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A CONVERGENCE THEOREM WITH BOUNDARY

S. SIMONS

This paper contains a bounded-convergence type theorem
that depends on the fact that certain functions attain their
suprema. Among the applications discussed are Rainwater's
theorem and two technical results, one used in the proof of
the Choquet-Bishop-deLeeuw theorem and the other in the
proof of Krein's Theorem.

The contents of this paper and the two following it were sug-
gested by some results and techniques of R C. James and J. D. Pryce.

The main result of this paper is Lemma 2. See [1], Lemma 2
and [5], Lemma 4 for the source of the idea. We deduce from Lemma
2 a one-sided convergence theorem (Theorem 3) and a two-sided con-
vergence theorem (Theorem 8).

Corollary 4 is a strict generalization of the following result: if
{fn)n^ι is a uniformly bounded sequence of concave uppersemicontinuous
functions on a compact subset X of a real Hausdorff locally convex
space and lim ud^^f^x) ^ 0 for each extreme point x oί X then
lim infŵ oo/n(α) ^ 0 for each xeX. (See [4], Lemma 4.3, p. 28.) The
latter result is used in one proof of the Choquet-Bishop-deLeeuw
theorem. (For an alternative approach see [7], Theorem 43.)

Corollary 10 extends Lebesgue's bounded convergence theorem to
continuous functions on a pseudocompact space (i.e., a topological space
on which every real continuous function is bounded (and hence attains
its bounds)).

Corollary 11 is a strict generalization of the following result of
Rainwater: let {xn}n^ι be a bounded sequence in a normed linear space
E, xe E and <a?Λ, yy —> <#, yy for each extreme point y of the unit
ball of the dual, E', of E. Then xn-*x in w(E, E'). (See [4], p. 33
and [6].)

Corollary 13 is a strict generalization of the following result used
in one proof of Krein's Theorem: if Y is a countably compact subset
of a real linear topological space, {fn}n>ι is a sequence of continuous
linear functionals on E uniformly bounded on Y and lim^^y, fny = 0
whenever yeY then lim^^x, fny = 0 whenever x e eonv~Γ. (See [2],
17.11, p. 158 and 17 H, p. 164.)

All vector spaces considered in this paper will be real.

1* NOTATION. We suppose that X Φ φ. If / e L(X) we write
S(/) = sup/(X),I(/) = inf/(X) and | | / | | = sup|/(X)|. We write
"conv" for "convex hull of".

703



704 S. SIMONS

2* LEMMA. We suppose that, for all % ^ l , / w e L ( I ) and
sup^JI/JI < oo. We suppose further that Yd X and that, whenever
Xn ^ 0 and Σnziλn — 1> there exists yeY such that Σn

Then sup^ey lim supn^cofn(y) Ξ> inf S(conv {fn: n Ξ> 1}).

Proof. We write A = inf S(conv {fn: n ^ 1}) and B = supw251S(/Λ).
Then —oo < A ^ B < oo. We suppose that d > 0 is arbitrary and
choose λ > 0 such that A - δ(l + λ) - BX ^ (A - 2δ)(l - λ) (which
implies that λ < 1). We choose gu g2y inductively so that, for all
m ^ 1, gm 6 conv {fn: n ^ m} and

Since

9 + λ g f conv {fn: n^m} , for all m ^ 1
1 -f- X

^ s(( Σ λ ^ + x f ) + δ(
Vw^m-i 1 + λ / \ 2

We write Ao = 0, for all m^l,hm = Σ ^ w ^
n~lg*, and Λ = Σ

Then, multiplying (1) by (1 + λ), for all m ^ 1

, + hm+1) + δ(l +

from which

_x) 3(1 + λ)

Since S(/O — S(Λ0) = SQij) ̂  A, it follows from (2) and induction that,
for all m ^ 1,

( 3 ) S(hm) - S(hm^) ^ A _ δ ( 1 + λ)/_l_ + _L + . \ = A _ δ ( 1 + λ )

λ m - 1 V2 4 /

hence S(h) - Sih^) = Σ ^ [S(A.) - Sίλ^J] ^ Σ ^ » λ^^A - δ(l + λ)]
Le

(4) S(Λ) - S(hm^) ^ J^L [A - 3(1 + λ)] .
JL — Λi

B y a s s u m p t i o n , t h e r e e x i s t s y e Y s u c h t h a t h(y) = S(A). T h e n
for a l l m > 1
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V-Wϊf) = Hy) - hn_M - Σ λ - 1 ^ )

^ S(h) - Sih^d - Σ λ- ι£

from (4) ^ -Γ^-ί^ " ^ + λ>l ~ T ^ V β

hence, from the choice of λ, gjy) ^A — 28. Since gm e conv {fn: n ̂  m},
for each m ̂  1 there exists k(m) Ξ> m such that fk{m){y) ^ A — 2d,
from which lim su$n^fn(y) ^ A — 23. The result follows since δ is
arbitrary.

