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INTEGRAL INEQUALITIES OF WIRTINGER-TYPE
AND FOURTH-ORDER ELLIPTIC
DIFFERENTIAL INEQUALITIES

PUI-KEI WONG

A generalized Riccati transformation is used to transform
a fourth-order elliptic differential inequality. From this an
integral relation is derived which includes as special case an
inequality of the Wirtinger-type. This Wirtinger inequality
is then used to prove a Sturmian comparison theorem for
fourth order quasilinear elliptic differential inequalities.

Integral inequalities of the Wirtinger-type for a real-valued func-
tion of a real variable have the form

(1) \bu'2dx^ [p(x)u2dx ,
Ja Jα

where p(x) is a function defined and continuous on [a, b] and u is any
member of some suitable admissible class, c.f [10], p. 185. In [3]
Beesack utilized certain self-adjoint ordinary differential equations of
the second and fourth order to generate other inequalities of type (1)
and

(2) Ϋu'ndx~^ [bp(x)u2dx .
Jα Jα

Coles [7] then extended some of these to include inequalities of the
form

0 ^ Σi-iy^Ϋfk{x)[u{k)fdx .
k=0 Jα

On p. 498 of Beesack's paper [3], one finds also the integral identity

ϊ + n\ - pu2)dA = jj(u. - gufdA + JJ(u, - hufdA ,

which is associated with the equation vxx + vyy + p(x, y) v = 0. Since
the quantity on the right is always nonnegative, this relation leads
immediately to a two-dimensional analog of (1). Such inequalities
were later obtained by Benson [4] and Calvert [5] An ^-dimensional
analog of (2) was given by Calvert in [6].

Following Beesack's method this author [17] has recently obtained
some Wirtinger-type inequalities analogous to (1) for matrix functions
of several variables. These were obtained through the use of a certain
generalized Riccati transformation associated with an elliptic system
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of the second order. In this paper we shall establish an analog of
inequality (2) by considering an elliptic inequality of the fourth order.
The resulting Wirtinger-type inequality, which generalizes the earlier
result of Calvert [6], is then used to prove a comparison theorem
between two selfadjoint quasilinear elliptic equations of the fourth
order. Finally we conclude by extending this comparison theorem to
include a special class of nonselfadjoint fourth order operators. Earlier
Swanson [15] had proved a comparison theorem for linear elliptic
operators of order 2m. More recently Diaz and Dunninger [8] and
Dunninger [9] have also considered comparison theorems for fourth
order linear elliptic equations of the form

A[a(x)/lu] — p(x)u = 0 ,

where a(x) and p(x) are scalar-valued functions.
Let G be a bounded domain of ^-dimensional Euclidean space Rn

with piecewise smooth boundary dG. A variable point of Rn will be
denoted by x = (xl9 •••,$«), and we adopt the following differentiation
notation:

) oi\ — 7~) it ΐ s) — "!

Let A = A(x, u) = (Aij(x, u)) and B = B(x, u) = (Bij(x, u)) be two real
symmetric n x n matrix functions defined on G x R such that AeC2

and B e C1. Suppose p = p(x, u) is a given real continuous function
and σ = σ(x, u) — {σι(x, u), , σn(x, u)) is a given continuous ^-vector
field on G x R. We consider the real quasilinear differential inequality
of the fourth order

(3) Dhi[Ahi(AjkDjku)\ - DtiBO'DjU) - 2σ\D4M - pu ^ 0 .

Here, and in what follows, we have adopted the Einstein summation
convention indicated below to shorten the computational formulas:

±
h,i,3 ,k = ί

Dhi[AM(AίhDίku)] =

= Σ
i*3=ί

LEMMA 1. Suppose u is a solution of (3) such that u(x) > 0 in
G. Set
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'vk = U~ιDkU, V = (vιy , O ,

, Z = (zjk) ,

, fe = 1, •••, n .

satisfy

p^ DM[AM{A*zSh)] + ( A ^ ,)2 + 2vhDi[Ahi(A»zik)]

Proof. To verify (5) we merely note that a direct calculation on
(4) yields the following identities:

(6a) u-'DjkU = zjk ,

(6b) ^ A l A ^ ί i l ^ D y ^ ) ] - A[A**(A^ i t)] + A^^

(6c) ^ 1 ) ^ ( 4 % ! * ) ] - flH[Aw(A%)] + (A

+ 2vhDi[Ahi(A*%k)] ,

(6d) vr'

Combining (3) with (6c) and (6d) we arrive immediately at (5).
We shall call (4) a generalized Riccati transformation and (5) the

