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INVERSE SEMIGROUPS OF PARTIAL
TRANSFORMATIONS AND ^-CLASSES

N. R. REILLY

If S is an inverse semigroup and 0 is the relation on the
lattice A(S) of congruences on S defined by saying that two
congruences ρl9p2 are ^-equivalent if and only if they induce
the same partition of the idempotents then Θ is a congruence
on Λ(S) and each #-class is a complete modular sublattice of
A(S). If X is a partially ordered set then Jx denotes the
inverse semigroup of one-to-one partial transformations of X
which are order isomorphisms of ideals of X onto ideals of X,
while if X is a semilattice, Tz denotes the inverse subsemigroup
of Jx consisting of those elements a whose domain Δ(a) and
range f (a) are principal ideals. It is shown that any inverse
semigroup is isomorphic to an inverse subsemigroup of Jx for
some semilattice X.

For an inverse subsemigroup of Jx, θ(S) = Λ(S)/Θ is related to
certain equivalence relations on X. The weakest of these is a convex
congruence which is an equivalence relation on X, convex in the partial
ordering and compatible with the operation in S. It is shown that
there is a natural order preserving mapping a of Θ(S) into the lattice
Γ(X) of convex congruences. If X is a semilattice, the set of those
convex congruences which are also semilattice congruences on X is
denoted by Γ2(X). If S contains the idempotents of Tx, that is, if
S is full in Jz, then a is a semilattice homomorphism of Θ(S) onto
Γ2(X). If S is full in Tx then a is a lattice isomorphism of Θ(S)
onto Γ2(X). Conversely, there exists an order preserving mapping β
of Γ2(X) into Θ(S). If S is full in JZ9 then β is an order isomor-
phism into Θ(S): if S is full in Tx, then β is a lattice isomorphism
onto Θ(S) and β = a"1.

We adopt the notation and terminology of (2). In particular, a
semigroup S is called an inverse semigroup if a e aSa, for all ae S,
and the idempotents of S commute. Then there is a unique element
x such that a = axa and a ~ xax. We call x the inverse of a and
write x — a~ι. For any inverse semigroup S, we denote by Es the
subsemigroup of idempotents of S. If we define a partial ordering
on Es by saying that e ^ / if ef = e then S is a semilattice where,
by a semilattice, we mean a partially ordered set in which any two
elements have a greatest lower bound. For the basic results on
inverse semigroups the reader is referred to (2). All semigroups con-
sidered in this paper will be inverse semigroups.
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Denote by Λ(S) the lattice of congruences on the inverse semi-
group S; that is, the lattice of equivalence relations p such that, for
a, b, ce S, (a, b) e p implies that (ac, be) e p and (ca, eb) e p. Define the
relation Θ (cf. 9) on Λ(S) by

(ft, ft) e θ if and only if pλ\Es = p2\Es

where pi \ Es denotes the restriction of the congruence pi to Es. Then

LEMMA 1.1. ((9) Theorem 5.1). Let S be an inverse semigroup and
the relation θ be defined as above.
Then

(i) θ is a congruence on Λ(S);
(ii) each θ-class is a complete modular sublattice of Λ(S) (with

a greatest and least element).

We shall denote the lattice of ^-classes of an inverse semigroup
S by Θ(S).

Now each congruence on an inverse semigroup S determines a
normal partition of Es; that is a partition P — {Ea: a e J} such that

E( i) a, βeJ implies that there exists ay eJ such that EaEβ s Er;
E(n) aeJ and ae S implies that there exists a β eJ such that

aEaa~ι S Fβ
Likewise we call an equivalence relation p on Es a normal equiva-

lence if its classes constitute a normal partition of Es.
Conversely, if P is a normal partition of Es then P is induced by

some congruence on S. Thus the lattice of normal partitions of Es is,
clearly, just (isomorphic to) Θ(S).

The least and greatest congruence in the #-class corresponding to
the normal partition P can be characterized as follows:

LEMMA 1.2. ((9) Theorem 4.2) Let P — {Ea: aeJ) be a normal
partition of the semilattice of idempotents of S. Let σ = {(α, b) e SxS:
there exists an a e J with aa~\ bb~ι e Ea and, for some e e Ea, ea = eb}
and p = {(α, b)eS x S: aeJ implies that, for some β eJ, a Eaa~~\
b EJ)'1 g Eβ}. Then σ and p are, respectively, the smallest and largest
congruences on S in the θ-class corresponding to the normal partition
P.