3* THEOREM. If the notation is as in Lemma 2 and μ is a
linear functional on L(X) dominated by S (i.e., a positive linear func-
tional of norm 1) then

sup lim sup fn(y) ^ lim sup μ(fn) .
yeY n-*oo n-*<χ>

In particular, for all xe X,

sup lim sup/Λ(i/) ^ lim

Proof. If sup^limsup^ooΛO/) < lim sup*.**/£(/») then, by re-
placing {fn} by an appropriate subsequence, we can assume that

sup lim sup/H(2/) < inf μ{fn) .

But inf^ μ(fn) = mf /i(conv {/n: n ^ 1}) ̂  inf S(conv {/ft: n ^ 1}) and this
would contradict Lemma 2.

4* COROLLARY. T̂ β suppose that X is a compact convex subset
of a real linear topological space E, Y c X and

(whenever f is a continuous convex function on X
(5) j

[then there exists yeY such that f{y) — S(f) .

(a) //, for each n ^ 1, fn is a continuous convex function on
X, s u p ^ i I I / J I < oo and l i m s u p n ^ « » / Λ ( 2 / ) ^ 0 whenever yeY then
l i m s u p ^ e o / % ( # ) ^ 0 whenever xe X.

(b) If E is locally convex Hausdorff and, for each n ^ 1, gn is
a bounded convex lower semicontinuous function on X, s u p ^ \\gn\\ < oo
and l i m s u p % _ o o ^ ( 2 / ) ^ 0 whenever y e Y then l i m s u p ^ o o ^ α ; ) ^ 0 w h e n -
ever xe X. In particular, this result is true ifY= exX (the set of
extreme points of X).

Proof.
(a) is immediate from Theorem 3.
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(b) We suppose xeX. Then, for all n ^ 1, there exists a con-
tinuous convex function fn on X such that I(gn) ^fn^gn and fn(x) ;>
gn(x) — 1/n. (See [3], p. 222 or [4], p. 19; we can take fn of the form
max {I(gn)9 an + < , x'^)\X} where aneR and xneE', the dual of E.)
The result follows from (a) applied to {fn:n ^ 1}. The final observa-
tion follows from Bauer's theorem on extreme points (see [3], p. 225)

5* EXAMPLE. We write E for the set of all real sequences
{#*}nsso such that Σn^o\xn\ < °° and Er for the set of all real sequences
teJn^i that are eventually constant. We define < , •>: i? x E'-+R by

We write X = {x: x e E, Σ ao K i ^ 1} and Y = {± e{ι\ ± e{2), •} c X.
Then X is w(E, Er)-compact and

(6) for all z e E' there exists ye Y such that <j/, ̂ )> = sup <(X, zy .

If j?Λ G Ef is defined by «ΛϊW = 0 (m < n) and zw,m = 1 (m ^ n) then,
for all 2/e Y, limn̂ «><2/, «Λ> = 0 but lim?ι_oo<e(0), «Λ> = 1. So Corollary
4(b) fails if we weaken (5) to (6) even if all the functions gn are in

< ,E>y\x.

6. REMARK. AS is well known, (6) implies that Ϋ ID exX. (5)
implies that every ϋΓ-analytic set that contains Y must also contain
X. (The statement for Kσ sets follows from Urysohn's Lemma, Corol-
lary 4, and the fact that if fn e C(X) and x e exX then there exists a
continuous afϊine function gn on X such that gn ^ fn and ^%(ίc) ^
/Λ(^) + IM The extension to if-analytic sets follows from standard
arguments.)

