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SIMPLE POINTS IN PSEUDOLINE ARRANGEMENTS

L. M. KELLY AND R. ROTTENBERG

A finite collection of simple closed curves in the real
projective plane each two of which have exactly one point in
common at which point they ‘‘cross’’ is called a pseudoline
arrangement. Such arrangements seem to have been first
systematically studied by Levi. Recently B. Griinbaum has
called attention to the desirability for a better understanding
of the differences as well as the similarities in the behavior
of arrangements of lines and the arrangements of pseudolines.

Among other things, Griinbaum asks if every pseudoline
arrangement, not all curves of which intersect in a single
point, must have a simple vertex (a point on exactly two of
the curves of the arrangement) as is the case in line arrange-
ments. In fact Kelly and Moser have shown that, in general,
an n-line arrangement in an ordered projective plane has at
least 3/7n simple vertices. It is shown here that their
reasoning can be nearly dualized to prove the analogous result
for pseudoline arrangements.

However we make heavy use of a lemma of Levi proved in [4].
Examples show that it is possible to realize pseudoline arrangements
which are not combinatorially equivalent to any line arrangement.

2. Preliminaries, definitions, notation.

DEerFINITION 2.1. A finite collection, F, of simple closed curves
in the real projective plane, each two of which have exactly one
point in common, at which point they cross, is called a pseudoline
arrangement. Each curve is called a pseudoline or, where there is
no danger of confusion merely a line. The set of points of intersec-
tion of the lines of F' is denoted I(F') and each point of I(F) is a
vertex of F. If exactly two lines of F' pass through a vertex it is
simple or ordinary.

LEMMA OF LEVI. If F is a pseudoline arrangement in the real
projective plane 7 and A and B any two points of P, then there
exists a simple closed curve, g, containing A and B such that F U {g}
s a pseudoline arrangement.

By successive applications of this lemma we obtain a pseudoline
arrangement containing F' such that each two points of I(¥') are on
exactly one line of the arrangement. Each line of F is intersected
by the lines of this extended arrangement in a finite number of points
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partitioning the line into a finite number of open arcs. Let S be a
set of points contained in the union of such arcs with exactly one
point on each arec.

We now further extend the arrangement so that each point of S
is joined by a pseudoline to each point of I(F). This enlarged ar-
rangement is denoted F'*. We are now able to confine our attention
to this arrangement F'*.

We need some of the analogues of the order and separation pro-
perties of projective lines in the pseudolines of our arrangement F.

If A, A, A, A, are four points on a simple closed curve I" and
if A, and A, are in different components of I" — {4;, A} we say that
A, and A, separate A, and A, and write A, A,||A4;, A,. The usual
separation axioms for separation on the real projective line are well
known to be satisfied e.g. 4,, A4,]| 4, A, = A;, Al A, As.

If g,, 9., 95, 9. are four pseudolines through a point P in an arrange-
ment F' and if g, — {P} and g, — {P} are in different components of
P — (9sUg,) then g, and g, are said to separate g, and g,, This
separation is similarly symbolized g, 9./ 9, 9.

If I is a line of F mnot through P and g; NIl = A; it follows by
conventional arguments that g,, 9.||9,, 9. iff 4,, A4,|| 4;, A,. This implies
that if I’ is a second line of F mnot through p with I’N g, = A4; then
A, Al A, A, Iff A, Al]| As, AL i.e., separation on pseudolines is a
“perspective invariant” in F.

Two points of I(F) U S are joined by at most one line of F'*.
If P and @ are two points so joined we denote this unique line of
F* by PQ. If A is a point of S and K a subset of I(F) then the
pencil {4X|Xe K} is denoted [A:K]. A set of lines all but one of
which go through a point is a near pencil.

DEFINITION 2.2. A point Pe I(F') is a neighboring point (or
simply a neighbor) of le F' iff there exists a point Ae S on [ such
that AP and ! are distinct and separate no two lines in the pencil
[A: I(F)]. P is said to be a neighbor of ! relative to A in F'*.

3. The principal theorem.

THEOREM 3.1. If F is not a near pencil them each line of F has
at least three neighbors in I(F).

Proof. Letl be any line of FFand AeSNI. The pencil [A: I(F)]
contains a pair of lines AP and AQ separating ! from any other line
in the pencil. P and Q are, by definition, neighbors of [ relative to A.

Since F' is not a near pencil, P and @ are distinet and we denote
the line PQ by ¢. Furthermore, for the same reason, there exists a
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point Re I(F) not on t Ul. Let RPNl= R,tN!l= Q and B a point
of S on the are R'Q’ which does not contain A.

Let ARNt= V and RBNt= M. By the definition of neighbor
it follows that V and @ lie together on the same segment of ¢ with
end point P and @'. On the other hand A,B||Q'R =V, M||Q, P
which means that V and M are on complementary segments of ¢ with
end points P and Q. Thus M and @ are on complementary segments
with end points P and @', i.e., M,Q|| P, Q or BP, BQ||BP,l. Hence
P is not a neighbor of I relative to B.

