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RADON-NIKODYM DENSITIES AND JACOBIANS

MITSURU NAKAI

A Dirichlet mapping between regions in Euclidean space
is a homeomorphism preserving the finiteness of Dirichlet
integrals of admissible functions and plays an important role
in the potential theory. Two dimensional Dirichlet mappings
are known to be characterized geometrically as being quasi-
conformal mappings. In this paper, higher dimensional Diri-
chlet mappings will be characterized geometrically as being
quasi-isometries. In order to carry out the reasoning it is
necessary to study the relation between the Radon-Nikodym
density R and the Jacobian J of an arbitrary homeomorph-
ism for which only existences of R and J almost everywhere
are assured. It will be proven that R ^ \J\, almost every-
where, which is the main result of this paper.

The change of variables is one of the important subjects in the

theory of integrals. Suppose y = y(x) maps an open set Dt homeo-

morphically noto an open set D2 in the m-dimensional Euclidean space

Em(m ^ 1). Define the outer measure v(X) of a subset X of Όι by

(1) v ( X ) = i n f [ [ d y ι --> d y m

J Jy(U)

where the infimum is taken with respect to open sets U in Dx con-

taining X, and denote by #V(A) the field of y-measurable sets in

Z/(A)> the field of Lebesgue measurable subsets of D^ The problem

of the change of variables is to study the structure of the measure

space (v, B^D^, D^). Among contributions in this direction the follow-

ing theorem of Rademacher [6] is frequently made use of (see also a

comprehensive alternative proof of Tsuji [10]):

Suppose y — y(z) is almost Lipshitzian in the sense that

(2 ) l im sup \h\~ι\ y(x + h) - y(x) \ < c>o
h-+0

for almost every x in JDlβ Then

(3) B,(A) - £(A) = {X\XeL(A), y(X)eL(D2)}

and the Jacobian

(4) Jy(x) = det Ά x )
\dx3

y = y(x) exists for almost every x in Dt and

375
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( 5 ) v(x) = ί ... ί I Jy(x) I dx1 dxm

for every X in i?v(A) = £(A)
The mapping y = y(x) with the property (3) is called inverse-

measurable. This property is equivalent to y(X) having Lebesgue
measure zero along with X. For such a mapping y = y(x) there ex-
ists a Radon-Nikodym density Ry(x) associated with y = #(#) charac-
terized as follows: Ry(x) ^ 0, #„(#) is Lebesgue measurable on A> and

(6) v(X) =

for every X in /^(A) = £(A) The Rademacher theorem can be re-
stated as follows: if a homeomorphism y — y(x) is almost Lipshitzian,
then its Radon-Nikodym density Ry(x) and Jacobian Jy{x) exist almost
everywhere and are identical in absolute value. However it frequently
occurs that only the existence of Ry{x) and Jy(x) almost everywhere
is assured. In such a case what can be said about the relation be-
tween Ry(x) and Jy{x)Ί The purpose of our paper is to study this
question.

Our main result is that if Ry(x) and Jy{x) exist almost everywhere,
then inequality Ry(x) ^ | Jy(x) | is valid almost everywhere (Theorem 5).
As a consequence, if, in addition to the existence of Ry(x) and Jy(x) almost
everywhere, the inverse mapping x — x(y) of y — y(x) also has Rx{y)
and Jx(y) almost everywhere, and if Jy(x) Jx(y(x)) = 1 almost every-
where, then Ry(x) = \Jy(x)\ (Theorem 10).

As an application we shall show that a homeomorphism between
open sets in Em(m ^ 3) is a Dirichlet mapping, a mapping preserving
the finiteness of Dirichlet integrals of admissible functions, if and only
if it is a quasi-isometry (Theorem 14).

ASYMPTOTICAL DIFFERENTIABILITY

1* We denote by Em the m-dimensional real Euclidean space

whose points x are %-tuples x — (x1, , xm) of real numbers (m ^ 1).

It is an additive vector space over the real number field R. The dis-

tance between two points x = (x\ , xm) and y — (y\ , ym) is

denoted by | x - y \ = (ΣΓ-i \x* - y* Γ)1/2

For an open set D in Em we denote by L(D) the family of all
Lebesgue measurable sets in D and by μ the Lebesgue measure on
L(Em). Let X be a bounded set in L(Em). The number

( 7 )
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is called the parameter of regularity for X where the supremum is
taken with respect to m-dimensional cubes IZD X. A sequence {Xn}
of bounded closed sets in Em is said to be a regular sequence con-
verging to a point xQ e Em if xoe Xn (n = 1, 2, •) and there exists a
positive number a > 0 such that

( 8 ) r(Xn)^a (n = l ,2, . . . )

and the diameters of Xw tend to zero as n tends to infinity.
Fix a set XeL(Em) and consider a regular sequence {Xn} con-

verging to xeEm such that

exists. Denote by δz(x) (resp. δx(x)) the supremum (resp. infimum)
of the set of all possible a{Xn). If δx(x) = δz(a?), then the common
value is denoted by δx(x) and called the density (or more precisely
the Lebesgue density) of X at a?. If δx(#) exists, then

( 9 ) δx(x) - lim μ(X,0*»>

for ever?/ regular sequence {Xn} converging to a?.

