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A NEW TYPE OF VARIATIONAL THEORY

SUFFICIENCY THEOREM

RUSSELL D. R U P P

This paper contains a sufficiency theorem appropriate to
applications of Hestenes' method of multipliers. It is a gen-
eralization of the lemma of Ήahn, which has been used by
previous authors to prove variable end point sufficiency theo-
rems. The classical and control formulations of the problems
of Mayer, Lagrange, and Bolza in both parametric and non-
parametric form are included. The method of proof is in-
direct.

l Introduction* A large class of optimization problems in the
calculus of variations and optimal control theory may be solved via
the reduction of constraints. One such technique is Hestenes' method
of multipliers [5], 303 et seq. The sufficiency theory here given is
appropriate to applications of Hestenes' method of multipliers. It in-
cludes the classical and control formulations of the problems of Mayer,
Lagrange, and Bolza in both parametric and nonparametric form. The
sufficiency theorem itself is a generalization of the lemma of Hahn,
which has been used by previous authors to prove variable end point
sufficiency theorems. The method of proof is indirect. This technique
was developed by Hestenes [4, 6, 7] and McShane [10]. More recently
Mookini [11] has used the method on an optimal control problem, and
Pennisi [13] to consider differential inequality constraints. At the
present time Nathanson [12] has extended the results of Mookini and
Pennisi to a multistage optimal control problem.

The problem to be studied in this paper is that of minimizing a
function of integrals. Like the functional the class of arcs contains
parameters in a metric space. As shown in the author's dissertation
[14], 85-134, such generality permits application to the existence and
convergence of solutions for perturbed problems. Let 2) be a metric
space with metric d(z, z*). We assume that an open subset 3ΐ of
E2n+r+1 x 5) is given, and we denote elements of 3ΐ by (δ, ί, x, x, z)
where

b = (b1, b\ --.,br)eEr, teE1, ze®

x = (x\ x\ , xn) 6 En, (x\ x\ . . . , xn) e En.

Let Ts(b, z) and Xis(b, z), s = 1, 2; i = 1, 2, , n be real-valued func-
tions with domain

ΐ) = the projection of 9ΐ into &2-space.
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By an arc x we mean a collection of constants, real-valued functions,
and an element of ®

x: δ\ x\t)} z h = 1, 2, , r; i — 1, 2, ••, n

such that

Όom(x\t)) = the domain of x\t) = [Γ^δ, z), T2{b, z)\

and aj*(t) has a piecewise continuous derivative. Let 6 and x(t) denote
the vectors whose components are given by bh and αj*(ί). An arc
x:b,x(t),z is called admissible and said to belong to the class §t of
admissible arcs if

<ev(T (δ, 2)) = Xis(b, z) s = 1, 2; i = 1, 2, , n

and (6, ί, α(ί), ά(ί), 2) e 31 for all Γ^δ, 2) ̂  ί ^ T2(δ, z). We extend if
necessary the domain of the function x(t) which is associated with an
arc x: δ, x(t), z in S£ by making it continuous and constant where it is
undefined. In those cases where all the functions in a particular col-
lection have been so extended, we denote their common domain by
T ^ t S T".

Abnormal problems such as these considered by Hestenes [4, 7]
and McShane [10] require another parameter y in a compact metric
space ®* with metric d*(y, y*). Given y in ®* and an admissible arc
x:b,x(t),z, we define the collection xy to be

xy: δ, x(t), z,y.

The functional

G(xy) = G(I0(Xy), Ii(xv), , IJPy), z, y)

is assumed to be well-defined on the Cartesian product 2t x ®* of SI
and 55* where

S r2(&,z)

fσ(b,t,x(t),x(t),z,y)dt

and gfα(δ, 2, y),fσ(b, ί, α;, x, 2, #), σ = 0,1, 2, , m are real-valued func-
tions of the indicated variables. In addition, we suppose that there
are nonnegative integers N and R, O ^ r — R^Ln — N, such that the
arguments

x N + 1 , x N + 2 , ., x n a n d bR+1, bR+2, . ., br

do not appear in fσ or gσ, σ = 0,1, , m. Given vectors x =
(a?1, x2, , xw) and δ = (δ\ δ2, , br), x and δ are defined to be the
vectors
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(x\x2, ...,&*) and (61, 62 , 6 s).

We also assume that for k = 1, 2, , r — i?,

VΛ+iϊ—r+fc2 _ . kK + fe

and that the 6β+& appear only in that manner. Brady [1] has applied
the theory of the problem of Bolza to a less general function of inte-
grals.

The indices σ, h, s, and i always have the ranges indicated
above. The subscript σ is used to indicate the partial derivative of
G(/o, Iιf , Im, z) with respect to the variable /σ, and the subscript h
to indicate a partial derivative with respect to 6*. We further simplify
notation by defining for an admissible arc x: 6, x(f), z and y in 3)*,

I(xy) = (Io(xy), Ii(Xy), , i«(iKy)).

Unless otherwise indicated, the repeated indices summation convention
is used. For example given a Z*-dimensional vector u with components
w1, its norm is denoted by

\u\ = (uιu1)112.

For a real number this norm would be its absolute value. By %-space
we mean the space of points

(u1, u2, ••, u1*).

Thus we use the term ^-neighborhood to mean a neighborhood in u-
space. As a measure of the distance between two arcs x: b, x(t), z and
x*: 6*, x*(t), z*, we define the pseudometric

p(x,x*) = 16 - 6*| + sup|ί(ί) - x*(t)\.
t

Furthermore x is said to belong to a 6ίί#2-neighborhood 91 if
(&, ί, x(ί), i(ί), z) is always in 5K. The similar convention is made with
respect to the other combinations of variables. An admissible arc of
the form x: 6, x(t), z is called ^-admissible. If x(t) is continuous, we
say that x is smooth or has no corners.

Before proceeding to the sufficiency criteria in the next section,
we pause to remark that a larger class of arcs of the form

xy\ 6, x(t),z,y

may actually be considered. The variables 6, ί, x(t), x(t), z, y need only
be in 5ft x ®* for almost all Γι(6, z) ^ t ^ T2(6, z). Similarly we need
only that x*(t) be absolutely continuous, fσ(b, t, x(t), x(t), z, y) be inte-
grable, and G(I(xy), z, y) be defined. For example this is usually the case
if x(t) is essentially bounded. One still assumes that the admissible end
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conditions are satisfied. It is easy to verify that our analysis is not
altered in this situation.