Riccati inequation associated with (3). Before stating our first result
we shall introduce the following functionals:

( 7) MM Z) = \ [Aίk(Dikw - wzjk)fdx ,
JG

(8) M2(w, v) = \ Bij(DiW — wv%){Dόw — wv3)dx ,
JG

(9) Q(w, u) = [ [(AjkDjkw)2 + B^DtwDjW - pw2]dx ,
JG

(10) T(w: v, Z) = 2ί Ahi(Dhw - wvh)(DiW - wVi)ASkzjkdx ,
JG

7(w: v,Z) = \ [vfηkDi{AhiAihzih) + 2w2Ahivh7]iA
j%k]ds\

(ii) hG

- 1 [2wAh%DhwAjkzjk + w%BijVj]dS ,
JdG

where η — (ηlf , ηn) denotes the outward pointing unit normal on
the boundary dG and w is any member of the class

Ω - Iw e Cι{G) n C2(G): ί (AikDjkw)*dx < oo 1 .

We also point out that the functional Mt defined by (7) is always
nonnegative.

THEOREM 2. Let u be a positive solution of (3) in G and let v
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and Z be defined by (4). Then for all weΩ,

Q(w, u) + T(w: v, Z) + y(w: v, Z)
(12)

^w, Z) + M2(w, v) + 2Ϊ w2σ-vdx .
JG

Proof. Using the symmetry of A we can expand the right hand
side of (7) and get

(13) J G

 f

- 21 w(AhiDhίw)Ajkzjkdx .
JG

The last integral in (13), which we shall denote by /, can be inte-
grated with the help of the identities

Dh[Ahi(wDiW)A3'kzik] = (A^DkWDiVήAfZjk + {wAhiDhiw)A>kzjk

+ wDh[(Ajkzjk)Ahi]Dίw

and

= 2wDhwDi(AjkzjkA
hi) + w2Dhi(AjkzjkA

hί) .

Using the divergence theorem of Gauss, one finds that

I - ( [ZiA^DuwD^A^z^ - w2Dhi(Aj% kA
hi)]dx + φ , Z) ,

JG

where

7i(w, Z) = ( [vfη&iiAHzsuA") - 2w(Ah%Dhw)Ajkzjk]dS .
JdG

Putting this into (13) we get

Mλ = 7, + ( [(AjkDjkw)2 + w2{(Ajkzjk)
2 + Dhi(AjkzjkA

hί)}]dx(

(14) J G

+ 2 (AhiDhwDiW)Ajkzjkdx .
JG

Using the identity

DiivfB^v,) = w2Di{Bijv3) + 2wBίjvjDiw ,

one finds by a similar application of the divergence theorem that

M2 - [ [B'tDiWDsW + w'iD^B^Vj) +
(15) ]%

- w2{η-Bv)dS
JθG
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Adding (14) and (15) and rearranging terms with the help of (5), we
get

(16) M1 + M2 + 2f w2(σ-v)dx ^ Q(w, u) + Ύ2(w: V, Z) + J(w: v, Z) ,
JO

where

72(w: v, Z) = Txίw, Z) - [ w\η-Bv)dS
JdG

and

J(w: v, Z) = 2( w2[(Ajkzjk)
2 + v.D^A^z^A^dx

JG

Ϊ (AkiDhwDiW)Ajkzίkdx .
G

Using (4) and the divergence theorem, the integral J can be trans-
formed as follows:

= 2Ϊ [Ahi(Dhw - wvk)(DiW - wVi)Aj%k + Di(ufAhivhA
ίkz3'k)]dx

JG

= T(w: v, Z) + 2( w\Ahivhη%)AjkzάkdS .
JdG

Putting this back into (16) and collecting the boundary terms, we
finally arrive at (12) which is the desired relation.

We remark that when n = 1, A = (δij), (7 = 5 = 0 , and p — p(x),
relation (12) reduces to an identity of Beesack [3], p. 488, formula
(2.4), for fourth order linear ordinary differential operators. Since in
our case, the coefficient p may depend on u as well as x, relation (12)
is thus applicable to nonlinear equations such as

U H V ) _ | ^ | « = 0 ? a ^ l .

To facilitate discussion of boundary value problems we shall rewrite
the boundary term (11) using the following notation:

ua = ΎjiA^DjU , uβ = rjiB^DjU , Lu = AijDi5u .

