A QUASI-KUMMER FUNCTION

Wazir Hasan Abdi

A particular integral of Kummer's inhomogeneous differential equation is obtained when the right hand member belongs to a general class of multiform functions. A few basic properties of the solution function are established.

1. Introduction. Let σ be a complex constant but not negative real. We denote by \mathscr{R}_{σ} the Riemann surface of z^{σ}. Suppose $f(z)$ to be analytic everywhere on the disc $K_{R}:|z|<R$, and let

$$
\mathscr{K}_{R}^{\sigma} \equiv\left\{\phi(z) \mid \phi=z^{\sigma} f(z) ; f \text { analytic on } K_{R}\right\}
$$

Then, to each element of the multiplier space \mathscr{R}_{g}, there corresponds one and only one element of the product space \mathscr{K}_{R}^{σ} which is regular everywhere in the domain K_{R} of the analytic component $f(z)$ slit and screwed in the usual way, if necessary. A few subspaces of $\mathscr{\mathscr { K }}_{R}{ }^{\circ}$ are:

$$
\begin{aligned}
& \mathscr{K}_{R(\rho)}^{\sigma}:\left\{\phi \mid K_{R}, R \leqq \rho<\infty\right\} \\
& \mathscr{K}_{\pi(p)}^{\sigma}:\{\phi \mid \text { analytic component a polynomial of degree } p\}
\end{aligned}
$$

and

$$
\mathscr{K}_{\infty_{\infty}(k)}^{\sigma}:\left\{\phi| | f^{(m)}(0) \mid \leqq B k^{m},(B, k)>0\right\} .
$$

Now consider the equation

$$
\begin{equation*}
z \frac{d^{2} W}{d z^{2}}+(b-z) \frac{d W}{d z}-a w=\phi(z) \tag{1.1}
\end{equation*}
$$

The associated homogeneous problem leads to Kummer's confluent hypergeometric and other well-known transcendental functions. But the properties of the particular integral of the inhomogeneous equation have been studied in detail only recently by Babister [1] who has considered a few particular cases. In this paper we take the general classes $\mathscr{K}_{R(p)}^{\sigma}, \mathscr{K}_{\infty}^{\infty}(e), \mathscr{K}_{\pi(p)}^{o}$ and use Frobenius's method to show that in each case a particular integral of (1.1) exists and belongs to some similar subspace of $\mathscr{K}_{R}^{\sigma+1}$. We also give some basic properties of the solution-function which we have called quasi-Kummer.

As $f(z)$ is analytic on K_{R},

$$
f(z)=\sum_{n=0}^{\infty} \frac{f^{(n)}(0)}{n!} z^{n},|z|<R .
$$

Accordingly, a formal series solution of (1.1) is given by

$$
{ }_{1} A_{1}\left(\left.\begin{array}{c}
\sigma \tag{1.2}\\
z
\end{array} \right\rvert\, \begin{array}{l}
a \\
b
\end{array}, f(z)\right)=\sum_{n=0}^{\infty} \frac{(\sigma+a+1)_{n} P_{n}(\sigma ; a, b ; f)}{(\sigma+1)_{n+1}(\sigma+b)_{n+1}} z^{n+\sigma+1},
$$

where

$$
\begin{equation*}
P_{n}(\sigma ; a, b ; f)=\sum_{m=0}^{n} \frac{(\sigma+1)_{m}(\sigma+b)_{m}}{(\sigma+a+1)_{m}} \frac{f^{(m)}(0)}{m!} \tag{1.3}
\end{equation*}
$$

and $(\nu)_{n}$ denotes the Pochhammer product $\nu(\nu+1) \cdots(\nu+n-1)$.
2. Some subsidiary results. In order to establish our main results, we require some formulae which will be stated in the form of lemmas. For convenience we write:

$$
\begin{array}{ll}
\alpha=|\sigma+a+1| & \lambda=\sec (1 / 2 \arg (\sigma+a+1)) \\
\beta=|\sigma+b| & \mu=\sec (1 / 2 \arg (\sigma+b)) \\
\gamma=|\sigma+1| & \nu=\sec (1 / 2 \arg (\sigma+1)) .
\end{array}
$$