2* Two sufficiency theorems* The sufficient conditions are
strengthened forms of the first and second order necessary conditions.
The purpose of this section is to state sufficient conditions that an
admissible arc of the form x0: δ0, xo(t), z0 be minimizing. As mentioned
in the preceding section, application to abnormal problems requires an
additional τ/-parameter. For normal problems and some abnormal cases
the parameter y is not needed. When that happens, we are free to
consider the space S)* to be the trivial metric space of one element.
For the situation in abnormal problems of Bolza, see Hestenes [4, 7]
and McShane [6]. With this in mind, we fix the admissible arc
XQ» βo, *^o\P) 9 ZQ

The functions Ts(b, z), Xis{b, z), gσ(b, z) are assumed to have two
continuous δ-derivatives in a neighborhood of δ0, z0 and G(I, z, y) to
have two continuous /-derivatives in a neighborhood of {(I(xOy), z0, y): y
in ®*}. We continue by assuming fσ(b, t, x, A, z, y) to have a continuous
derivative with respect to its Euclidean arguments in a neighborhood
of {(bo, t, xo(t), i o ( ί ) , Zo, y): T\bQ, zo)^t^ T2(b0, zQ) a n d y i n ® * } . F i n a l l y
the same assumption is made concerning the functions fσh(b, t, x, x, z,y),
faxl{b, t,x,A,z,y), and fσj(b, t,x,A,z,y). The lack of any hypothesis

concerning fσtt(b, t, x, x, z, y) is useful in applications. Given multipliers
λ = (λ0, λi, , λw), we define

/(δ, ί, x, x, z, y, λ) = λσ/σ(δ, t, x, x, z, y).

Here and later on, repeated indices denote summation with respect to
that index unless otherwise indicated.

A variation 7 which is admissible with respect to an arc x: δ, x(t), z
in St is given by a set of constants and absolutely continuous functions

7: β\ η\t)

such that

Dom(^(ί)) = [Γ ι (M). T\b,z)\
y(t)eL2(T>(b,z)tT(b,z))

^(T s(δ, z)) = [Xis(b, z) - ^(T s(δ, z))T*(δ, z)]βh.

Given an admissible arc x: δ, x(t), z in Si and y in S)*, we also define

and

Ky = (GQ(Xy), Gγ{Xy), * , Gm(Xy))
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where as indicated in the preceding section, the subscript σ on G(I, y, z)
denotes a partial derivative with respect to Iσ so that

Finally let XOy — XXQy. With these notations in mind, we enumerate
some of the sufficiency criteria.

(2.1) transversality:
Along xOv, XQy we have for every y in 5)*,

\gσh + [(/ - i'ΛOΓi + f*xϊ\'Ά + \τ*fkd8 = o.

(2.2) Euler equations (integral form):
For every y in ®* there exist constants ciy such that along xQy, XOy9

+ < ,̂ i = 1, 2, , N

fy = 0, j = n-r + R + l , n - r + R + 2, *- , n .

Furthermore if an arbitrary admissible arc x satisfies the Euler equa-
tions and transversality condition for one |/ in ®*, then xy satisfies
the Euler equations and transversality condition for every y in ®*.

To verify that this last statement is satisfied in applications, one
may check Hestenes [4, 7] and McShane [10] This hypothesis is used
to obtain Theorem 4.1, which is used in the sufficiency theorem proof.

(2.3) positiveness of the second variation:
Let 7: βh, rf{t) be an admissible variation with respect to x0. There

is some yr in 3)* such that along xov, XOyγ,

G ; ; ( 7 ) = Q(β) + \τ2ωdt + i ' i ' G σ μ > 0
r j Γ i r r

where

Q(β) = {\g.u + [(/ - x%i)T°kl + fiiXiilΉ
+ lift - *'/;*)Ώ2? + 2fmiTίX? + 2fhτnizί}βhβι

2ω = f*.φf + fx iφf + fuβ
hβι + ϊUiflfrf

\fσhβ
h + fMaf + fcϋή^dt.

(2.4) Weierstrass condition 31:
Define L(x) = (1 + |* | 2 ) 1 / 2 — 1. There are a positive constant τ and

a δtaxzλ-neighborhood 9ί0 of α?Oy, λOy such that for every y in ®*,
(6, ί, a?, *, z, λ) in 3ΐ0 and (b, t, x, x, z) in SI,
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J5)(δ, t, x, x, 35, z, y, λ) ^ τ#L(α, 2)

where

Ef(b, t, x, i , 2, ^, 2/, λ) = f(b, t, x, 35, z, y, λ) - f(b, t, x, x, z, y, λ)

- (35* - &*)f-9i(b, t, x, x, z, y, λ)

and

EL(x, 31) = L(έ) - L(x) - (2* - d?)Ln(&)

= L(x)(l — cos Θ)

where θ is the angle between the vectors 1,35 and 1, *.
It is not difficult to verify that (2.4) implies

(2.5) Legendre condition (strengthened form):
For any y in ®* and Π φ 0, we have along xOy, λ02/,

(2.6) ΛHJΠ'Π3' > 0.

If (2.6) holds with > replaced by Φ and an arbitrary admissible arc
x, we say that x is nonsingular. An arc satisfying the Euler equa-
tions for all y in SD* and which has no corners is called an extremal.
For given z, an extremal of the form x: b, x(t), z is called a ^-extremal.
Similarly an extremal which satisfies the admissible end conditions is
called a terminally admissible extremal. For example if x0 had no cor-
ners it would be described as a terminally admissible ^-extremal. By
an accessory extremal, one means an extremal for the second variation
along a minimizing arc.

The first sufficiency theorem may now be stated.

THEOREM 2.1 Let the smooth admissible arc xQ: bQ, xo(t), zQ satisfy
(2.1) thru (2.4). There exist positive constants ε, ε*, δ such that given
z having d(z, zQ) < δ, there is a terminally admissible z-extremal

such that p(xZJ x0) < e. For every z-admissible arc

x: b, x(t), z Φ xz: bz, xz(t)9 z

having p(x, x0) < e and \I(xy) — /(α?Oy)| < ^* for all y in ©*, there is yx

in ®* such that

(2.7) G(I(xJ, z, ym) > G(I(x.J, z, y9).

If for each z, y in a neighborhood of {(z, y}: z = zQ and y in ®*}, G(I, z, y)
is convex as a function of I(x) in a neighborhood of I(x0), we may take
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The proof of this theorem depends on results in §§ 4, 5, 6, and 8.
It is actually carried out in § 7.

The second sufficiency theorem is a special case for which the con-
clusion of Theorem 2.1 is true under less restrictive hypotheses. There
is no change in the proof. We simply do not use some of the hypotheses.
This second theorem is Theorem 2.2.

THEOREM 2.2 Let Tι < T2 be constants and make no assumption
concerning partial derivatives with respect to t. The conclusions of
Theorem 2.1 still hold.