Note that when (Aij) = (dίj), the identity matrix, Lu is simply the
Laplacian of u. In terms of these quantities (11) becomes

(11') 7(w, v) = \ (u-ιw2{(Lu)a -uβ + (Lu)[irιua + ^AU H ) ] }
JdG

— 2u~ιwwaLu)dS .
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COROLLARY 3. Suppose that
(HI) A is positive semidefinite;
(H2) B is positive semidefinite; and
(H3) u is a solution of (3) such that u(x) > 0 and Lu <̂  0 in G.
Then for every w e Ω,

(17) Q(w, u) + Ύ(w, U) ^ 21 u~ιw2{σ-Vu)dx ,
JG

where j(w, u) is given by (ll')

Proof. Since u is a solution of (3) such that u(x) > 0 in G, Lemma
1 and Theorem 2 together imply that (12) holds. Now M1 ^ 0 always
and M2 >̂ 0 follows from (H2). Using (6a) and the symmetry of A,
we can rewrite (10) as

(10;) T(w, u)~T(w: v, Z) =

Since A is positive semidefinite (H3) implies that T(w, u) <g 0 so that
(17) follows from (12).

To obtain an inequality of the Wirtinger type analog to (2) we
shall replace inequality (3) by the equation

[Ku = Dhi[(AdkDjku)Ahi] - DiiB^'Dju) - pu = 0 , xeG

\ 0, xedG.

THEOREM 4. Suppose that
(HI') A is positive definite;
(H2) B is positive semidefinite; and
(H3') u is a solution of (18) such that u(x) > 0 and Lu < 0 in G.
Then for every w e Ω for which w = 0 on dG,

(19) f [(Lw)2 + Fw-BFw]dx ^ f pwUτ ,
J G J<y

where equality holds if, and only if, w = ku, k = constant.

Proof. Since w = 0 on 3G, one sees from (11') that y(w, u) = 0.
Moreover, since inequality (3) is replaced by the equation in (18), we
see that equality must hold in (12) with y(w, u) = 0 and σ = 0, i.e.,

Q(w, ^) + T(^, u) = Miίw, u) + M2(w, u) .

Again M : ̂  0 always while (H2) implies M2 ̂  0. Also T(w, u) ^ 0
by (Hl;) and (H3') so that (19) follows immediately. Clearly equality
will hold if, and only if, T = M1 = M2 = 0. If w = ftw, then these
quantities are trivially zero. Conversely, if Tx — 0, then (10'), (HI')
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and (H3') together imply that we must have uDiW = wD{u, i = 1, , n,
and hence that w = ku. This proves the assertion.

REMARK 1. We recall that a function u is called a subsolution
of (18) if Ku ^ 0 in G and Lu = 0 on dG. Inequality (19) remains
valid for subsolutions if we weaken hypothesis (HI') to (HI) and re-
place (H3) by
(H4) u is a subsolution of (18) such that u(x) > 0 and Lu g 0 in G.
However, the last statement on equality if, and only if, w = ku, is
no longer true.

REMARK 2. When eq. (18) is linear, condition (H3') will be fulfilled
if u is a solution of (18) such that u(x) > 0 in G and that

(20) φ(u) = F (BPu) + pu- (DhiA
hi)Lu ^ 0 ,

φ(u) Ξ£ 0 in G. To see this we note that if we let y = Lu, then (18)
becomes

DiiA'SDjy) + DtiA^DjV = φ(u) ^ 0 .

Since A is positive definite by (HI'), it follows from the maximum
principle of Hopf ([13], p. 64) that y cannot attain a nonnegative
maximum M at an interior point of G unless y = M. Since y = Lu = 0
on dG, we have either y < 0 in G or y = 0 in G. But if y == 0 then,
by the last equation, φ = 0 in G, contrary to hypothesis. Hence
y = Lu < 0 in G.

If in addition we assume D^iA*') ^ 0 in G, then condition (20)
may be replaced by

(21) F{u) = V-{BVu) + pu ^ 0 ,

F(u) Ξ£ 0 in G, and (H3') will also be satisfied. This latter condition
is clearly fulfilled when A is the identity matrix. The equation in
this case is

Δ2u - F-(BFu) - pu = 0 .

REMARK 3. The conclusion of Theorem 4 remains valid if we assume
(HI ) A is positive semidefinite;
(H2') B is positive definite; and
(H3") u is a solution of (18) such that u{x) > 0 and Lu ^ 0 in G.

In this case we may in fact take A to be the null matrix and
obtain corresponding results on second order elliptic equations, c.f.
[16].

REMARK 4. When eq. (18) is linear, i.e., A = A(x), B = B(x) and
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p = p(x), then inequality (19) is recognized as an ^-dimensional analog
of inequality (2). We shall state this fact separately.

