ON PTAK'S COMBINATORIAL LEMMA

S. Simons

A new proof of Ptak's combinatorial lemma on the existence of convex means, is given.

The purpose of this note is to show how the "getting near the inf of S " technique used in 13], Lemma 2 can be used to prove, and indeed generalize, Ptak's combinatorial lemma ([1], (1.3)). (We note, in passing, that [1], (2.1) is an easy consequence of [3], Lemma 2 and that [1], (3.3), Krein's theorem, is proved in [4], Theorem 16). We have already given a proof of Ptak's lemma in [2] using lattice theory and the Hahn-Banach theorem. The proof given here is elementary - as was Ptak's original proof.

1. Notation. If $X \neq \varnothing$ we write $l_{u}(X)$ for the set of all functions from X into $[-\infty, \infty)$. Even though $l_{u}(X)$ is not a vector space, any convex combination of elements of $l_{u}(X)$ is well defined. We write "conv" for "convex hull of". We write " S_{X} " for "supremum on X ".
2. Lemma. We suppose $X \neq \varnothing$. If G is a nonempty convex subset of $l_{u}(X), A, B, C \in R$ and, for all $g \in G, A<B \leqq S_{X}(g) \leqq C$ then there exists $h \in G$ such that, if $X^{\prime}=\{x: x \in X, h(x)>A\}$ then $\inf S_{X^{\prime}}(G) \geqq A$.

Proof. We choose $\lambda>0$ so that $\lambda(C-A)<B-A$ and then $h \in G$ so that $S_{X}(h)<\inf S_{X}(G)+(B-A) \lambda /(1+\lambda)$. If $g \in G$ then, since $(h+\lambda g) /(1+\lambda) \in G,(1+\lambda) S_{X}(h)<S_{x}(h+\lambda g)+(B-A) \lambda$ hence there exists $x \in X$ (depending on g) such that

$$
\begin{equation*}
h(x)+\lambda g(x)>(1+\lambda) S_{x}(h)-(B-A) \lambda . \tag{1}
\end{equation*}
$$

We first deduce from (1) that $h(x)>(1+\lambda) S_{X}(h)-\lambda C-(B-A) \lambda \geqq$ $(1+\lambda) B-\lambda C-(B-A) \lambda>A$, from the choice of λ; hence $x \in X^{\prime}$. Again from (1), $\lambda g(x)>\lambda S_{X}(h)-(B-A) \lambda \geqq \lambda A$ from which $g(x)>A$. We have proved that $\inf S_{X^{\prime}}(G) \geqq A$, as required.
3. Theorem. We suppose $X \neq \varnothing, Y$ is infinite,

$$
f: X \times Y \rightarrow[-\infty, \infty),
$$

$B, C \in R, \delta>0$ and, for all $g \in \operatorname{conv} f(\cdot, Y), B \leqq S_{x}(g) \leqq C$. Then there exist $x_{1}, x_{2}, \cdots \in X$ and distinct $y_{1}, y_{2}, \cdots \in Y$ such that $f\left(x_{p}, y_{m}\right) \geqq$
$B-S$ whenever $1 \leqq m \leqq p$.
Proof. From Lemma 2, there exists $g_{1} \in \operatorname{conv} f(\cdot, Y)$ such that if $\quad X_{1}=\left\{x: x \in X, g_{1}(x)>B-\delta / 2\right\} \quad$ then $\quad \inf S_{X_{1}}(\operatorname{conv} f(\cdot, Y)) \geqq$ $B-\delta / 2$. There exists finite $F_{1} \subset Y$ such that $g_{1} \in \operatorname{conv} f\left(\cdot, F_{1}\right)$. Clearly $\inf S_{X_{1}}\left(\operatorname{conv} f\left(\cdot, Y \backslash F_{1}\right)\right) \geqq B-\delta / 2$. Proceeding inductively we find $g_{n} \in \operatorname{conv} f\left(\cdot, Y \backslash F_{1} \backslash \cdots \backslash F_{n-1}\right)$ such that, if

$$
X_{n}=\left\{x: x \in X_{n-1}, g_{n}(x)>B-\delta / 2-\cdots-\delta / 2^{n}\right\}
$$