3* Corollaries* In this section we obtain some immediate con-
sequences of Theorem 2.1. The admissible arc x0: δ0, xo(t), z0 continues
to satisfy that theorem's hypotheses.

Let 7: β, r]{t) and 7*: β*, ̂ *(ί) be admissible variations. Define the
inner product <7, 7*> by

<7, 7 *> =

where To

s = Ts(b0, z0). The associated norm is

(3.1)

Another inner product of this type is given by

<7, 7*> ^
τo

The space 33 of admissible variations, being complete under the norm
(3.1), is a Hubert space. For each y in ®* the second variation G"(y)
of G(I(xy), z0, y) along x0 is a quadratic form. In particular there is a
positive constant C such that for all y in the compact set ®* and all
admissible variations 7,

\G'y'(7)\<C\\Ύ\\*.

By Theorem 11.1 in Hestenes [2] there is also a positive constant C*
such that for all admissible variations 7 and y in ®*,

(3.2) Gv'Cr)^ C*| |7 | | 2.

Let x: b, x(t), z be a ^-admissible arc and let xz: bz, xz(f), z be the asso-
ciated terminally admissible ^-extremal satisfying the transversality
condition. Its existence follows from Theorem 2.1, and its continuity
and differentiability properties are given in Theorem 5.1. Define
St(x, xz) by
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St(xf xz) = \b-bz\* + Γ ' [ ( l + \x(t)-%z(t)\Ύ12 - l]dt .

Thus by the Weierstrass condition 5ft, there exists another positive
constant τ such that

(3.3) G(xy) - τ&(x, xz)

satisfies the same hypotheses as G(xy). We apply Theorem 2.1 or 2.2 to
(3.3) and obtain Theorem 3.1.

THEOREM 3.1 There is a positive constant τ such that the suffi-
ciency theorem holds with the inequality

G(xv) > G{xzy)

replaced by

G(xy) > G(xzy) + τSt(x, xt) .

Now consider the space 33 of admissible variations to be a collec-
tion of arcs and the collection SI of admissible arcs to be a metric
space with the metric for x: b, x(t), z and x*: b*, x*(t), z* in 21 defined
by

(3.4) I b - b* I + sup | x{t) - x*(t) | + d(z, z*) .
t

The pair 0, x0 plays the role of x0. In other words the collection of
admissible arcs is the space 33 of admissible variations with parameters
from 2ί and metric given by (3.4). Given an admissible arc x in Sί
and y in ®*, let GyX(y) be the second variation of G(xy) along x. We
verify from (3.2) and the strong Legendre condition that there is a
positive constant c such that the functional

satisfies the sufficiency theorem hypotheses. This proves Theorem 3.2.

THEOREM 3.2 There is a btxxz-neighborhood ϊi of xQ and a positive
constant τ such that given an admissible variation 7, there is yr in 2)*
such that for x in 5R Π 2ί,

The next theorem shows that the assumption on G'y'(7) may be stated
in slightly weaker manner.

THEOREM 3.3 Suppose that gσ, T% χis, fσ, and G have k ^ 2 con-
tinuous derivatives with respect to their Euclidean arguments. The
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preceding results hold if we only assume that given 7: β, η{t) in S3 for
which η(t) has k — 1 continuous derivatives, there is yr in ®* such
that

G:;p) > 0.

This corollary is proved by showing that the original assumption on
the second variation holds. Let yq, 7q: βq, ηq(t) be a minimizing sequence
for G'y{Ί) over the Cartesian product of ®* and the unit sphere of S3.
The sequence yqyq: βq, ηq(t) may be selected so that yq converges to yQ

in ®* and j q : βq, ηq(t) converges weakly to λ0: β0, τjQ(t) in S3. If τ0 = 0,
the strong Legendre condition implies that there is a positive constant
τ such that

lim Gr;pq) = lim
(3.5) ]T

 2

> limr \ήq\
2dt = τ > 0 .

If 7o Φ 0, the Legendre condition implies

(3.6)

Thus 2/0, % is a minimum which satisfies the Euler equations (integral
form)

ωηids
Tι

The implicit function theorem and the strong Legendre condition imply
that ηi(t) has ft — 1 continuous derivatives. The proof now follows
from (3.5) and (3.6).

4* The Weierstrass condition %l. One object of this section is
to analyze the Weierstrass condition 9ί to the point where it may be
used to ensure the proper convergence for the sequences of arcs which
are used in § 7. The other is to prove a theorem which permits the
parametric theory to be derived from the results here given in the
manner of Hestenes [8], 86-87. This latter theorem is the analogue
of Theorem 4.1 in the parametric case.

In the nonparametric case the role of the Weierstrass .E-function

EL(x, 20 = Lφ) - L(x) - φ* - x^LΆx)

of the arc length integrand minus one

L(x) = (1 + \x\ψ2 - 1

is essential. One also finds the formulas
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EL(x, 5c) = Γ( l - θ)L(w)~*\Π\2(l + \w\2sin2φ)dθ
J

where Π = x — x, w{θ) = i + 0/7, 0(0) is the angle between 77 and w(θ)
and

j£x(ά, έ) = Lβ)(l - cos 5)

where θ is the angle between the vectors 1, x and 1, x to be useful.
In the parametric case the analogue of L(x) is |cc|. Let

x: b, x(t), z and x: ί>, x(t), z

be admissible arcs and y be an arbitrary element in ®*. If it is nec-
essary to extend x(t) so that x(t) and 2c(ί) have a common domain
Tf ^ t ^ T", we do so by keeping x(t) continuous and requiring that
x(t) = x(t) on the new domain. Using this extension, we make the
following definitions, which also occur later:

λyα = Gσ(Xy) Xyσ = Gσ(Xy)

9o = gβ(b, z, y) Ts = T*{b, z)

[f(b, t, x(t), x(t), z, y, Xy)

+ {x\t) - 2f(ί))Λ*(δ, t, x(t), 2(ί), z,

j;(α, x) = J*(a?, 2) + £

J5ί(α?f 2) = [T L(x(t) -

ft(a?,2) = \S- S\* + Eϊ(x, x) .

THEOREM 4.1 Let x0: b0, xo(t), z0 be a terminally admissible extremal
along which the Weierstrass condition $1 holds. There is a positive
constant τ such that given a positive constant ε, there are a btxz-neigh-
borhood % and a btxxz-neighborhood 3ΐ0 of xQ such that x e % ΓΊ 2t and
x e 9ϊo Γ) SC imply

Jy(x, x) - Jy(x, x) ^ τ[St(xt x) - ε]

for all y in 3)*.