The well-known Lebesgue density theorem claims that <5X($) = 1
almost everywhere on X and δx(x) = 0 almost everywhere on £7m —
X. This is the special case of the Lebesgue differentiability theorem:
if f(x) is integrable on Em, then, for almost every xoeEm,

(10) UmμiXJ-Λ f(x)dμ(x) = f(x0)

for every regular sequence {Xn} converging to x0.

2. Let f(x) be a real-valued function on a measurable set X.
The function / is said to be asymptotically differentiable at a ; o e l if
there exist real numbers a,i(x0) (i — 1, •••, m) and a measurable sub-
set £(#0) of X containing xQ such that

(11) f(x) - /(aj0) + Σ ΛίίίCo)̂ * - ô) + λ(a?; x0) ,
i —l

with

(12) lim X(x; Xo) = 0 ,
xeS(xQ),x-+xQ I X — XQ I

and
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(13) dS[Xo)(xo) = 1 .

The set S(x0) is referred to as an asymptotic set of / at x0 for its
asymptotical differentiability.

The following theorem of Stepanoff [9] plays an important role
in our reasoning:

Suppose f(x) is measurable on an open set D c Em and (df/dxi)(x)
(i = 1, •••, m) exist for almost every xeD. Then f(x) is asymptoti-
cally differentiable at almost every point x0 e D and ai(x0) in (11) is
given by

(14) afa) = J£-(Bo) (ΐ = 1 m) .

For a proof we refer Stepanoff [9; 523-524] or the monograph of
Saks [7; 300-303]. In the latter reference, however, the asymptotical
difierentiability is replaced by the approximate differentiability which
is defined by (11)—(13), with the Lebesgue density replaced by the
Saks strong density which is simply called the density in the book.
The proof there can be easily modified to fit the present situation.
It should also be remarked that proofs given in both references are
for the case m = 2, but their generalizations to higher dimensions
are, as they claim, straightforward.

3* Let y = y(x) be a mapping of a measurable set XaEm into
Em. We call y(x) asymptotically differentiable at x0 e X if there exists
a matrix A(x0) of (m, m)-type and a measurable set S(x0) c X con-
taining x0 such that

(15) y(x) = y(x0) + (x - xQ)A(x0) + Λ(x; x0)

where Λ(x; x0) = (X\x; xQ), , Xm(x; x0)) e Em,

(16) lim ' / x ^ ' *>> ' = 0 ,

and

(17) δ S { β 0 ) (αj 0 ) - 1 .

The set S(xQ) is again referred to as an asymptotic set of y(x) at x0

for its asymptotical differentiability.
The Stepanoff theorem cited in 2 may be restated as follows:

Suppose y(x) is a mapping of an open set D c Em into Em, the
components yι(x) (i = 1, •••, m) of y(x) are measurable in D, and the
(dyydxj)(x) (i, j = 1, , m) exist for almost every x in D. Then y(x)
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is asymptotically differentiable at almost every point x0 in D, and
A(x0) in (15) is given by

(18) A(x0) =

\dx
m{

To see this take EiCzD for each i = 1, , m such that y\x) is
asymptotically differentiable at each point x e Eι and μ(D — E^) — 0.
Set E = nr=i ^ Then μ(D - E) = 0 and every y\x) (i = 1, ., m)
is asymptotically differentiable at each point £0 in E. Let S ^ ) be
an asymptotic set of y\x) at x0 for its asymptotical differentiability
(i = 1,-...,m) and put S(α0) = ΠΓLi^fe). Then (15) and (16) with
(18) are valid. We have only to prove (17).

Let {Xn} be an arbitrary regular sequence converging to x0. Since

δsii*Q)(Xo) = 1, we infer that

(19) u

for every % — 1, m. Observe that

- 5(a!,)) Π X
n
)
 <
 £, μ((E

m
 - Sj(x

0
)) Π X J

μ(x«)

and therefore (19) implies

(20)
n x.) = 0

μ(Xn)

In view of μ(S(x0) Π XJ + i«((£'m - S(x0)) n XJ = μ(Xn), we conclude that

(21) lim ^ ( g ( X " I n X " } = 1 .

Since (21) is true for every regular sequence {Xκ} converging to x0,
we obtain (17).

THE MAIN INEQUALITY

4. Hereafter we assume that y = y(x) is a homeomorphism of
an open set A onto an open set A in Em(m Ξ> 1). In terms of com-
ponents, y = y(x) is expressed by the system of functions on D^.