By a one-to-one partial transformation of a set X we mean a
one-to-one mapping a of a subset Y of X onto a subset Yf = Ya of
X. We call Y the domain of a, Yr the range of a and write Δ(a) —
Y, V(a) = Y\ If we denote by Ix the set of all one-to-one partial
transformations of X then, with respect to the natural multiplication
of mappings, Ix is an inverse semigroup called the symmetric inverse



INVERSE SEMIGROUPS OF PARTIAL TRANSFORMATIONS 217

semigroup on X (2).
Let X be a partially ordered set. By an ideal of X we mean a

subset Y of X such that x ^ ye Y implies that xe Y. If X is trivi-
ally ordered, that is, if no two distinct elements are comparable, then
any subset of X will be an ideal. We consider the empty set 0 as
being an ideal of X. By a principal ideal we mean an ideal of the
form {x: x ^ y) for some fixed element y. Then we call {x: x ^ y] the
{principal) ideal generated by y and denote it by < y >. For an
arbitrary subset A of X we write < A > = {x e X: x ^ α, for some a e
A}.

If X is a partially ordered set, let Jx denote the set of all a e Ix

such that
(i) A(a) and V{a) are ideals of X;
(ii) a is an order isomorphism of A (a) onto F(a); that is, a one-

to-one mapping of A (a) onto F(α) such that, for x, ye A(a), x ^ y if
and only if α α ^ ^α.
It is straightforward to verify that Jx is an inverse subsemigroup
of Ix. If X is trivially ordered then, of course Jx = Ix.

By the following theorem, any inverse semigroup S can be em-
bedded in Is.

THEOREM 1.3. ((2) Theorem 1.20) Let S be an inverse semigroup
and for each ae S define the element aa of Is by

( i ) A{aa) = Sa-1;
(ii) for xeA{aa), xaa = xa.

Then the mapping a: α —»aa is an isomorphism of S into Is.

Considering S a s a trivially ordered set we then have that S can
be embedded in Js. However, on any inverse semigroup S there exists
a partial ordering, called the natural partial ordering which can be
defined as follows: for any α, be S,

a ^ b if and only if a~ιb = a~ιa .

For several equivalent definitions of this partial ordering see §7.1 of
(2). The natural partial ordering is compatible with the multiplica-
tion of S.

Suppose that y e Sα"1 and that x ^ y. Then y = sa~\ for some
s e S and x~ιy = x~ιx. Hence x = xx~ιx = xx~]y = xx~ιas~ι e Sa~ι. Thus
A(aa) is an ideal in the partially ordered set S. Moreover, for any
x <; y, with x, ye A(aa), xaa = xa ^ ya = yaa, since the natural partial
ordering is compatible with the multiplication. Conversely, if xaa ^
yaa, for x, ye A(aa) then xa ^ ya and xaa~ι ^ yaa~\ Since x, ye A(aa) =
Sa~\ xaa~ι = x and yaa~x — y. Thus x ^ y and aa is an order isomor-
phism of A(aa) onto F(aa). Thus
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PROPOSITION 1.4. Let S be an inverse semigroup. Then the em-
bedding a-+aa of S into Is, of Theorem 1.3, also embeds S in Js

where S is considered as a partially ordered set with respect to the
natural partial odering.

Let X be a partially ordered set and S £ Jx (we shall sometimes
just write S £ Jx for "S is an inverse subsemigroup of JΣ"). We
shall be interested in certain kinds of equivalence relations on X.
Consider the following conditions on an equivalence p on X:

( i ) x <̂  y <̂  z, (x, z) e p implies that (x, y) e p;
(ii) (x, y) G p, x, y e A(a), ae S, implies that (xa, ya) e p.

If p satisfies these conditions then we shall call p a convex congruence,
or just a c-congruence on X.

If X is actually a semilattice and we denote by x A y the greatest
lower bound of any two elements x, y of X, then we can also con-
sider the conditions:

(iii) (x, y)e p implies that (x, x Λ y) G p;
(iv) (x, y) G p, z e X implies that (xΛz, y Λ z) G p.