Also, it is assumed that α, β, γ are all finite and positive.
Lemma 1. For $0<R \leqq \lambda<\infty \operatorname{Max}_{|z|=R}|f(z)|=M(R)$

$$
\left|P_{n}(\sigma ; a, b ; f)\right| \leqq\left[\begin{array}{l}
\frac{(\gamma)_{n} \lambda^{n-1}}{|\beta-\alpha+1|}\left|\frac{(\beta)_{n+1}}{(\alpha)_{n}}+1-\alpha\right| \frac{M(R)}{R^{n}}, \beta-\alpha+1 \neq 0 \\
\frac{(\beta)_{n} \lambda^{n-1}}{|\gamma-\alpha+1|}\left|\frac{(\gamma)_{n+1}}{(\alpha)_{n}}+1-\alpha\right| \frac{M(R)}{R^{n}}, \gamma-\alpha+1 \neq 0 \\
(\gamma)_{n}(n+1) \lambda^{n-1} \frac{M(R)}{R^{n}}, \beta=\gamma=\alpha-1>0 \tag{iii}
\end{array}\right.
$$

Proof. By Cauchy's inequality

$$
\left|P_{n}(\sigma ; a, b ; f)\right| \leqq \sum_{m=0}^{n}\left|\frac{(\sigma+1)_{m}(\sigma+b)_{m}}{(\sigma+a+1)_{m}}\right| \frac{M(R)}{R^{m}},
$$

which on applying Erber's estimate [3]:

$$
\frac{1}{\left|(\delta)_{n}\right|} \leqq \frac{\sec ^{n-1}(1 / 2 \arg \delta)}{(|\delta|)_{n}},|\arg \delta|<\pi
$$

and after simplification proves the first part of the lemma. The second part follows mutatis mutandis on replacing β by γ. Also in the third case $\left|P_{n}(\sigma ; a, b ; f)\right| \leqq(\beta)_{n} \lambda^{n-1} \gamma \sum_{m=0}^{n} 1 / \gamma+m$. Hence the result.

Lemma 2. If $\left|f^{(m)}(0)\right| \leqq B k^{m}, B>0, k>0$, then

$$
\left|P_{n}(\sigma ; a, b ; f)\right| \leqq\left[\begin{array}{l}
\frac{B}{\lambda}{ }_{2} F_{1}\left[\begin{array}{c}
\gamma, \beta \\
\alpha
\end{array} ; k \lambda\right] \quad k \lambda<1 \\
\frac{B l^{n}}{\lambda}{ }_{2} F_{1}\left[\begin{array}{c}
\gamma, \beta \\
\alpha
\end{array} ; \frac{k \lambda}{l}\right] \quad 1 \leqq k \lambda<l
\end{array}\right.
$$

Proof.

$$
\begin{aligned}
\left|P_{n}(\sigma ; a, b ; f)\right| & \leqq B\left|\sum_{m=0}^{n} \frac{(\sigma+1)_{m}(\sigma+b)_{m}}{(\sigma+a+1)_{m}} \frac{k^{m}}{m!}\right| \\
& \leqq \frac{B l^{n}}{\lambda} \sum_{m=0}^{n} \frac{(\gamma)_{m}(\beta)_{m}}{(\alpha)_{m} m!}\left(\frac{k \lambda}{l}\right)^{m}, 1 \leqq k \lambda<l
\end{aligned}
$$

which leads to the second part. The proof of the first part is very straightforward.
3. Main Theorems. By Lemma 1 (i), the modulus of the general coefficient in the power-series (1.2) can be majorised by

$$
\frac{(\alpha)_{n}(\gamma)_{n}}{(\gamma)_{n+1}(\beta)_{n+1}}\left(\frac{\lambda \mu \nu}{R}\right)^{n}\left|\frac{(\beta)_{n+1}}{(\alpha)_{n}}+1-\alpha\right| \frac{M(R)}{\lambda|\beta-\alpha+1|}
$$

Hence the series converges absolutely and uniformly to an analytic function for all $|z|<R / \lambda \mu \nu$. Another majorant is provided by Lemma 1 (ii) both leading to