COROLLARY 5. Let A = A(x), B = B(x) and p = p(x) in (18), where
A and B are positive semidefinite matrices at least one of which is
definite. Suppose u is a solution of (8) such that u(x) Φ 0 and uLu < 0
in G. Then for all w e Ω for which w — 0 on dG,

(19') ( {[Aij(x)Dijw]2 + Bij{x)DiwDjw}dx ^ ί p(x)w2dx ,
JG JG

where equality holds if, and only if, w = ku.

With the help of the Wirtinger-type inequality (19) we can now
give a very simple proof of a Sturmian comparison theorem between
two fourth order elliptic equations of the form (18). To this end we
let Ao — (Alj) and Bo = (BQJ) be real symmetric matrix functions of
class C2(G x R) and Cι{G x R) respectively and let peC(G x R). We
shall compare (18) with

(22) Dhi[AQ

hi(AikDjkw)] - DiiBi'DjW) - pow = 0 .

We take as boundary conditions for (22) either

(23a) w = waQ = 0 on dG, where waQ — rjiA^DjW ,

or

(23b) w = Low = 0 on dG, where Low = AljDi3 w .

THEOREM 6. Let Ao and A be positive definite and let B be posi-
tive semifinite. Suppose u is a solution of (18) such that Lu < 0
whenever u(x) > 0 in G. If there exists a nontrivial solution w of
(22) subject to either (23a) or (23b) such that

V(w, u) = \ [{Lwf - (LQw)2 + Fw-(B - B0)Fw
(24) }G

+ (Po - p)w2]dx <£ 0 ,

then u must have a zero in G unless w = ku.

Proof. Suppose the contrary and let u be a solution of (18) such
that u(x) > 0 in G. Since w = 0 on dG by (23), the solution w of
(22) is clearly in Ω so that inequality (19) must hold for this particular
choice of w. On the other hand if we multiply (22) by w, we can
integrate the first two terms by means of the divergence theorem and
the identities
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(25a) DklwDtiLowAS*)] = D.wDλiUw)^] + wDhi[(LQw)A^] ,

(25b) F (wB0Fw) = Fw-B0Fw + wF-(B0Fw) ,

and

(25c) Di[(Low)AoFw] = FwDi[(Low)Ahi] + (L0w)2 .

The resulting expression after integration is

(26) [ [(L0w)2 + FwB0Fw - p0w
2]dx = 0 .

JG

Adding this to (19) we get V(w, u) 2> 0 which contradicts (24) unless
V = 0. However, this latter condition means equality must hold in
(19), i.e., w = ku. This proves the theorem.

In view of Remark 1 following Theorem 4 we can also state the
above comparison theorem for subsolutions and supsolutions.

COROLLARY 7. Let Ao, A and B be positive semidefinite. Suppose
u is a nonnegative solution of

\Dhί[Ahi(AjkDjku)] - DiiBVDju) - pu ^ 0 , x e G

\LU = 0, xedG

such that Lu ^ 0 in G. If there exists a nonnegative nontrivial solu-
tion w of

(28) Dhi[AhΛAikDjkw)] - DiiBi'Dw) - pow ^ 0

subject to either (23a) or (23b) such that V(w, u) ^ 0, then u must have
a zero in G, provided strict inequality holds in either (27) or (28) for
at least one interior point of G and w does not vanish on any open
subset of G.

Proof. In place of (26) we now have the inequality

(26') ί [(L0w)2 + FwBQFw - pow
2]dx ^ 0.

)G

The assumption that strict inequality holds in either (27) or (28) for
at least one interior point of G and that w does not vanish on any
open subset of G imply strict inequality must hold in either (19) or
(26'). Thus we must have

(29) V(w, u)>0,

which is the desired contradiction.

REMARK 5. Suppose the coefficients A, A01 B and BQ are functions
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of x alone. Let

V(w) = 1 {(Lw)2 - (L0w)2 + Pw(B - B0)FVJ + w2[p0(x, w) - p(x, w)]}dx
JG

and
r

E(uy w) = \ w2[p(x, w) — p(x, u)]dx .
JG

Then (29) may be rewritten as

(29') V(w) + E(u, w) > 0 .

Under the hypotheses of Corollary 7, if the system (28) + (23a) or
(23b) has a nonnegative nontrivial solution w which does not vanish
on any open subset of G and that V(w) ^ 0, then every solution u
of (27) which is positive in G satisfies E{u, w) > 0. This observation
extends a result of Swanson ([16], Theorem 1) to fourth order quasi-
linear equations. In fact, by taking A = Ao = 0 and B to be positive
definite, his result also follows from (29').