(22)
,χ

m
)
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The mapping y = y(x) is said to be inverse-measurable if Xe
implies y(X) e L(D2), or what amounts to the same, if μ(X) — 0
( I c f l i ) implies μ(y(X)) = 0. In this case the nonnegative set func-
tion v(X) on L(A) defined by

(23) v{X) = μ(y(X))

is ^-absolutely continuous and we have the existence of the Radon-
Nikodym density Ry(x) of y = y(x), characterized by the properties
Ry(x) ^ 0 on Dlf Ry(x) is Lebesgue measurable on Dly and

(24) v(X) = \ Ry(x)dμ(x)

We call the mapping y = y(x) partially differentiate at xe Dί

if the partial derivatives (dyydxj)(x) (ΐ, j = 1, •••, m) exist a t x. In
this case the Jacobian Jy(x) of y = ?/(α;) a t cc exists:

(25) Jy(x) =

Here we append a remark: if dyi/dxi exists almost everywhere on
Dί9 then it is Lebesgue measurable (cf. Saks [7; p. 299]) Thus if
Jy(x) exists almost everywhere on D19 then Jx(x) is Lebesgue measur-
able on A

5* The general conclusion we can make on the relation between
Ry{x) and Jy(x) is the following which is the main result of the paper:

THEOREM. Let y = y(x) be a homeomorphism of an open set Dt

onto an open set D2 in Em(m ^ 1) which is inverse-measurable on Dλ

and partially differentiate at almost every point in Dx. Then the
Radon-Nikodym density Ry(x) and the Jacobian Jy(x) ofy — y(x) satisfy
the following inequality almost everywhere on D^.

(26) Ry(x) £ I Jy(x) I .

The proof will be given in 6-9.

6* By the Lebesgue differentiability theorem we can find a set
EczD1 such that μ(A - E) = 0 and

(27) \ιmμ(X%)A Ry(x)dμ(x) - Ry(x0)
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for every regular sequence {Xn} converging to any point xoeE.
By the Stepanoff theorem in 3 we can also find a set Fez D± with

μ(Dί — F) — 0 such that y = y(x) is asymptotically differentiate at
every point x0 e F. Set G = E Π JF. We have μ{Dx - G) = 0.

Fix an arbitrary point $0 € (? and represent y — y(x) by

m

(28) r = Irt + Σ djk(xk - Xo) + λ'(a;; *„) ( j = l , , m )

w i t h y0 = 2/(a;0) a n d α i f c = (dyj/dxk)(x0) (j, k = 1, •••, m ) . W e a l so s e t

(29) τ(x) = I α? - x01"1 (Σ

Let S = S(xQ) be an asymptotic set of y = y(x) at xQ for its asymp-
totical differentiability. Recall that

(30) δs(x0) = 1 .

From this and (16) we obtain

(31) lim τ(x) = 0 .
xeS,x-*XQ

As an approximation to (28) we consider a linear transformation
z = «(a?) given by

(32) ^ = yi + Σ αy4(!B* - xk

0) (j = 1, , m) .

Let jδΓ(r) = {x I | x — x0 \ ^ r} and set ε(a ) = sup a . e s n ί : ( r ) r(a?). Then (31)
implies that

(33) lim ε(r) = 0 .
r~*0

Observe that if xeSf) K(a), then, by (28), (29), and (32),

I y(x) - z{x) |2 = Σ I yj(x) - z\x) |2

= Σ (V(x; «o))2 = (I a? - ίίo I τ(a ))2 ,

and therefore

(34) I y(x) - z(x) I ̂  ε(r) r (xeSf) K(r)) .

7. For short we will set S(r) = S Π ίΓ(r). By (30) and (9) we
obtain

(35)
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Take a closed subset S(r) of S(r) such that xQ e S(r) and

μ(S(r)) ^ (1 - r)μ(S(r)) ,

(36) L Ry(x)dμ(x) ^ (1 - r)\ Ry(x)dμ(x) .

Then by (35), \imr^0 μ(S(r))/μ(K(r)) = 1, which shows that for any
strictly decreasing sequence {rn} converging to zero, {S(rn)} is a regular
sequence converging to x0. Therefore by (27)

) - 1 ^ Ry(x)dμ(x) = Ry(x0) .

This with (35) and (36) gives

(37)

In view of this, it will suffice to prove that

(38)

8* To establish (38) we will distinguish the cases Jy(x0) = 0 and
Jy(x0) Φ 0. First suppose Jy(x0) = 0. Then the mapping z = z(x) in
(32) is degenerate and therefore z(S(r)) lies on a hyperplane P which
may be identified with Em~ι, the (m — l)-demensional Euclidean space.
By (32)

m m / m

V I %o _ yd 2 < a2 Y\\ x3' — xj I2 a = ( Ύ\ a2-
3=1 3=1 \j,k = l

and a fortiori

μmJz(S(r)) ^Γ(l + ^-^

where /ιw-1 is the (m — l)-dimensional Lebesgue measure o n P = Em~\
By virtue of (34), y(S(r)) is contained in a cylindrical region with the
base congruent to z(S(r(l + ε(r)))), and of heigh 2 ε(r) r. Hence

μ(y(S(r))) ^ 2(rΓl + m ~+

Since ^(ίΓ(r)) = Γ(l + m/2)~ιπml*rm, (33) implies that

and (38) is trivially true with the equality.
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9* Next we treat the case | Jy(x0) | > 0. Let (bid) be the inverse
matrix of (ai3), the existence of which is assured by det {ai3) = Jy(x0) Φ
0. The inverse transformation of (32) is then given by

(39) xj = xi + Σ bjk(zk - yt) (j = 1, , m) .