Theorem 1. If $\dot{\phi} \in \mathscr{K}_{R}^{o}(\lambda),(\lambda, \mu, \nu)<\infty$, then ${ }_{1} A_{1}\left(\underset{z}{\sigma} \left\lvert\, \begin{array}{l}\sigma \\ b\end{array}\right., f(z)\right) \in \mathscr{K}_{R(\rho)}^{a+1}$, $\rho \lambda \mu \nu \leqq R$ and $\left.\left.\right|_{1} A_{1}\left(\left.\begin{array}{c}\sigma \\ z\end{array} \right\rvert\, \begin{array}{l}a \\ b\end{array}\right) \right\rvert\,$ never exceeds

$$
\begin{aligned}
& \frac{M(R)\left|z^{\sigma+1}\right|}{\beta \gamma \lambda|\beta-\alpha+1|}\left\{\beta_{2} F_{1}\left[\begin{array}{l}
\gamma, 1 \\
\gamma+1
\end{array} ; \frac{\lambda \mu \nu|z|}{R}\right]+{ }_{3} F_{2}\left[\begin{array}{l}
\alpha, \gamma, 1 \\
\beta+1, \gamma+1
\end{array} ; \frac{\lambda \mu \nu|z|}{R}\right]\right\}, \\
& \beta-\alpha+1 \neq 0
\end{aligned}
$$

or

$$
\begin{aligned}
& \frac{M(R)\left|z^{\sigma+1}\right|}{\beta \gamma \lambda|\gamma-\alpha+1|}\left\{\gamma_{2} F_{1}\left[\begin{array}{l}
\beta, 1 \\
\beta+1
\end{array} ; \frac{\lambda \mu \nu|z|}{R}\right]+{ }_{3} F_{2}\left[\begin{array}{l}
\alpha, \beta, 1 \\
\beta+1, \gamma+1
\end{array} ; \frac{\lambda \mu \nu|z|}{R}\right]\right\} \\
& \quad \gamma-\alpha+1 \neq 0
\end{aligned}
$$

or

$$
\frac{1}{\beta \gamma \lambda}{ }_{2} F_{2}\left[\begin{array}{lr}
\gamma, & 2 \\
\gamma+1,1 & \frac{\lambda \mu \nu|z|}{R}
\end{array}\right], \beta=\gamma=\alpha-1>0
$$

Similarly from Lemma 2, we easily obtain
Theorem 2. If $\phi \in \mathscr{K}_{\infty}^{\infty}(k),(\lambda, \mu, \nu)<\infty$, then ${ }_{1} A_{1}\left(\left.\begin{array}{c}\sigma \\ z\end{array} \right\rvert\, \underset{b}{a} ; f(z)\right) \in \mathscr{K}_{\infty}^{\sigma+1}$ and $\left.\left.\right|_{1} A_{1}\left(\left.\begin{array}{c}\sigma \\ z\end{array} \right\rvert\, \begin{array}{l}a \\ b\end{array}, f(z)\right) \right\rvert\,$ is dominated by

$$
\begin{aligned}
& \frac{B\left|z^{\sigma+1}\right|}{\beta \gamma \lambda}{ }_{2} F_{1}\left[\begin{array}{l}
\gamma, \beta \\
\alpha
\end{array} ; k \lambda\right]{ }_{2} F_{2}\left[\begin{array}{l}
\alpha, 1 \\
\gamma+1, \beta+1 ; \mu \nu|z|
\end{array}\right], k<\frac{1}{\lambda} \\
& \frac{B\left|z^{\sigma+1}\right|}{\beta \gamma \lambda}{ }_{2} F_{1}\left[\begin{array}{l}
\gamma, \beta \\
\alpha
\end{array} ; \frac{k \lambda}{l}\right]{ }_{2} F_{2}\left[\begin{array}{l}
\alpha, 1 \\
\gamma+1, \beta+1
\end{array} ; \mu \nu l|z|\right], 1 \leqq k \lambda<l .
\end{aligned}
$$