We begin the proof by observing that the Weierstrass condition
ϋJi implies that there are a 6£ίz-neighborhood % of x0, a btxxz-neigh-
borhood 9ί0 of flc0, and a positive constant τ such that a? in Qf n St and
S5 in 3ϊ0 ΓΊ 2C imply for any y in 2D*,

(4.1) .BJία?, 2) ^ 2τEϊ(x, x) .
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Given a positive constant ε, diminish % and 3t0 so that

when 6, b Gproj ι(% U 9ΪO) = the projection of g U 9ΐ0 into 6-space.
Suppose we have shown that % and % may be diminished if neces-

sary so that for δ = min((l/2)ετ, τ), α? in g Π St, « in 3ΐ0 Π Sί, and y in
2)*,

(4.2) I J*(x, x) - J*(x, x) | < δ[l + Et{x, x)\ .

By (4.1) and (4.2) we have for x in g Π St, 2 in 3ΐ0 Π 2t, and y in ®*,

= «/?(», 2) - J*(£, 2) + E*(x, x) - τI b - t\2 - τEt{x, x)

^ -d[l + Et{x, x)] + rJSf (α?, 2) - - | τ e ^ - e r .

This implies

•̂ (α?, 2) - Jy(x9 x) ^ τ[Λ(α?f 2) - ε] .

We now prove (4.2). We first note that a btx^-neighborhood g of
#o and a &^#2-neighborhood 3ΐ0 of x0 may be diminished so that for x in
%, x in 3ΐ0, and y in 3)*,

I [9a

(4 3)

, «, 2, 2ί, Z, V,

Now recall that x0 is an extremal. Setting

fa = Λ*(δ, ί, a?, », 2,2/, λy)

and

J'χi

 z=z Jχi\Oθy ty ^0> ^0> ^0> 2/> ^Oy) )

we may again diminish g and 9ΐo so that for x in g, α in 9ΐo» and

sup (/;* - f?J(fχi - pmi) < ~-δ2 min (1, | T2 - Tι |"2

(4.4)

Setting
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at = Ai — Xi and c* = /i* — /J\ ,

we add and subtract the same terms and integrate by parts to obtain
from (4.4) for x in g> x in 3ΐo> and y in ®*,

£ I £(<*<<><
| α | - V~2\ c | - | c \}dt

T2

Tί
f?Jx* - x*)

S 8E*{x, x) +

Combining (4.3) and (4.5), we prove (4.2) and hence the theorem.
We continue by giving the analogue of Theorem 4.1 in the para-

metric case. The appropriate Weierstrass condition 31 is the same as
the one we have been discussing with L(x) = \x\ playing the role of
L(x) = [1 + I x | 2 ] 1 / 2 — 1. The corresponding E-ίunction is represented
by the formulas

(4.6)

Et(u, v) - Γ(l - 0)| w || // |2 sin2 φdθ
Jo

where w{θ) — u + θ(v — u), Π = v — u, and φ{θ) is

the angle between 77 and w(θ);

E£(u,v) = \v\[l - cos^]

where θ is the angle between v and u,
which are useful in the proof of Theorem 4.2. It is convenient to fix
the parameterization of the admissible arcs x: δ, x(t), z so that

0 ^ t ^ 1 and | x(t) \ = length of x(t) .

This is the parameterization which is referred to when a δ££2-neigh-
borhood of x0 is specified. Invariance of the functionals under repara-
meterization implies some well-known identities. For their description
we refer the reader to Hestenes [3], 78-82.

Let Xo1 and XI be the end points of the admissible arc x0: δ0, #o(ί), ô
We assume that 0 < N = n — R and that

In the applications this corresponds to the assumption of distinct end
conditions. Similarly the nonintersection hypothesis of the applica-
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tions corresponds to the supposition that (xl(t), x2

0(t), •••, Xo(t)) does
not intersect itself, which we now make. Given admissible arcs
x: b9 x(t), z; x: b, x(t), z, and y in ®*, we define

), z, y, \)t

mix, x) = [f(b, x(t), x(t), z, y, %)dt - /*(», 3D
Jo

Jy(x, x) = J*(x, 20 + ί%(x9 x)

Eϊ , x) = [\ x(t) I dt - [ώ%

J° J° \xx{t)\

THEOREM 4.2 Let x0: b0, xo(t), z0 be a terminally admissible extremal
along which the parametric Weierstrass condition 9Ϊ holds. Given a
positive constant ε, there are a bx-neighborhood % of x09 a bxxz-neίgh-
borhood 3̂ 0 of x0, and a positive constant ΎJ such that given x in % Π Sί, x
in 9ΐ0 Π 2t, and y in 3)*, we have either

< $

or

Jy(x, x) - Jy(x, x) > η .

In order to prove this theorem, let a positive constant ε be given.
Suppose we have shown that given ε* > 0, there are a δί-neighbor-
hood % of x0 and a &x*-neighborhood % of x0 such that given x in
g (Ί 81, 2ί in 3t0 Π SI, and y in ®)̂*

(4.7) I /*(α;, 2) - /?(£, 20 | < e*[l + E^x, x)\ .

The Weierstrass condition 31 (See (4.6).) and our choice of parametri-
zation imply that given εx > 0, the neighborhoods g a n d 3ϊo may be
diminished so that there is a positive constant C such that for x in
g Π St, x in 3ΐ0 Π SI, and y in 2)*,

(4.8) Γ| x(t) - 2(t) I dt ^ εx + CJ5!(a?, 20 .
Jo L

Furthermore the constant C may be taken independent of sufficiently
small ely g, 3ΐo> as we now agree to do.

Let τ be the positive constant occuring in the statement of the
Weierstrass condition % and let ε2 be a positive constant such that
ε2C < (l/2)ε. We choose the neighborhoods g and 9ΐ0 so small that
(4.8) holds with e, - (l/2)ε. Diminish the neighborhoods % and % if
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necessary so that (4.7) holds with ε* = min ((l/2)τ, (l/4)τε2). Suppose
that Ei(x, x) < ε2. By (4.8) one has

^ eί + e2C < ε .

On the other hand, suppose Ei(xf x) ^ ε2. By (4.7) and the parametric

Weierstrass condition 9i one has

Jy(x, x) - Jy(x, x) = /*(«, x) - /*(£, x) + Eϊ(x, x)

> - ε*[l + Ef(x9 x)] + τEUx, x)
Li LI

^ (τ - ε*)Eΐ(x, x) - ε* ^ (τ - ε*)ε2 - ε*

;> — τε2 = η > 0 .