7* EXAMPLE. We suppose that Szf is an uncountable set and
we write E for L,(-Ώθ with the topology w(L(J^), ίi(-Qθ) and X =
{ίcrα GE', sup α e ^ |x(α) | ^ 1}. If / is a continuous convex function on
X then, from Bauer's Theorem, there exists xe exX such that f(x) =
S(/). By continuity, there exists {gn: n ^ 1} c ^ ( J ^ ) such that yeX
and supΛ i u |<j/ —a?, gny\ = 0 imply that /(?/) = f(x) = S(/). Hence there
exists a countable subset . ^ of Jzf such that y e -X" and s u p ^ ^ | y(β) —
x(β)\ — 0 imply that f(y) = S(f). Consequently, (5) is satisfied if we
write Y — {yiyeX, for all a e *W, y(ά) = 0 or ± 1 , {a: a e J ^ , y(a)^0
is countable}}. But Yf)exX=φ.

8* THEOREM. We suppose that {fn: n Ξ> 1} is as in Lemma 2,
Y(Z X and, whenever Xn Ξ> 0 and Σ»^i ^ — 1> there exist y, ze Y such
that
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Σ KfM = S(Σ Kfn)

and

If /» —• 0 pointwise on Ythen fn—>0 in w(l«>(X), L(XY) and, in par-
ticular, /Λ—*0 pointwise on X.

Proof. From Theorem 3, if μ is a positive linear functional on
L(X) then lim supw_»oo μ(fn) ^ 0. Applying the same argument with
fn replaced by —fn we see that liminfn_eo/*(/») ^ 0. Hence limw_co^(Λ) =
0. The result follows since any element of L(X)' is the difference
of two positive linear functionals on

9* COROLLARY. We suppose that M is a || \\-closed subspaee of
) , Yd X and, for all f e M, there exists yeY such that f(y) =

S(f). If, for all n^l,f?eM, s u p ^ | | / J | < «>, / e M andfn-+f point-
wise on Y then fn—>f in w(L(X), L(XY) and, in particular, fn->f
pointwise on X.

Proof. This is immediate from Theorem 8.

10* COROLLARY. We suppose that X is a pseudocompact topologi-
cal space, for alln^lfne C(X), s u p ^ 11/« 11 < °o, / e C(X) and fn-+f
pointwise on X. Then fn—+f in w(C(X), C(XY).

Proof. This follows from Corollary 9 with M = C{X), Y = X and
the fact (from the Hahn-Banach theorem) that w(lco(X), L(X)') induces
w(C(X), C(XY) on C(X). If we wish to avoid the axiom of choice we
can reprove Theorem 3 and Theorem 8 with " L ( X ) " replaced every-
where by "C(XY* and still obtain the result.

11* COROLLARY. We suppose that F is a normed linear space
with dual Fr and completion F, X is the unit ball of F\ Yd Xand

(7) for all xeF there exists yeY such that <($, y} — \\x\\ .

If, for all n ^ 1, xne F, s u p ^ \\xn\\ < o o ^ e F and <α?Λ, yy —>ζx, y>
for all yeY then xn-+x in w(F, F'). In particular, this result is
true if Y — exX.

Proof. The result is immediate from Corollary 9 with M =
{ζx, >y\X: xeF}. (We observe that if xeFthen ζx, >|Xis continuous
with respect to the topology induced on X by w{Fr, F) although ζx, •>
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is not necessarily continuous with respect to w(F', F). So the final
comment follows from Bauer's theorem and not the Krein-Milman
theorem.)

12* REMARK. We can use Example 5 to show that Corollary 11
fails if we weaken (7) to

for all xe F there exists y e Y such that ζx, y} — \\x\\ .

We can use Example 7 to show that, even though (7) is satisfied,
it may happen that YD exX = φ.

(In the first case we take F to be the Er of Example 5 with the
supremum norm. Then F' = E and F = c. In the second case we
take F to be lλ{J^) with the I, norm. Then Ff =

13. COROLLARY. We suppose that φΦYaE and {/n}ΛS1 is a

sequence of real functions on E, uniformly bounded on Y. We write

X={x: xeE,int(Σ λΛ/w)(Γ) ^ Σ λw/Λ(α?) ^ sup(Σ λΛ/Λ)(Γ) whenever

λw ^ 0 (^ ^ 1) cmd Σ λ»» — 1}

If all the functions Σ ^ i λ»»/« attain their infima and suprema on Y
and \imn_+cofn(y) = 0 whenever ye Y, then limn_»βo/«(«?) = 0 whenever
x e X. If E is a linear topological space and each fn is continuous
and affine on E then X Z) conv"~ Y and it suffices that Y be pseudo-
compact.

Proof. This follows immediately from Theorem 8.
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