Denote by \bid) the transposed matrix of (δ^ ); let {Bi3) — ' (δ^ ίδ^ );
then consider the strictly positive definite bilinear form

m

B[ξ, V] = Σ Bjkξ
jγ

for ξ = (ξ\ , Γ ) and η = {τ)\ --,Vm) in Em; set
m

tS[ξ\ = n[ξ, ξ\ = 2 J &jkξ ξ
m / m \ 2

= Σ(ΣA^)Σ
\k=l

Let

H(r) = {ζeEm\ B[ξ - y0] ̂  r2} .

This set is a closed ellipsoid with center y0. Since (39) implies that
m / m

B[z - 2/o] = Σ ( Σ
m / m \ 2 m

( ) = Σ
j=-L

the image of ^(r) under (39) is Kir), and therefore z(K{r)) =
Hence

M#(r)) = i«(2(£-(r))) = ί I J.(x) I dM»)
JK(r)

The Jacobian Jβ(a?) of the mapping z = z(x) in (32) is given by

Jz(x) = det (α ί y) = Jy(x0)

and we obtain

(40) μ(H(r)) = \Jy(x0)\μ(K(r)).

Let a GS(r) = SΠ K(r). Since 5[ ]1/2 is a norm on Em,

(41) J5[y(aj) - y0γ
12 ^ B[y(x) - φ ) ] 1 / 2 + 5 [ φ ) - τ/0]

1/2 .

Observe that x e S(r) c K(r) implies z(x) e z(K(r)) = H(r), which in
turn gives

(42) B[z(x) - y0] ̂  r 2 .

In view of (34) we also conclude that
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(43) B[y{%) - φ ) ] ^ V I y(x) - φ ) |2 ^ b\ε{r) rf

with 6 = (Σ"*-ι bh)φ. From (41)—(43), it follows that

B[y(x) - y0] ^ (r(l + 6s(r)))2

for « in S(r) and therefore

Thus (40) can be used to conclude that

μ(y(S(r))) 5S μ(H(r(l + 6e(r))))

= \Jy(x0)\ μ(K(r)))(l + 6e(r)) .

Again by (33), we now have

μ(v(S(r)))

i.e., (38) is proved.
The proof of Theorem 5 is herewith complete.

INTEGRATION BY CHANGE OP VARIABLES

10* As a direct consequence of the main inequality (26) we obtain
the following result on integration by change of variables:

THEOREM. Let y = y(x) be a homeomorphism of an open set Dλ

onto an open set D2 in Em and let x = x(y) be the inverse mapping
of y = y(x). Suppose both y = y(x) and x = x(y) are inverse-measur-
able and also partially differentiable almost everywhere. Moreover
suppose the Jacobians Jy{x) and Jx(y) ofy = y(x) and x = x(y) satisfy

(44) JM'JMv)) = 1

almost everywhere on Dt. Then f(y) is Lebesgue measurable on D2 if
and only if f(y(x)) is Lebesgue measurable on Dx, and if f(y) is
Lebesgue integrable on D2, then f(y(x))Jy(x) is Lebesgue integrable on
Όγ and

(45) ( ( f(y)dyι dy™ - ( - ( f(y(x)) \ Jy(x) | dx1 dx» .

l l For the proof take the Radon-Nikodym densities Ry(x) and
Rχ(y) of y = y(x) and x = x(y), and observe that
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( dμix) = ( dμ(x)
JX Jχ(y(X))

= \ Rx(y)dμ(y) = \ R.{v{x))R&W(v)
Jy(X) JX

for every J e Ι ( A ) . Then

(46) Ry(χ)-RΛv(v)) = l

almost everywhere on Dt.
Then main inequality (26) applied to x = x(y) yields Rx(y) ^ | Jx{y) \

almost everywhere on D2, and since x(y) is inverse-measurable, we
obtain

(47) RMx)) ^ I JM«)) I

almost everywhere on Dx. By (44), (46), and (47), we infer that

(48) Ry{x) ^ I Jy(x) I

almost everywhere on A Again by the main inequality (26), Ry(x) ^
I Jy(x) I almost everywhere on Dlf and this with (48) implies that
By(x) = \Jy(x)\ almost everywhere on Dlf i.e.,

(49) ί dμ(y)= \ \Jy(x)\dμ(x)

for every YeL(D2).
Since Xe i ( A ) if and only if y(X) e i ( A ) , f(y) is Lebesgue measur-

able on D2 if and only if f(y(x)) is on Dlf and in this case f(y(x))Jy(x)
is Lebesgue measurable on Dx. Thus by the definition of integrals and
by (49), (45) is shown to be valid first for bounded nonnegative measur-
able /, and then, by the Lebesgue convergence theorem, for nonnega-
tive integrable /, and finally, by decomposing / into positive and
negative parts, for general integrable /.