REMARK 6* When the equation is linear then inequality (19') can
be used in place of (19) in the derivation of a comparison theorem.
In this case we can restate Theorem 6 as follows:

COROLLARY 8. Suppose equations (18) and (22) are linear. Let
AQ and A be positive definite and let B be positive semidefinite in G.
Suppose there exists a nontrivial solution w of (22) subject to either
(23a) or (23b) such that

(24') V(w) = \ [(Lw)2 - (LQw)2 + Pw(B - BQ)Vw + (p0 - p)w2]dx ^ 0 .
JG

Then every solution u of (18) such that uLu < 0 whenever u{x) Φ 0 in
G must have a zero in G unless w = ku.

In view of Remark 2, it is easy to see that Cor. 8 contains in
particular a recent result of Diaz and Dunninger ([8], Theorem 3»1)
on the linear fourth order equation

Δ2u — p(x)u — 0 .

We conclude by extending Cor. 7 to the nonself ad joint elliptic
inequality (3). The comparison inequality will now be

(30) Bhi\A\\MkOjkw)\ - DiiB SDjW) - 2σi

0Diw - pow rg 0 ,

where σ0 = (σj, , σ%) is a continuous vector field on G x R. Let H
denote the (n + 1) x (n + 1) matrix
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(B -σ\

-σι g)

and let τ = (τu •••, rΛ+1) be a vector in Rn+1. We shall write

(31) M* = [ τ-Hτdx .

THEOREM 9. Let u be a nonnegative solution of (3) such that
Lu < 0 in G and Lu — 0 on dG. Let Ao, A and B be positive definite
and let g be a real continuous function on G for which

(32) det H ^ 0 .

Suppose there exists a nontrivial nonnegative solution w of (30) satisfy-
ing either (23a) or (23b) such that

N(w, u) = [{Lw)2 - (Low)2 + Fw-(B - B0)Fw]dx
JG

+ ί [2wFw-(σ0 - σ) + (g + p0 - p)w2]dx < 0 .
JG

Then u must have a zero in G.

Proof. Suppose the contrary and let u be a solution of (3) such
that u(x) > 0 throughout G. Then by Lemma 1, the vector v and
the matrix Z defined by (4) will together satisfy the Riccati inequa-
tion (5). It follows from Theorem 2 that inequality (12) must hold
for all w e Ω. If we take in particular the solution w of (30) then
w — 0 on dG so that y(w, u) = 0 by (11') As in the proof of Cor. 3,
M1 ^ 0 and T ^ 0 so that (12) reduces to

r
Q(w, u) ^ M2(w, v) + 2\ u~1w2(σ Fu)dx .

JG

If we let τt = (Z)^ — wvt), i = 1, , w and let τ n + 1 = w, then we see
from (8) that

Q(w, u) ^ 1 [(DiW — wVi)Bij(DjW — wvλ + 2u~ιw\σ Fu)]dx
JG

= I [TiB^T, — 2τn+ίσ
ίτi + 2wF^ ί7]cία; .

If we add the integral of gw2 to both sides and rearrange terms using
(31), we find that

I [{Lw)2 + FwBFw - 2wFw-σ + (g — p)w2]dx
JG

zΉτdx — Mo* .
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It is known [14] that condition (32) is both necessary and suf-
ficient for the matrix H to be positive semidefinite so that M2* ̂  0.
Hence

(33) ί [{Lwf + Vw-BVw - 2wFw σ + (g - p)w2]dx ^ 0 .
JG

On the other hand if we multiply (30) by w and integrate the first
two terms with the help of identities (25), we get

\ [(L0w)2 + PW BQFW — 2wFw-σ0 — p0w
2]dx ^ 0.

JG

Combining this with (33) we arrive at N(w, u) ^ 0 which is the desired
contradiction.

Recently Kreith [12] has given a comparison theorem for nonself-
adjoint ordinary differential equations of the fourth order using a
Picone type identity. Dunninger [9] has also obtained a Picone type
identity for linear fourth order elliptic equations which leads to com-
parison theorems similar to those given here. The Riccati transforma-
tion (4) may be applied to other fourth order elliptic inequalities. The
continuity requirement on the coefficients can be weakened from G to
G to allow for operators with singular boundaries, c.f. Kreith [11].
Such problems can be handled by a limiting procedure similar to that
used in [18].

Finally, we remark that as in [1] and [2], the Wirtinger-type
inequalities and comparison theorems given here can be used to gen-
erate oscillation criteria for fourth order elliptic inequalities.
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