With this in mind, we complete the proof by proving (4.7). Let
a positive constant ε* be given. Fix y0 in 3)*. By the compactness
of S* it suffices to prove (4.7) for a neighborhood 9ΐ* of y0. Let ε,
and C be positive constants such that (4.8) holds with neighborhoods
g and 3ΐo We may diminish these neighborhoods if necessary so that
there are continuous functions C^δ, x) such that:

For a in g n St, 2 in % Π 51, and y in 9ί*,

(i) sup |/i/(&, a?(ί), ̂ (ί), z, y, λ) — C^δ, a?(ί) — ̂ (ί)) | <ε3
t

ε*
where ε3 = — min (ετ\ C"1), i = 1, 2, , N .

and

(ii) The integral Σf=i 1 ̂ (6, x)dxj depends only on its end points.
Jo

(Recall our parameterization convention. To verify that such functions
exist, one may check the proof of Lemma 5.1, Hestenes [9], 62.)
Further diminish these neighborhoods so that for x in g Π St, x in
?ϋ0 Π §t, and y in -Jϊ*,

Σ j V " Wi(δ, a; - 2f)dί| < jε

and

<τε*
4

Finally by the Euler equations the neighborhoods may again be
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diminished so that for x in % Π % x in 9ϊ0 Π % and y in 91*,

sup |/ii(δ, α (ί), %(t), z, y, λ) | < ε3,

j = N + 1, iV + 2, , w. Thus for x in g Π % x in 3ί0 n % and 2/ in
9ΐ*, one has upon setting

i = / ^ ( δ , a(ί), 2(ί), 2, y, λ),

*(x, 20 - J*($, 2) I = for, -

4

Σ U
3=1 Jo

Σ
i 2V

Jo+

i=iJo

- Cj(b, x - x)]dt

^ γ £ * + nε,Et(x, x)

S e*[l + JS7ί(α?, 2)] .

This proves (4.7) and hence the theorem.

5* The extremal family* Given an arc x0 satisfying certain
hypotheses, the purpose of this section is to prove the existence of a
suitable family of nearby extremals. The sufficiency theorem shows
these arcs to be solutions of a family of perturbed problems. The
special properties and uniform nature of these solutions are essential
to the proofs in § 8. We require an implicit function theorem in a
slightly more general context than is usually necessary. The proof
(given in the author's dissertation [14], Theorem 1-5.1) is a conse-
quence of standard techniques.

THEOREM 5.1. Let (z, x, u) be variables in an open set 3ΐ contained
in 3) x Em x JE"\ and let & be a compact set in 2) x Em. Suppose
there exist continuous functions u\(z, x), i = 1, 2, , n defined on B
and such that (z, x, u(z, x)) is in 3t for all (z, x) e $. Let f, (z, x, u) be
realvalued functions defined on 3ΐ which are continuous and have con-
tinuous partial derivatives with respect to the u-variables and are such
that on B,

f(z, x, uQ(z, x)) Ξ 0

and
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There are a neighborhood 31 of ^ and continuous functions uι(z, x) de-
fined on 31 such that

u(zy x) = uo(z, x) on ®

and

f(z, x, u(z, x)) = 0 on 31 .

Also u(z, x) is unique in the sense that there is a positive constant ε
such that f(z, x, u) = 0 and \ u — u(z, x) | < ε imply u = u(z, x). If
fi(z, x, u), i = 1, 2, , n has k continuous xu-derivatives, then u{{z, x),
i — 1, 2, •••, n has k continuous x-derivatives.

THEOREM 5.2. Let the smooth, nonsingular admissible arc
x0: b0, x0, (t) z0 satisfy (2.1), (2.2), and (2.3). There is a unique z-para-
meter family

(5.1) x(z): b{z\ x(t, z), z

of smooth, nonsingular terminally admissible z-extremals satisfying the
transversality condition and containing xQ at z = z0. There are posi-
tive constants d and d* such that b(z), x(t, z), and x(t, z) are continuous
in all their arguments and such that (5.1) satisfies the Euler equations
for T'φo, z0) - d^t£ T2(bQ, z0) + δ, d(z, z0) < δ* and y in ®*.

In order to prove this theorem, we introduce the cannonical vari-
ables btxpzyX instead of btxxzyX by setting

(5.2) Pi = fxiψ, t, x, *, z, y, λ) .

Since x0 is nonsingular and has no corners, the implicit function theo-
rem implies that (5.2) has a solution

x = P(b, t, x, p, 2, y, λ)

on a &tapzi/λ-neighborhood of the elements btxpzyX along xOy. Further-
more P = (P1, P 2 , , Pn) is continuously differentiate in its Euclidean
arguments and is unique in the sense described in the implicit func-
tion theorem. Now define

H(b, t, x, p, z, y, λ) = PiP\b, ί, x, p, z, y, λ) - /'(&, ί, x, P, z, y, X)

and note that the Euler equations are equivalent to the Hamiltonian
equations

x* = Hpi(b, t, x, P, z, y, X)

and

Pi = - Hχi(b, ί, x, P, z, y, X)

The proof of the embedding theorem for differential equations given
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in the appendix of Hestenes [3] uses only the fact that the parameter
is in a metric space. We may consequently apply this theorem to
obtain for β = (βlf β2, •••, β2n) a unique 6/3^λ-family

β, *, V, λ )

of nonsingular extremals. This family contains xQ(t), xQ(t) for
(6, β, z, y, λ) = (bo, β0, z0, y, XOy) and Γ 1 ^ , zo)^t^ T\b0, z0). The family
is also continuous and has continuous partial derivatives with respect to
its Euclidean arguments. Moreover the matrix of partial derivatives
with respect to the β-variables is nonsingular along xOy, y in ®*.

We wish to apply the implicit function theorem to the system of
equations

(5.3)
x%Ts) = X

= 0

at δ0, βo, So, Vo, \y f ° r some y0 in ©*. Suppose we have shown that
the matrix

(5.4)

1 Γ J_r Λ-r
W

) + X 1 i — Λι

dS, h dbι h

of partial derivatives with respect to the Xβb-variables is nonsingular
at xOy for some yQ in 3)*. By the implicit function theorem there is
a continuous solution b(z, y), β(zy y)y X(z, y) of (5.3) in a neighborhood of
s0, Vo Fixing y = 2/0> we see that the hypothesis in (2.2) implies that

x(z): b(z, y0), x(t, b(z, y0), β(z, y0), z, y0, X(z, yo))f z

is the required family of nonsingular extremals.
It is therefore sufficient to show that the supposition that the

matrix (5.4) is singular for all y in ®* leads to a contradiction. Let
y be a fixed but arbitrary element in ©*. Suppose there are constants
aμ, cfc, and d\ μ = 0,1, , m; & = 1, 2, , 2n; I = 1,2, , r not all
zero such that at xoy,

(5.5) aμx\μ(T°)
s) = [X? -
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Let the variation 7: dh, ηι(t) be defined by

η\t) = aσx\β) + ckx*βk(t) + dιx\(t) .