DIRICHLET MAPPINGS

12. In the remainder of this paper we deduce an application of
the theorems given thus far. Especially the main inequality (26) in
Theorem 5 will play a crucial role.

Let D be an open set in Em(m >̂ 2). We denote simply by W(D)
the Sobolev space TF1>2(D), the space of real-valued functions φ on D
such that φ and their distribution derivatives [dφ/dx%is (i = 1, , m)
are square integrable functions on D. Since the (dφjdx1) (i = l, , m)
exist almost everywhere on D and are square integrable, we can
define the Dirichlet integral D(φ) of φ by
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(50) D{φ) = ( • • • ( Σ ( l ^

We also write DD{φ) if it is necessary to indicate the dependence on
the integrating domain D. For Sobolev spaces, see e.g., Yosida [11].

13* Let y = y(x) be a homeomorphism of an open set Dλ onto
an open set D2 in Em, of dimension m ^ 2.

DEFINITION. The homeomorphism y = y(x) is said to be a Diri-
chlet mapping of Dx onto D2 if 9(2/) e W(D2) is equivalent to

The notion of Dirichlet mapping was introduced in Nakai-Sario
[5], where the following additional requirement was imposed; there
exists a finite constant K ^ 1 such that

(51) K~*DD>{φ) ^ DDl(φoy) £ KDD2{φ)

for every φ in W(D2). However it is known that (51) is a conse-
quence of the very definition of Dirichlet mapping (see Nakai [4]).

As is well-known the solution of the variational problem min DD(φ)
among functions φ with a fixed boundary condition is harmonic.
Therefore W(D) is, in a sense, characteristic of the potential-theoretic
structure of D, and thus Dirichlet mappings may be viewed as mappings
which preserve, again in a sense, potential-theoretic structures of open
sets. In view of this it is important to characterize Dirichlet mappings
geometrically. For m — 2 it is known that a mapping is a Dirichlet
mapping if and only if it is quasiconformal (see Nakai [3] and Sario-
Nakai [8]). For quasiconformal mappings, see e.g., the monograph
of Kΐinzi [2] and also Gehring [1], among others.

Our object is, in contrast, to characterize Dirichlet mappings
geometrically for m ^ 3. Hereafter we always assume that m ^ 3.

14* Let D be a region, i.e., connected open set in Em. For two
points x1 and x2, we denote by [xl9 x2] the line segment connecting x1

and x%\

[xly χ2] = {x I x = axλ + (1 — ά)x2, 0 ^ a ^ 1} .

For two points x0 and x in D, the Riemannian flat metric pD(x0, x)
is defined by

(52) pD(χ0, x) = inf

where the infimum is taken with respect to every finite sequence
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{Xj}]=o such that x% — x and [Xj-l9 xό] c D (j = 1, , n). Clearly pD

is a metric on D, and, provided [x0, x] c D, we have

(53) p D ( x 0 , x) = \ x 0 - x \ .

DEFINITION. A homeomorphism y — y(x) of a region A onto a
region A in Em is a quasi-isometry if there exists a finite constant
K ^ 1 such that for any two points xx and #2 in A

(54) K-'pnfa, X2) ^ PDMXI)> y(X*)) ^ KPD,{XH X*)

In view of (53) and (52), the condition (54) is equivalent to the
following:

(55) K~ι\ x ι - x t \ ^ \ 2 / ( O - τ/(^2) \ S K \ x , - x 2 \

for any two points x1 and ^2 such that

{^ I I x - xt I ̂  I α;2 - xt |} c A ,

{y\\y - 2/(»i)I ^ 13/(»2) - 2/(«i) 1}c A .

15 • A complete geometric characterization of Dirichlet mappings
for m ^ 3 is given as follows:

THEOREM. A homeomorphism y = y(x) of a region Όγ onto a region
A in Em(m ^ 3) is a Dirichlet mapping if and only if it is a quasi-
isometry of A onto A

It is not difficult to generalize the concepts of Dirichlet mapping
and quasi-isometry and also the above theorem to the case where A
and A are Riemannian manifolds.

To prove the theorem we have a rather long way to go: 16-23.
An application of Theorem 5 will appear in 21, which is one of the
crucial steps in our proof.