then $\inf S_{X_{n}}\left(\operatorname{conv} f\left(\cdot, Y \backslash F_{1} \backslash \cdots F_{n-1}\right)\right) \geqq B-\delta / 2-\cdots-\delta / 2^{n}$ and finite $F_{n} \subset Y \backslash F_{1} \backslash \cdots \backslash F_{n-1}$ such that $g_{n} \in \operatorname{conv} f\left(\cdot, F_{n}\right)$. In this way we obtain a family $\left[F_{n}: n \geqq 1\right\}$ of disjoint finite subsets of $Y, g_{n} \in$ $\operatorname{conv} f\left(\cdot, F_{n}\right)$ such that, for all $n \geqq 1$,

$$
\bigcap_{m \leqq n}\left\{x: x \in X, g_{m}(x) \geqq B-\delta\right\}\left(\supset X_{n}\right) \neq \varnothing
$$

Since $g_{1} \in \operatorname{conv} f\left(\cdot, F_{1}\right)$,

$$
\left\{x: x \in X, g_{1}(x) \geqq B-\delta\right\} \subset \bigcup_{y \in F_{1}}\{x: x \in X, f(x, y) \geqq B-\delta\}
$$

hence there exists $y_{1} \in F_{1}$ such that, for arbitrarily large $n \geqq 2$,

$$
\left\{x: x \in X, f\left(x, y_{1}\right) \geqq B-\delta\right\} \cap \bigcap_{2 \leqq m \leqq n}\left\{x: x \in X, g_{m}(x) \geqq B-\delta\right\} \neq \varnothing
$$

This relationship must clearly then hold for all $n \geqq 2$. Proceeding inductively we find $y_{n} \in F_{n}$ such that, for all $1 \leqq p<n$,

$$
\bigcap_{m \leqq p}\left\{x: x \in X, f\left(x, y_{m}\right) \geqq B-\delta\right\} \bigcap_{p+1 \leqq m \leqq n}\left\{x: x \in X, g_{m}(x) \geqq B-\delta\right\} \neq \varnothing
$$

and so, in particular,

$$
\bigcap_{m \leqq p}\left\{x: x \in X, f\left(x, y_{m}\right) \geqq B-\delta\right\} \neq \varnothing
$$

from which the required result follows (y_{1}, y_{2}, \cdots are distinct because F_{1}, F_{2}, \cdots disjoint).

Ptak's Lemma. We suppose that Y is an infinite set and that X is a nonvoid family of subsets of Y. We write $P(Y)$ for the collection of all positive, real valued functions λ on Y such that $\{y: y \in Y, \lambda(y)>0\}$ is finite and $\sum_{y \in Y} \lambda(y)=1$; for $x \subset Y$ we write $\lambda(x)=\sum_{y \in x} \lambda(y)$. If

$$
B=\inf _{\lambda \in P(Y)} \sup _{x \in X} \lambda(x)>0
$$

then there exist $x_{1}, x_{2}, \cdots \in X$ and distinct $y_{1}, y_{2}, \cdots \in Y$ such that, for each $p \geqq 1,\left\{y_{1}, \cdots, y_{p}\right\} \subset x_{p}$.

Proof. We define $f: X \times Y \rightarrow R$ by $f(x, y)=1$ if, and only if, $y \in x$. By hypothesis, $\inf S_{X}(\operatorname{conv} f(\cdot, Y))=B$. From Theorem 3 with $\delta=\mathrm{B} / 2$, there exist $x_{1}, x_{2}, \cdots \in X$ and distinct $y_{1}, y_{2}, \cdots \in Y$ such that $f\left(x_{p}, y_{m}\right) \geqq B / 2$, hence $y_{m} \in x_{p}$, whenever $1 \leqq m \leqq p$.

References

1. V. Ptak, A combinatorial lemma on the existence of convex means and its application to weak compactness, Proc. Symp. Pure Math., VII (1963), 437-450.
2. S. Simons, A theorem on lattice ordered groups, results of Ptak, Namioka and Banach, and a frontended proof of Lebesgue's theorem, Pacific J. Math., 20 (1967), 149-153.
3. \qquad , A convergence theorem with boundary, To precede this paper.
4. -, Maximinimax, minimax and antiminimax theorems and a result of R.C. James, To precede this paper.

Received January 28, 1971. This research was supported in part by NSF grant number 20632.

University of California, Santa Barbara