The second set of equations above imply that 7 is an admissible varia-
tion. Multiply the equations involving partial derivatives of Gσ by
Iσ(y) evaluated along xQy and multiply the equations involving Ah by dh.
Adding the result and setting at xOy, 7,

we obtain

(5.6) 0 = St + S2 + S3 .

After collecting terms, we have at xoy, 7,

(5.7) S, = TaVμGaμ .

On the other hand, using the Euler equations and accessory end con-
ditions, one obtains at xOy after setting

η** = aax{σ + ckx
j

βk ,

(5.8) S* = Ifjy**™* + fa'tn*' + f'^Vψά\TΛ

and

S3 = ghld
hdι + {fxid

lx\T'hd
h + f^irfd'xi + h^rfdlx{ + /;«,•

+ [(/ - **/;*)Ώ, +faXί! +ftTlTi

CT2

fudHιS T2
ifh

Tl

Combining (5.7), (5.8), and (5.9) with (5.6), we use the accessory Euler
equations and accessory end conditions to obtain along xOy,

0 = st + s2 + s 3

(5.10) - Q(β) + ωhaf ^ + Γ [ Λ ^ + f
T1 JT1

+ ΓJ'fiβμ = G"(7) .
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It now remains to show that 7 cannot be zero. Suppose then that
7 = 0. This means that dh = 0 and η\t) Ξ= 0. Collecting terms in the
equations (5.5) which involve Gσ, we consequently obtain at xQy,

0= -aσ + GσX (f^φ + fa'xφdt = - aσ .

This implies
t) Ξ= 0 .

Since not all of the aσ, ck, and dh are zero, some of the ck must not
be zero. This contradicts the selection of the family x(t,b, β, z,y,X),
x(t, b, β, z, y, λ) to have a nonsingular matrix of partial derivatives with
respect to the β-variables along xQy, y in ®*. Consequently, 7 cannot
be zero.

Since 7 is not zero, (5.10) is a contradiction to the assumption that
the matrix (5.4) is singular at xOy for a l l - i n ®*. This proves the
theorem.

The exact statement of the uniqueness of the family x(z) of ex-
tremals is given here as a corollary. This result holds because the
family x(z) was obtained by an application of the implicit function
theorem and the embedding theorem for differential equations.

COROLLARY 5.1. The family x(z): b(z), x(t, z), z is unique in the
sense that there is a positive constant ε such that if x: b, x(t), z satis-
fies the transversality condition and Euler equations and

\b(z) - 6 | + s u p [\x(t,z) - x ( t ) \ + I * ( M ) - 2 5 ( * ) l ] < ε >

then x(z) = x.

This next corollary is proved by checking that the required con-
tinuity and differentiability is present at each step of the preceding
theorem.

COROLLARY 5.2. Let z be of the form (z*, z) where z* is Euclidean
and z is in an arbitrary metric space. If gσ, T% Xis, and fσ have k
continuous btxxz*-derivatives (k ^ 2) near xOy and if G has k continuous
(k ^ 2) Iz*-derivatives near (I(cco»), £0, y), then x(t, z*, z) and x(t, z*, z)
have k — 1 continuous tz*-derivatives.

Similarly it is easy to check that Corollary 5.3 below holds in the
case where T1 < T2 are constants and no assumption is made concerning
partial derivatives with respect to t.

COROLLARY 5.3. Let the additional assumptions indicated above
hold, and let z be of the same form as in Corollary 5.1. If gσ, Xι%
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and fσ have k ^ 2 continuous bxxz*-derivatives near xOy and if G(I, z, y)
has k continuous Iz*-derivatives near (I(xOy), z0, y), then x(t, z*, z) and
x(t, z*9 z) have k — 1 continuous z*-derivatives.

6* An admissible variation* The existence of a suitable admis-
sible variation is fundamental to the indirect method. In this section
we obtain such a variation.

Let xg: bq, xq(t), zq and xOg: bOq, xOg(t), zq be sequences of admissible
arcs. Suppose there is a positive constant δ such that xQ(t) and xOq(t)
have two continuous derivatives on

[T', Γ"] = [T>(K O » *, T\b0, z0) + δ] .

We also assume that

(6.1) lim xOq(t) = xo(t)

uniformly in T ^ t ^ T" and that

(6.2) l im St(xqf xOg) = l i m | bq - b0 \ = 0 .

By (6.1), (6.2), and the admissible end conditions at Tx(δ, z), the
sequence of functions xq(t) converges uniformly to xQ(t), Tf ^ t <̂  T".
We are motivated by the method of Hestenes [3], 152-159. We con-
sider a vector like bq — bOq as an w-vector by adding zero components
if necessary. Thus we may define

A* = wrw, - bt,)
κ ' ) vi(t) = {2^dq)-\<(t) - xiM

i ff I

L(xq — xQq)dt. Because we are dealing with
T'

the parametric form of the accessory minimum problem, we define for

7: β, η{t) in SB,

= Lφ) + \T"L(ή)dt ,

which differs from the analogous equation on p. 152 of Hestenes [3]
The changes in the statements of the results and the proofs are obvi-
ous. Thus we may read off Lemmas 6.1 and 6.2 below from pp. 154,
156, 158 of Hestenes [3]. Some of the limits in Lemmas 6.1 and 6.2
may hold only in subsequence, which for convenience we again denote
by the original sequence.

LEMMA 6.1. Let wf = (l/2)L(Sq - bOq) and wq(t)2 = (l/2)L(xq(t) -

*off(ί)) We have
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"dt = 1Γ
JT'

ML 2

Wq{t)

lim dq = 0

lim xq(t) = io(*) almost uniformly in T' ^ t ^ T" .

: are absolutely continuous functions η\(t) having ήftt) in L2(T', T")
and constants β%, h = 1, 2, , R such that

lim/S* - /Si A = 1,2, ••-,22

lim $(ί) = 37ί(ί) uniformly in T ^ ί ^ T "

LEMMA 6.2. 7/ fejy(ί) are continuous functions on T" ^ ί ^ Γ"
converging uniformly to hϊj(t), then we have

lim Γ λ*^*dί - Γ ΛJ ĵdί .
JT' JT'

If xq converges uniformly to x0 on a measurable subset Wi of Tr ^t ^ T"
and the matrix \\h^{t)\\ is nonnegative on 331, then we have

lim ί h\%ηqdt ^ ί K%f){dt .
jm Jaw

It remains to check that there are additional constants /So, h —
R + 1, R + 2, , r, such that ηo(t) satisfies the accessory end conditions.
Let

T* = T*(bq, zq) T0*q = Ts(boq, zq)

a n d

XIs = .Xis(bq, Zq) ΐs

q = Xis(boq, zq) .