16. First we suppose y = y(x) is a quasi-isometry of A onto A,
and shall prove it is a Dirichlet mapping. A somewhat indirect
proof for this was already given in Nakai-Sario [5], but we furnish
here a more direct proof for the sake of completeness. Observe that

(57)
h\

and by the Rademacher theorem mentioned in the introduction, (3)
and (5) are valid for the present y(x). In particular, (57) assures
the uniform boundedness of partial derivatives of the components of
y(x) in the essential supremum norm, and the same is true of the
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inverse x(y) of y(x).
Therefore there exists a finite constant Kγ ^ 1 such that

(58) KΓιDD2{φ) £ DDl(φoy) £ K,DDz(φ)

for every φe W(D2) Π C°°(D2). Here φoye W{D^ is obviously true.

17* We pause here to insert the following remark. Consider
the norms

I l / H ϊ . x > = j
| |/IU> 2> = ess-sup \f(x)\

D

for / e W(D). By the standard mollifier method (or the regularization
method (cf. e.g., Yosida [11; p. 29, 58]), see also 23 below), we can
see easily that W(D) Π C°°(D) is dense in W(D) with respect to the
combined norm

and also that W(D) Π C°°(D) is dense in W(D) n C(D) with respect
to the combined norm

Here, as usual, C°° stands for infinitely continuously differentiable,
and C for continuous.

18. Fix an arbitrary φ e W(D2) and choose {φn} c W(D2) Π C*(A)
such that HI <ρ — φn \\\Ό tends to zero as n tends to infinity. Since
Jy(x) is essentially bounded by iζf, say, we see that

II Φn°y - <Pn+p°v \U,Dl ̂  K2\\ φ n - φ n + p \\2,D2

and by (58) we can find a constant K3 such that

III Ψn-v - < p n + P ° y \\\Dl ^ K3\\\ φ n - φ n + p III

for every n, p — 1, 2, . Since TF(A) is complete with respect to
HI HI (cf. Yosida [11; p. 55]) and a suitable subsequence of {φn} con-
verges to φ almost everywhere on D2 and y(x) is inverse-measurable,
we conclude that φ°yeW{Dύ We remark in passing that (58) is
valid for the present φ. Similarly ψ e TF(A) implies that ψoχ e X(D2).
Thus we have seen that y(x) is a Dirichlet mapping.

19* The main part of the proof is to conclude that y = y(x) is
a quasi-isometry of Dλ onto D2 under the assumption that y = y(x) is
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a Dirichlet mapping of A onto A Needless to say the inverse
mapping x = x(y) of A onto Όλ of y = y(x) is also a Dirichlet mapping.

Take an arbitrary relatively compact region D[ in A Let
φ 6 C°°(A) such that φ has a compact sopport in A and <p | ?/(A') = l
For each % = 1, •••, m, φ{y)*yi:e W(D2) and hence φ{y{x))y\x) e TF(A)
Since φiyix^y^x) = /($) for x e A , we conclude that #*'($) e TΓ(D[)
(ΐ = 1, * ,m) for every relatively compact region A in A The
same is true of αf(τ/) (i = 1, , m)

Since the partial derivatives of the y*(x) exist almost everywhere
and are measurable on Du

(59) \{x) = Σ (-^7^

is defined almost everywhere on A and measurable. We shall first
prove that

(60) X(x) > 0

almost everywhere on A
For this purpose we consider the set

E = {£ G A I λ(α) = 0} ,

which is clearly measurable. Take arbitrary relatively compact open
sets Uι and Vγ such that Uιa V1cz V1aDiy and set U2 — y{U^) and
V2 = y(Vί). Also choose an open set V2 with V2a V2a V2aD2.
Since x\y) e W(V2) Π C(F2') (i — 1, •••, m), we can find sequences
K(τ/)}c T7(F2') n C°°(F;) such that

(cf. 17). Let Ae C°°(A) such that h \ U2 - 1 and A | (A - V2) = 0.
Set

m m

9̂ (2/) = λ(i/) Σ χi{v)i Ψniv) — (̂̂ /) Σ χUy)

These functions can be considered to be in W(D2) Π C°°(A) In view
of (61) we have

(62) lim DD {φ — φn) = 0 .
n-+oo

We also write u(x) = φ(y(x)) and %Λ(a?) = φn(y(x)). They are in
V). Observe that if xeU19 then u(a ) = Σ?U ^ and wn(a;) =

,Γ=i »i(2/(«)) Using (51) we inferΣ:
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- Un) ̂  DDί(φoy - φnoy)

and by (62) we conclude that

(63) lim DUjrE(u — un) = lim Dπ(u — un) = 0 .

n—*oo n—*oo

In particular

(63') DΠι_E(u) = lim D^uJ, DΠι(u) = lim Dπi{un) .

