both an end point and a coincidence. Select also
a point e'o 6 φ(eQ) Π ψ(e0) as root of T.

The Lemma permits us now to choose in each component of 1\{b}
which does not contain eQ an end point. Thus we obtain at least n + 2
end points, and according to the assumptions of the Main Theorem at
least two of them must be coincidences. Call them eί and e2.

Then b < eίf as otherwise the maximum m = max [L(δ) flLfe)] < &,
so that the connected set [e0, m] U [m, ej would contain both e0 and eL

but not b. As e0 and ex have been chosen in different components of
Ί\{b}, this is impossible. Similarly we have b < e2.

Now select points e{ e 9>(e<) Ω (̂e )̂ for i = 1, 2, and let the maxi-
mum of L(βί)ΓlIf(eί) be &'. As / is an isotone function, we have

f(eQ) =e'o^ f(b) ^ / ( O ^ el (i = 1, 2) ,

hence /(&) ^ 6' ^ βj. Therefore the connected set φ([b, e,]), which
contains both f{b) and e<, must also contain [/(δ), eί] and hence δ\
From this we see that there exist points Xι 6 [δ, βj for i = 1, 2 with
δ'Gφ(^).

We now repeat the argument with the points e0 and ex inter-
changed (i.e., with e1 as root of Γ), and see that there also exists a
point x0 which separates e0 and δ, and for which b'sφ(x0).

Now take again e0 as root. As x3- e φ~ι(b') for j = 0,1, it follows
that [XojXjieφ^φ'). But be[x0, xj, hence δ e ^ ^ δ ' ) or bfeφ{b). In
the same way it follows that δ'6ψ(δ), so that δ is a coincidence of
φ and ψ.

The following corollary is obtained from the Main Theorem by
taking n — 0.

COROLLARY 1. // all end points are coincidences of two point-
closed and biconnected multifunctions from one tree onto another, then
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all branch points are coincidences.

A further special case of interest is the fixed point case, i.e., the
case where T — T and ψ is the identity mapping ψ(x) = x.

COROLLARY 2. Let φ: T -» T be a point-closed and biconnected
multifunction of a tree T onto itself. If the fixed point set of φ
contains all but n of the end points, then it contains all branch points
of order ^ n + 3

4* Remarks* The following theorem was proved in [3, Theorem
5.1]: If / : D -»D is a monotone mapping of a dendrite D (i.e., a
metric tree) onto itself, and if at most n end points of D are not fixed,
then every point of order n (where n ^ 3) is fixed. In view of this
result it might be expected that the Main Theorem can be sharpened
to include branch points of order n instead of n + 3. But this is not
the case, not even for fixed points of point-closed and biconnected
multifunctions or for coincidences of monotone single-valued mappings,
as the next two examples show.

EXAMPLE 1. Let T be the tree (triod) in the ^-plane with end
points et = (0, — 1), e2 = (0,1), and e3 — (1, 0), and branch point b =
(0, 0) of order three. Let further a = (0, -(1/2)) and c = (0,1/2).
Define a single-valued and linear mapping / : Γ—> T by /(ej = e19

f(e2) = β2, f(es) = α, /(&) = α, f(c) = b; and let φ: T-» T be defined by
φ(x) — f(χ) \ίχe T\{c}, φ(c) = [b, e3]. Then φ is point-closed and bicon-
nected, leaves only the end point ez not fixed, but leaves also the
branch point b of order 3 not fixed. Hence Corollary 2 does not hold
if n + 3 is replaced by n + 2.

EXAMPLE 2. Let T be the triod of Example 1 with vertices
{̂ i, e2, e3, δ}, and let T be the segment [eί9 e2]. Take / : Γ-» T as the
linear mapping determined by f(et) = /(β3) = f(b) = ex, /(e2) = β2, and
g: T -» Γ' as the linear mapping determined by g{e^ = e1? (̂β2) = #(e3) =
r̂(6) = e2. Then the end points et and e2 are coincidences, but e3 and

6 are not coincidences. Hence the Main Theorem cannot even in the
single-valued case be strengthened to include points of order n + 2.

The theorem by Schweigert and Ward mentioned in the introduc-
tion states that the fixed point set of a monotone mapping of a tree
onto itself cannot consist of one point of order one. This result was
extended in [3, Theorem 4.1(i)], where it was proved that the fixed
point set also cannot consist of two points of order two. We conclude
by giving two examples which show that this extension is not valid
for fixed points of point-closed and biconnected multifunctions, or for
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coincidences of monotone mappings.

EXAMPLE 3. Let T be the segment [e19 e2] and define a and c as
in Example 1. Define a multifunction φ: T-» T by φ{x) = a for α e
fo, α), <p(α) = [ely α], <p(x) = l/4t + x - x2 for a? 6 (α, c), 9>(c) = [c, βj, (̂a?) = c
for xe(b,e2]. Then <£> is point-closed and biconnected, and its fixed
point set consists of the two points a and c which are both of order
two.

EXAMPLE 4. Let again T have the vertices {e19 e2, e3y α, 6, c}, and
let T be the subtree with vertices {e19 e2, a, c). Let / , g: T-*> T be
the linear mappings determined by /(e j = βly f(e2) — f(b) = f(c) = c,
f(e3) = e2, f(a) = α, and gie,) = ^(α) = g(b) = α, flr(e2) = e2, g(eB)=el9 g(c) = c.

Then the coincidence set of / and g consists of the two points a and
c of order two.
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