At Γ^δo, z0) the accessory end conditions are an immediate consequence
of the calculation

-^-θ\ Xθg\-L q) %lq\-Lθq

VΎd.

1

= [Xϊ(bo, zo) - xlTKh

where Θq — (bq + θ(bQq — bq), zq) and θ e (0, 1) is a generic constant. The
similar procedure holds at T2(b0y zQ) after we first verify that lim βq —
/So exists, h — R + 1, R + 2, , r. Hence,

%: /So, 37o(ί)
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is an admissible variation.

7* The proof of Theorem 2Λ. In order to prove this theorem,
we first observe that there is a unique family of extremals having the
properties described in Theorem 5.1. This means that given a posi-
tive constant ε, there is a positive constant δ such that for every z
with d(z, z0) < δ, there is a terminally admissible z-extremal xz: bz, xz(t), z
of the above family with p(xz, z0) < ε. The proof is by contradiction.
Consequently suppose the theorem is false. This means that there is
a sequence zq tending to z0 for which there are ^-admissible arcs
xq: bq, xq(t), zq and terminally admissible ^-extremals xQq: bQq, xOq(t), zq

such that for every y in 5)*,

0 ^ G(xqy) - G(xQqy) p(xq, x0) < j

I K - δ01 + sup I xoq(t) - xo(t) I +. sup I xOq(t) - xo(t) | < —
t t q

and either the convexity assumption holds or | I{xqy) — I(xoqy) I < 1/tf
Given y in ®*, let

τ; = τs(bq, zq) τo

s

q = τ°(bOq, zq)

and define J"(Ί) to be the second variation of

\yσgo + f(b, t, x, x, z0, y, XQy)dt

along x0. We also make the following convention concerning our arcs.
It is useful later on and gives their function parts a common domain.
First note that by Theorem 5.1, there is a positive constant δ such that
the extremals satisfy the Euler equations on [Γ', T"] = [To1 - δ, Tt + δ\.
By proper selection of a subsequence if necessary we may assume that
[To1,, To2,] s [T', T"] and [Tq, T9

2] s [T', T"]. The functions ^( t ) are
already defined on [T', T"] as solutions of the Euler equations. The
convention is to extend if necessary the functions xq(t) to [T', T"\ by
keeping then continuous and requiring that xq(t) = xOq(t).

Our proof uses the following three lemmas, which are proved in
Section 8.

LEMMA 7.1.

lim &(xg, xOq) = 0 .

This lemma permits us to replace xq and xOq by the convergent sub-
sequences which were described in § 6 and which we again denote by
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xq and xOq. In particular the variations yq defined by (6.3) converge
uniformly on T' ^ t ^ T" to an admissible variation τ 0: β0, yQ(t).

LEMMA 7.2. For each y in ®* one has

where the arguments of the last integral are taken along xOy.

LEMMA 7.3. For each y in ®* one has

and
lim [Iσ{xqy) - Iσ(xogy)] = 0 .

We now expand G(I, z, y) by Taylor's theorem to obtain for large
q, y in ®*,

0 ^ G(I(α?w), zq, y) - G(I(xOqy), zq, y)

gy), zq, v) + 2"1[/(r(^2/) - Iσ(xOqy)]Gσ

where the arguments of Gσμ are (I(^Og2/) + ^[J(α?ffif) — I(xOgy)], zq, y), 0 e (0, 1)
a generic constant. Setting for y in ®*,

we divide the above inequality by d\ and observe that by Lemmas 7.2
and 7.3, we obtain in the limit

(7.2) 0 ^ Gy(yQ) — I fxixjήiήidt + liminf d~2Ey(xqi xOq) .

We wish to show

(1 Q\ IΊYYΊ ΊTI F /7~-27v7*f<r <r \ !> I ° /" w Y)iY)*rlf
\ •<-'/ 11111 111JL tt/g •̂ -'y \*^9> t*/0<7/ ^ = I J α*ίcJ*/θ/O *

Let 2JΪ be a measurable subset of T' -^ t ^ T" on which #g converges
uniformly to *0. Setting ^ g = (6ff, t, xq, xOq + ί[* f f — xOq], zq, y, λOg2/), by
Taylor's theorem we obtain on SK for large q,

d-2Ef(bq, t, xq, Aoq, xq, zq, y, \qy) = 2

Consequently Lemma 7.3 and the Legendre condition imply

lim inf d~A Ef(bq, t, xq, xOq, xq, y, zq, \qy)dt ^

(7.4) ; ω

J3K
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By our convention in extending the domain of xq to T" ^ t ^ T", ηq

is constant on that portion of Tf ^t ^ T" to which xq has been ex-
tended. Thus the almost uniform convergence of xq to x0 on T' ^t<L T",
(7.4), and the Weierstrass condition 3i prove (7.3).

By combining (7.2) and (7.3) we show that

0 ^ G;'(7O) for all 2/ in ®*

and hence that 70 = 0. This along with the Weierstrass condition and
(7.2) imply

0 ^ lim inf dq

2E%(xq, xOg) ^ lim inf τdq

2 Γ* EL(xOq, xq)dt
Jτ

q

where τ is a positive constant. Thus Lemma 6.1 implies

0 ^ lim inf ττ*d~2Et{xq, xOq) = —ττ* lim inf Γ
Δ JΪ"

where τ* is another positive constant. This contradiction proves the
theorem.

8* Auxiliary lemmas* In this section we complete the proof of
the sufficiency theorem by proving Lemmas 7.1, 7.2, and 7.3.

LEMMA 7.1.

l im $t(xq, xQq) — 0 .

The proof of this lemma has two cases. In the first case, we have

lim \Iσ{xqy) - Iσ(xOqy)] = 0 y in 2)* ,

and in the second case, we have the convexity assumption occurring in
the statement of the sufficiency theorem.

To prove the first case, we define xq: bq, xq(t), zq by setting x*(t)
equal to xq(t) on Tq ^ t <; T$, by requiring xq(t) to be continuous, and
by requiring xq(t) = xQ(t) on the remainder of T' ^ t ^ T". This
means

0 = [lim (Uxΐy) - Iσ(xOy))]\yσ

= l im [Jα(a?*y) - Iσ(xOy)]\yσ

— \ΊΎYi Γ 7" i Ύ^ /y \ — 7" /̂ v Ί* M
— 111X1 | * ' | / \ */σ , *^Ό/ "~~* t 'ί/\*^0* *^/0/J

By Theorem 4.1 one has

lim sup $(#*, x0) ^ 0 ,

which means that
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lim5B(α*, x0) = 0

since $ΐ(x, x*) is nonnegative. Thus the inequality

0 ^ Λ(α£, xQq) ^ 2[St(x*, Xo) + St(xo, xoq)]

and the fact t h a t xOq and bOq tend uniformly to x0 and b0 imply t h a t

lim SB(α*, αOff) = 0 .