Since #;(?/) 6 C°°(Z72) (i = 1, , m), we see that

= Σ Σ ̂ τivi*))-^τ(χ) = o (i = l, , m)

for xe Ut Π E, i.e.,

for xeU.ΠE. Therefore

and by (63) we conclude that

(64) DUιrE(v)

However for x in U1

and (61) takes on the form

\ m dμ{x) = I
J Uχ-E J CΓ

Since this is true for every relatively compact open set U1 in Dly we
must have μ(E) = 0 and (60) is herewith established.

20 For each ζ = (ξ\ , <fw) e j&m with | £ | = 1 we consider

(65) λt(a;) = Σ Σ f^*)-ψτ(χ)-?# -
i,j=ιk=ιdχk OXk

which is defined almost everywhere on DΣ. Fix an arbitrary point
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x0 e D1 and an arbitrary positive number ε > 0. Let

Vε = Vε(y0) = {y I I y - y* I <ε} , 2/0 = 2/(O

Choose the function /&(#) e C(A) characterized by h \ Vβ = l, h\ (A— V2s) =
0, and

/ ^ ) = 1 - ((2ε)2~w - ε2—)~1(| 1/ - y0 \
2~m - ε2—)

for ye V2e — F e , i.e., Λ is the harmonic function on V2ε — F ε with
boundary values 1 at the interior boundary and 0 at the exterior
boundary. Consider

- h(y) Σ ξΎ ,
t = l

which is clearly in W(D2) By (51), we see that

Dx{V£)(φoy) ^ DD}(φoy) ^ KDφ) - KDvJφ)

and therefore

(66) ί Xζ(x)dμ(x) £K([ dμ(y) + Dv^yε{

At each y e VZe — F£, we have

and an integration of both sides gives

Dylε-y£(h) ^ 8ε2 Γ(l + m/2)~W2(m - 2)(2m~2 - l)ε—2 + 2 ^(F 2 ε - f.) .

Therefore, putting Kx = K + 8(m - 2)(2m~2 - 1) + 2(2m - 1), we con-
clude that

(67) ( \t(x)dμ(x) £ Kjt{V.) .

If we choose ξ = (δ*1, , δΐm) (? = 1, , m) and add (67) with these
choices of ξ, we obtain, on setting mK^ — K2,

(68) ί \(x)dμ(x) ^
Ja;(Fε)

This is true for every Vε — Vε(x0) c D2.

Let Y be an arbitrary set in D2 with μ(F) = 0. For each n —
1, 2, we can find suitable balls Vni = yβn<(2/»i) c A such that
7 c Ur-i Vni and ΣΓ=i M F J < 1/n. Let Bn = UΓ-i FΛ< and 5=Π?«i ft.
Since α?(B) - f|?-i «(ft) = Πϊ=i (U?-i «(Ki)) is a Gδ-set, α?(J?) is Lebesgue
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measurable and

[ \{x)dμ{x) ^ \ X(x)dμ(x)
Jx(B) Jx{Bn)

^ Σ ( Mx)dμ(x)
i=l Jx(Vni)

for each n = 1, 2, . In view of (68)

ί X(x)dμ(x) ̂  Kt Σ M K<) ^ £i/»

for every % = 1, 2, •••, and we conclude that I X(x)dμ(x) — 0. By
Jx(B)

(60), we must have μ{x{B)) — 0. Since a (JB) 3a;(F), we see that
μ(x(Y)) = 0, i.e., x = #(#) is inverse-measurable. The same should
be true of y = τ/(x) and we can consider the Radon-Nikodym density
Ry(x) of y = y(x).

2\. Take an arbitrary set X G / > ( A ) Since y{X) e L(D2), we
can find balls F%i = V..^^) c A such that τ/(X) c B , = UΓ=i V * and

. - y{X)) £ λ., Σ ^(K*) ^ J"(B.) + -i .

Set 5 = Γl?=i ̂  Then ^(B - τ/(X)) = 0 and thus v(x(B) - X) = 0.
Therefore

\ Xξ(x)dμ(x) = \ \ζ{x)dμ(x) <L \ \ξ(x)dμ(x)
JX Js(iί) J*(SΛ)

^ Σ ί Mx)dμ(x)
i = i Jx(Vni)

for every n. An application of (67) to the right-hand terms gives

( \ξ{x)dμ{x) ^Kλ± μ{Vni) ^ Kγ (μ{Bn) + -)

^ K, (μ(y(X)) + -?-) .