But, as above, there are two neighbors of [ relative to B and it
follows that ! has at least three neighbors.

THEOREM 3.2. If Pe I(F') is a neighbor of three lines 1, m, n of
F then any line of F through P goes through one of the points 1N m,

IlNnn,mnNn.

Proof. Suppose t a line of F' through P, withtNl=A¢tNm = B,
tNn = C. Suppose that A, B, C are distinct and that P and A sep-
arate B and C. Since P is a neighbor of I, there is a point Xe S
on | such that XP and ! separate no pair of lines of the pencil
[X: I(F)]. But XP and ! separate XB and XC for any XeS on [.
Hence ¢ must pass through one of the points I[N m, I N n, mN n.

COROLLARY 3.2.1. Three or more lines of F meeting at one point
cannot have a common neighbor.

THEOREM 3.3. If PeI(F) is a meighbor of a line I of F, then
at most two of the points of intersection of I with lines of F through
P are not simple.

Proof. The theorem is obvious if P is simple. Suppose, then,
that m, m,, ««-, m;, k> 2, are lines of F' through P and that I N m; =
M; for each 4. If P is a neighbor of ! relative to the point X we
may assume that M, and M, separate X from each of the other M;
1=3,4,.--, k. Assume that M, j > 2, is not simple and that t is
a third line (in addition to m; and [) through M;. If X' =tN XP
M =m, Nt and M, = m,N ¢t then M/, M]||X’, M; which implies that
XM, and XM, separate XP and [. Thus P is not a neighbor of
relative to X. This contradiction means that each M;, 7 > 2, is simple
and proves the theorem.

COROLLARY 3.3.1. If P is a mneighbor of four lines of F, then P
18 a vertex of the diagonal triangle of the complete quadrilateral defined
by the four lines. Furthermore P 1is simple, the two lines of F through
P being the diagonal lines of the quadrilateral.
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Proof. If P is a neighbor of the four lines I, [, I, I, it follows
from Corollary 3.2.1 that no three of these lines can be concurrent
and the four lines form a complete quadrilateral, K.

By Theorem 8.2 any line of F through P must go through a pair
of opposite vertices of K. Thus since there are certainly two (dis-
tinet) such lines, P is a vertex of the diagonal triangle of K.

If there were a third line of F' through P it would have to be
the third side of the diagonal triangle. But since the vertices of this
triangle are certainly not simple we would have a contradiction of
Theorem 3.3 and it follows that P must be simple.

COROLLARY 3.3.2. A point P of I(F) is a meighbor of at most
four lines of F.

DEFINITION 8.1. The number of simple points of I(F') on a line
l of F' is the order of . The number of neighbors of [ which are
simple is the rank of I. The order plus the rank is the index.

THEOREM 3.4. The index of each line of F which is not of order
2 1s at least 3.

Proof. First observe that the theorem is true for a near pencil
and dismiss this case from further consideration.

Case 1. The order of [ is zero. By Theorem 3.3 every neighbor
of | must be simple and by Theorem 3.1 the rank, hence the index,
of I is at least 3.

Case 2. The order of I is 1.

Suppose P, and P, two nonsimple neighbors of I, M the line simple
point on ! and m the second line of F' through M. It follows from
Theorem 3.3 that there are exactly three lines of F through each of
the points P, one of which must go through M and the other two of
which meet ! in the distinet points A4; and B,.

Since M is simple PM = P,M = m. Now if P,+# P, P, or M is
a point on m then for some permutation (¢, 7, k) of (1, 2, 3), P;, M|| P;, P,
from which if follows that P, cannot be a neighbor of I. We can
now conclude that there are at most two nonsimple neighbors of I.
It is easy to see that there exists a point YeS onl such that, sub-
ject to proper labelling of A; and B,, Y, A;|| M, B,. Since A; is non-
simple there is a line n ¢ F distinct from P,A4; and . Let n N P,Y =
X,nNm=2Z nNPB; =W.

Y, AiHM, Bi_—“’X, AiHZ, W= YPiy l“ YZ, Yw.
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Thus P; is not a neighbor of I relative to point Y.

But as in Theorem 8.1 there are two distinet neighbors of [
relative to Y, both of which are simple. Thus the index of I is at
least 3.

Case 3. The order of I is at least 3. The index of ! is, by defini-
tion, at least 3.

THEOREM 3.5. If \; is the index of line l;e F, then N = 1/6 S \"\;
where \ is the number of simple points of I(F').

Proof. We count the number of simple points by observing the
index for each of the n lines of F. In this count a particular simple
point may be counted as many as six times, four as a neighbor and
two because it lies on two lines of F.

THEOREM 3.6.

A

v

3.
7

Proof. Suppose that there are k lines of order 2. Clearly \ = k.
By Theorem 3.4 and 3.5,

3(n—Fk) +2 _ 3n—k
6 6

>

Elimination of & gives the desired result.

REMARK. That the inequality is sharp is shown by the seven
lines forming a complete quadrilateral and its diagonal triangle. The
three vertices of the diagonal triangle are the only simple points of
the configuration.
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