Since by our definition of x*

0 ^ St(xq, xQq) ^ ft(a?*, a?0(r) ,

this proves

l im St(xq9 xOq) = 0 .

In the second case, the convexity assumption implies for all y in

0 ^ G(I(xqy), zq, y) - G(I(xQqy), zqj y)

^ lUv,*) - Wogy)]Gσ(I{xOgy), zq, y) .

In the limit one has

0 ^ l im s u p [Iσ(xσy) - Io{%oqy)]Ga{x0qy)

= lim sup [/^(α;g, ajOg) - Jy(xOq, xOq)]

By Theorem 4.1 this implies

lim sup &(xq, xOq) ^ 0 ,

which means t h a t

l im $t(xq, xOq) = 0

since B(x, a?*) is nonnegative. This proves the lemma.

LEMMA 7.2. For each y in ®* (me Ms

where the arguments of the last integral are taken along xOy.

In order to prove this lemma, we set

XIs - Xis(bq, zq) Xti = Xis(boq, zq)

γ = XIs - X™ Δx\* = xiq(Ts

q) - xiq(To

s

q)

and consider the difference
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x\(Ti) - xU(T;) = ΔX\* - Δx? .

We continue to use Θ e (0, 1) as a generic constant. Applying Taylor's
theorem to ΔX\S and Δxq% we obtain for large q,

ΔX? = 2^dgXis(bOg, zq)βh

q

Δxq

s = 2llidqxtg(T0

s

g)Ts

h(b0q, zq)βh

q + dq[o^TlTi + x\qT
s

hl]βh

qβ
ι

q

where the arguments of the coefficients of d\ are of the form
(bOq + θ[bq — bOq], zq). Consequently the coefficients of d\ have limits

Xϊ\β\β\ and xtTlTΐβϊβl + xtTLβϊβl

evaluated at x0.
We continue the proof by using Taylor's theorem to obtain for

large q, y in ®*,

Δg\ = [gσ(bqt zg) - gσ(bOg, zq)]XOgyσ

= 2ίl2dgX0gyσ(b0g, zq) + d2

qX0qyσgσhιβ
h

qβ
ι

q

where gaM has an argument of the form (bOq + θ[bq — 6Og], zq). This
means that setting

T!q = 2ίl2dq\qyσgσh(bQq, zq)β*,

we have

(8.2) lim ]d~2Δgl - T!q] = \yaghι(K z*)β«βl

Given y in 55)*, we define

S Ts(b,zg)

f(bOg, t, xOg, xoq, zq, y, \gy)dt

and expand by Taylor's theorem to obtain for large q,

Fξg(bg) | S - 2^2dgfTlβ\ + d2

q[fT*hl + ftTlTϊ

where the arguments of the coefficients of d\ are at xOqy with the end
conditions determined by (bQq + θ[bq — bQg], zq). Thus setting

T!q =

evaluated at xOqy, we obtain

lim [d?FU(bq) IS - m
=[fTi; + ftτιτί + f.

evaluated at the end points of xOv.
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Given y in 3D*, we define

a\ = f(bq, t, x q , x O q , z q , y , XQqy)

dy

q = f(bOq, t, x Q q , x Q q , z q , y , XQqy)

&qy = J'x*\Pqi £> ^g> &0qi %qy Vj Xθqy)

For large q we use Taylor's theorem to obtain

(8.4) = Γ ί + /.<. ^ + 2fhxiβ
h

gηg

f9i7fq + fχiήq]dt

where the arguments of the first order partial derivatives are along
xQqy while those of the second order partial derivatives are of the form
(K + 0[bq - boq], t, xOq + θ[xq - a?0J, x O q , zq, y , XOqy).
First define along xOqy,

Iίq = 2 ^

L d\ d\

By adding and subtracting the same terms and using the Euler equa-
tions, one sees that the last integral in (8.4) is equal to

Jy _J_ Ty 4- Ty

J-lq ~T J-2q T^ J-Zq

Again using the Euler equations to evalute Iξq in the limit, we obtain
from Lemmas 6.1 and 6.2 along xQy,

[d~wq

y - m

(8.5)

- x\fxiT
s

hTl + 2fhTl]TΛβhoβl .

For each y in ®* one now sees that
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T*(Ύ r ^ T*(r v \ — Any 4- TΓy (h \ ls==2 -4- Afy

and that by the transversality condition,

T y _L ψy j_ ψy π
ίq T -L 2g T •*• 3g — v •

Hence, adding (8.2), (8.3), and (8.5), we prove the lemma.

LEMMA 7.3. For each y in 5D* one

dq

and

lim [Iσ(a?fflf) - Iσ{xOqy)] = 0 .

It suffices to prove the first limit since the second follows from it
by the usual product of limits theorem. Given y in 2)*, we set

τ;q = gσ{K zq, v) - Qo(K> *n y) + \ I f*(K> *> ^ , χ*q, zqt y)dt \s

sz\

I T
" a

+ (ij ~ x\q)fo'AK *, »α» *og, «„

ί5g = (&og + ^[δg ~ δo f f], *, ^o ? + θ[xq - a? 0J, ^ O g , «ff, y)

Φoq

 = = (^0g> ^> ^g> ^0g> ^g> 2/)

λ* = (K + θ[bq - bog], zq)

and define E*y(xg, xOq) like E%(xq, xH) with / replaced by /„. For large
q one has by Taylor's theorem,

„ ί, a;oa, *„„ zq, y)Ti(φ*)βh

q \lzί\

and

T?g = 2'

From the identity

J-σ\Xqy) J-σ\Xθqy) = -*• lq ~Γ -t 2g ~Γ •&σy\Xqi

and Lemmas 6.1 and 6.2, we now obtain

(8.6)
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By our selection of the arcs xg, xOq we have

0 ^ G(xJ - G(xQqy) ^ [Io(xJ - Ia(xoqy)][Ga(xQqy) - e j

= J*(xq, xOg) - J*(xoqf xoq) + E^(xqy xOq) + [Iσ(xqy) -

where lime;ff = 0 Combining (8 6), (8.7), and Lemma 7.2, we obtain

(8.8) 0 ^ o(l) + dq

ιE*(xqf xoq) + [o(l) + d?E*(xq, xOq)]slq .

S e t t i n g φ\ = (bqf t, xqj xOq, xq, zq, y , XOqyl + [Uxqy) - I i O O ] ^ •)> o n e
has by (8.8) and the Weierstrass condition 9Ϊ,

(8.9)

where r is a positive constant. The proof is now completed with (8.6)
and (8.9).
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