On letting w —» oo, we obtain

(69) ( \t(x)dμ(x) ^ K, \ Ry(x)dμ(x)
JX JX

for every XeL(A) and every ξeEm with \ζ\ = 1.
Now we are in a position to use (26) in Theorem 5: Ry{x) ^ Jy(%)

From (69) it follows that
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(70) ( \ξ(x)dμ(x) ^KΛ \ Jy(x) | dμ(x)
JX JX

for every X e L ( A ) and every ζeEm with \ζ\ = 1. Let {£J be a
countable dense subset of {f e Έm \ \ ξ | = 1}. Since (70) is true for
£ = ξi and every Xe L(Dλ)f there exists a set F{ c A such that μ(Fi) =
0 and

(71) λe<(α) ^ Xi I Jy(x) I (a? e A - Ή) •

Put F = \JT=i Fi c A T h e n μ(F) = 0 and (71) is true for each
xeDλ — F and every i = 1, 2, ••• . Since {£} is dense in | ξ \ = 1,
we finally conclude that

(72) Xζ(x) ^ Kx I Jy(x) I (xeD^F, μ(F) = 0)

for every ξ e Em with | ί | = 1.
If we write

My(x) = (OIL and E = (δij) ,
\ox%/

i indicating the row and j the column, then (72) takes on the following
form in the matrix inequality:

ξ My(x) tMy(x) *f ^ ί -KΊI «Λ/(̂ ) I -&• *f

Since this is true for every ξ e Em, or rather, for every (1, m)-matrix,
we conclude that

My{x)**My{x)<zKι\Jy{x)\E.

The relation is preserved if we take determinants of both sides, and
we obtain

and a fortiori

(73) \Jy(

almost everywhere on A> where Ks — Krml{m~2). At this point the
assumption m ^ 3 is made essential use of. The same argument can
be applied to Jx(y) to yield

(74) \

almost everywhere on A

22* Let D[ and D" be arbitrary relatively compact regions such
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that D'2 c D'l c D'2
f c Dt. Set D[ = x{D[) and D[' = x(D'2'). Let h e C-(A)

such that the support of h is contained in Z)" and h\D'2 — 1. Choose

c TW) n c~(z>r) with

(75) l im| |a4(-)-aV)IU; = 0 (i = l, ,»)

(cf. 17). Set u{(y) = xi(y)-h(y) and ^(y) ~ xi(y)*h{y)'7 they can be
viewed as members of TF(A) From (75) and (51), we conclude that

( 7 6 ) II χ\°v - tfoy \\D[ ̂  II <°v - tf v \W
^IK-^Ίk-o (tt—oo)

for every i = 1, •••, m. By choosing a suitable subsequence, we may
assume that

^ '

almost everywhere on D[. We might also assume that dxijdyk con-
verges to dxydy* almost everywhere on D'21 and since y(x) is measur-
able (i.e., x(y) is inverse-measurable), we conclude by (77) that

(78) Σψ-M*)) ψj(x) = ^
Λ=I oyk ox3

almost everywhere on D[ and hence on Dt. This means that

(79) Jy(x)-JM%)) = 1

almost everywhere on D^ From (74), (79), and the fact that x(y) is
inverse-measurable, it follows that, by setting iΓ4 = Kf\

(80) \

almost everywhere on A On combining this with (72) we see that

(81) dy K, (i,j = 1, •'-, m)

almost everywhere on D19 with iΓ5 =

23* We are ready to prove (54), or equivalently (55). To this
end we fix two arbitrary points x1 and x2 satisfying (56). Set

B = {x G Em I I x - x, I g I cα2 — xx |} c Όγ ,

and let 77 > 0 be the distance, which may be 00, between the boundary
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of A and B.
Let θ^x) = exp ((| x |2 - I)"1) for | x) < 1 and θx(x) = 0 for | α? | ^ 1;

it is in C°°(Em). Choose cTO > 0 so that the function θn{x) = cj^
which is also in C°°(Em) with its support in | x | ^ 1/n, satisfies

(82) ( θn{x)dμ{x) = 1

for each n = 1, 2, . We will consider only those n which meet
the condition 1/n < η. Consider regularizatίons of y\x)\

i(χ) = \ y\χ - ξ)θn

where x is in the interior B of J5. Then yi(x) e C°°(B) (i = 1, , m;
m = 1, 2, •) and

(83) lim I! 2/ί(.) - !/*(•) | | B = 0 i = 1, , m)

(cf. Yosida [11; p. 29, 58]). Since the dyljdxj (ί, j = 1, . . . , m) are
square integrable, integration by parts implies

ox3 Jι»-fisi/»9fJ

By (81) and (83), we conclude that

(84) (xeB;i,j = 1, ••-, m) .

The mean value theorem yields

*=i 3 ^ f c

for some ^ e (0, 1) and every i = 1, , m. In view of (84), we have

I vM - ήfa) I2 ̂  mif5

21 ^ - x21
2 .

On letting n—> CXD, we conclude in view of (83), that

(85) I y'ix,) - y\x2) |2 ^ miί5

21 xx - x21
2 (i = 1, . , m) .

Adding (85) with respect to i = 1, , m, we finally obtain

Iy(χd - yfa)\^ Kelx,- χ2\ ,

with K6 = mKδ, for every xt and x2 in Dj with (56). If we inter-
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change the roles of y — y(x) and x = x(y), we also have

KfL I xt - x21 ^ I y{x,) - y(x2) | ^ K6 \xλ - x2 | ,

i.e., (55) and thus (54) is valid.

The proof of Theorem 15 is herewith complete.
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