Now, if $f(z)$ is a polynomial of degree p, then for all nonnegative integers $r, P_{p+r}(\sigma ; a, b ; f)=P_{p}(\sigma ; a, b ; f)$. Hence, denoting the set of nonpositive integers by Z^{0-} we have

Theorem 3. If $\phi \in \mathscr{K}_{\pi(p)}^{\sigma},(\sigma+1, \sigma+a+1, \sigma+b) \notin Z^{0-}$, then

$$
\begin{aligned}
& { }_{1} A_{1}\left(\left.\begin{array}{l}
\sigma \\
z
\end{array} \right\rvert\, \begin{array}{l}
a \\
b
\end{array} ; f(z)\right)=\sum_{n=0}^{p-1} \frac{(\sigma+a+1)_{n} P_{n}(\sigma ; a, b ; f)}{(\sigma+1)_{n+1}(\sigma+b)_{n+1}} z^{\sigma+1+n} \\
& \quad+\frac{(\sigma+a+1)_{p} P_{p}(\sigma ; a, b ; f)}{(\sigma+1)_{p+1}}(\sigma+b)_{p+1} \\
& z^{\sigma+1+p}{ }_{2} F_{2}\left[\begin{array}{l}
\sigma+a+1+p, 1 \\
\sigma+b+1+p, \sigma+2+p
\end{array}\right] . z .
\end{aligned}
$$

4. Contiguity relations. As the generalized power series (1.2) is uniformly convergent, a number of interesting contiguity relations can be obtained by applying the operator $d / d z$ or $\delta(\equiv z d / d z)$ termwise. For example

$$
\begin{align*}
& \frac{d}{d z}{ }_{1} A_{1}\left(\begin{array}{c|l}
\sigma & a \\
z & b
\end{array} ; f(z)\right)=\sigma{ }_{1} A_{1}\left(\begin{array}{c|c}
\sigma-1 & a+1 \\
z & b+1
\end{array} ; f(z)\right) \tag{4.1}\\
& +{ }_{1} A_{1}\left(\begin{array}{l|l}
\sigma & a+1 \\
z & b+1
\end{array} ; \frac{d f}{d z}\right) . \\
& (b-a-1)_{1} A_{1}\left(\begin{array}{l|l}
\sigma & a \\
z & b
\end{array} ; f(z)\right)=(\sigma+b-1)_{1} A_{1}\left(\begin{array}{l|l}
\sigma & a \\
z & b-1
\end{array} ; f(z)\right) \\
& -(\sigma+a+1){ }_{1} A_{1}\left(\begin{array}{c|c}
\sigma & \begin{array}{c}
a+1 \\
z
\end{array} \\
b
\end{array} ; f(z)\right)+{ }_{1} A_{1}\left(\begin{array}{c|l}
\sigma+1 & a \\
z & b-1
\end{array} \frac{d f}{d z}\right) \tag{4.2}\\
& -{ }_{1} A_{1}\left(\begin{array}{c|c}
\sigma+1 & a+1 \frac{d f}{d z} \\
z & b
\end{array}\right) .
\end{align*}
$$

Now, as ${ }_{1} A_{1}$ can be written as

$$
\begin{aligned}
\frac{z^{\sigma+1} f(0)}{(\sigma+1)(\sigma+b)} & +\frac{(\sigma+a+1) z^{\sigma+2}}{(\sigma+1)(\sigma+b)} \sum_{n=0}^{\infty} \frac{(\sigma+a+2)_{n} z^{n}}{(\sigma+2)_{n+1}(\sigma+b+1)_{n+1}}\{f(0) \\
& \left.+\sum_{m=1}^{n-1} \frac{(\sigma+1)_{m}(\sigma+b)_{m}}{(\sigma+a+1)_{m}} \frac{f^{(m)}(0)}{m!}\right\}
\end{aligned}
$$

we have on simplification

$$
{ }_{1} A_{1}\left(\begin{array}{l|l}
\sigma & a \tag{4.3}\\
z & ;
\end{array} ; f(z)\right)-{ }_{1} A_{1}\left(\begin{array}{c|c}
\sigma+1 & a \\
z & b
\end{array} \frac{f(z)-f(0)}{z}\right)
$$

$$
=\frac{f(0) z^{\sigma+1}}{(\sigma+1)(\sigma+b)}+\frac{(\sigma+a+1) f(0) z^{\sigma+2}}{(\sigma+1)_{2}(\sigma+b)_{2}}{ }_{2} F_{2}\left[\begin{array}{l}
\sigma+a+2, \quad 1 \\
\sigma+b+2, \sigma+3
\end{array} ; z\right]
$$

As particular cases, we see that

$$
{ }_{1} A_{1}\left(\begin{array}{c|l}
\sigma-1 & a \\
z & b
\end{array}, e^{\rho z}\right)=\Lambda_{\rho, \sigma}(a, b ; z) \text { and }{ }_{1} A_{1}\left(\begin{array}{c|c}
\sigma-1 & a \\
z & b
\end{array}\right)=\theta_{\sigma}(a, b ; z)
$$

where Λ and θ are Babister's nonhomogeneous confluent functions, so (4.1) and (4.3) reduce to known results [1], (4.236), (4.189). Also from (4.3)

$$
\begin{align*}
& \left.{ }_{1} A_{1}\left(\begin{array}{l|l}
\sigma & \left.a_{2}{ }_{p} F_{q}\left[\left.\begin{array}{l}
a_{1}, \cdots, a_{p} \\
z
\end{array} \right\rvert\, \begin{array}{l}
b \\
b_{1}, \cdots, b_{q}
\end{array}\right]\right) \\
-\frac{a_{1} \cdots a_{p}}{b_{1} \cdots b_{q}} A_{1}\left(\begin{array}{l}
\sigma \\
z
\end{array} \left\lvert\, \begin{array}{l}
a \\
{ }_{p+1} F_{q+1}
\end{array}\left[\begin{array}{l}
a_{1}+1, \cdots, a_{p}+1 \\
b_{1}+1, \cdots, b_{q}+1
\end{array} ; z\right.\right.\right.
\end{array}\right]\right) \\
& \quad=\frac{z^{\sigma+1}}{(\sigma+1)(\sigma+b)}+\frac{(\sigma+a+1) z^{\sigma+2}}{(\sigma+1)_{2}(\sigma+b)_{2}}{ }_{2} F_{2}\left[\begin{array}{l}
\sigma+a+2,1 \\
\sigma+b+2, \sigma+3
\end{array}\right] \tag{4.4}
\end{align*}
$$

with the usual restriction on the parameters.
5. Illustration. The above results are of particular advantage when the analytic component of ϕ involves functions of hypergeometric type because these (for that matter, almost all) special functions belong to one of the classes considered.
For example: (See Table on next page).
The first four are Babister's nonhomogeneous confluent functions, the next three are obtained via a result due to Carlitz [2]:

$$
\begin{array}{r}
{ }_{5} F_{4}\left[\begin{array}{c}
a, 1+a / 2, b, c, d ; \\
a / 2,1+a-b, 1+a-c, 1+a-d
\end{array}\right]_{n} \\
\quad=\frac{(1+a)_{n}(1+b)_{n}(1+c)_{n}(1+d)_{n}}{(1+a-b)_{n}(1+a-c)_{n}(1+a-d)_{n} n!}
\end{array}
$$

provided that $a=b+c+d$. In the last two cases $P_{n}(\sigma ; a, b ; f)=$ $\left((\sigma+1)_{n}\right) / n$! or $n+1$ respectively yielding the results with the usual restriction on the parameters.

Some other properties of ${ }_{1} A_{1}\left(\left.\begin{array}{l}\sigma \\ z\end{array} \right\rvert\, \begin{array}{l}a \\ b\end{array} ; f(z)\right)$ will be discussed in another communication.

References

1. A. W. Babister, Transcendental Functions, MacMillan (N. Y.), 1967.
2. L. Carlitz, The sum of the first n terms of an ${ }_{5} F_{4}$, Bol. un. Mat. Ital. 19 (1964), 436-440.
3. T. Erber, Inequalities for hypergeometric functions, Arch. Rational Mech. Anal., 4 (1959/60), 341-351.
Received July 22, 1970.
University of Adelaide