If p satisfies conditions ( i ), (ii) and (iii) we shall call p an sf-con-
gruence, while if p satisfies (ii) and (iv) then we shall call p a semi-
lattice congruence or just an s-congruence. Although these definitions
depend on S, S will generally be held fixed and so the terminology
should not lead to any confusion. If X is a semilattice and p satisfies
condition (iv), then clearly p satisfies conditions ( i ) and (iii). Thus
an s-congruence is an s'-congruence and an s'-congurence is a c-con-
gruence.

If X is totally ordered then the three types of congruence coincide.
By a complete sublattice A of a lattice B we mean a sublattice

such that for any nonempty subset C of A the least upper bound
(greatest lower bound) of C in A exists and is the least upper bound
(greatest lower bound) of C in B.

PROPOSITION 1.5. Let X be a partially ordered set and S £ Jλ.
Then the set Γ(X) of c-congruences on X, partially ordered by set
inclusion (as subsets of X x X) is a complete lattice.

If X is a semilattice then the set Γγ(X) of sf-congruences on X is
a complete lattice (but not necessarily a sublattice of Γ(X)) and the
set Γ2(X) of s-congruences is a complete sublattice of Γ(X).

Proof. Let {p^ ie 1} be a family of c-congruences (s'-congruences,
s-congruences). Then clearly ΓϊieiPί is also a c-congruence (s'-con-
gruence, s-congruence). Since Γ(X) (ΓX(X), Γ2(X)) has a largest ele-
ment, the universal congruence p = X x X, it follows from purely
lattice theoretic considerations that Γ(X) (Γ^X), Γ2(X)) is a complete



INVERSE SEMIGROUPS OF PARTIAL TRANSFORMATIONS 219

lattice.
Now let C be a nonempty subset of Γ2{X). Clearly the greatest

lower bound of C in Γ(X) and Γ2(X) is just Γ\pec P Now define a
relation η on X by

(x, y) eη<=> for some x = x0, xl9 , xn = y e X ,

(Xi-l9 Xi) G ft, i = 1, , w, for some p{eC .

Then, from (1) Chapter 2, Theorem 4, ^ is an equivalence relation on
X such that, if (x, y)eη and z e l then (x A z, y A z) e ^ Hence, to
show that 37 e Γ2(X), it only remains to be shown that if (x, y)er/ and
(x, 2/) G J(α) then (xα, τ/α) e 97. Let x = xQ, xί9 , xn = y e X and ft, ,
ftGC be such that (^_ly ^) e ft, for i = 1, , n. Then (x0 A #<_i,
x0 A Xi) G ft, ί — 1, , n and, since x0 A Xi ^ aj0, ^0 Λ ^ G J(α), for i =
1, n. Therefore, ((x0 A ^_L)α, (x0ΛXi)a) G ft, for i = 1, , , n and
so (xa, (x A y)a) = ((a0 Λ α;0)α, (x0 A xn)a) e η. Similarly, (ya, (x A y)ά) G
η. Hence {xa, ya) e η and η e Γ2(X).

But η is the least upper bound of C in the lattice of equivalence
relations on X and hence is the least upper bound of C in Γ(X). Thus
Γ2(X) is a complete sublattice of Γ(X); in fact, we proved that Γ2(X)
is a complete sublattice of the lattice of equivalence relations on X.

We now give an example to illustrate some of the points that
have arisen.

EXAMPLE. Let X be the semilattice of Figure 1 and S = EJχ.

y

FIGURE 1.

Let ft be the equivalence relation on X which partitions X as
X = {u} u {y} U {x, v}; let ft be the equivalence relation partitioning X
as X = {#, u} U M U {2/} and let ft be the equivalence relation parti-
tioning X as X = {x} U {1/} U {w, v}.

Now ft is a c-congruence but not an s'-congruence since (x, x A v) =
(x, y) g ft. Also ft is an s'-congruence but not an s-congruence since
(xy u) G ft but (x A v, u A v) = (y, v) $ ft. Similarly ft is an s'-con-
gruence, but not an s-congruence. Finally, the least upper bound of
ft and ft in Γ(X) partitions X as X = {x, u, v} (J {y} which is not an
s'-congruence.

2Φ From normal equivalences to congruences* Throughout this
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section, let X be a partially ordered set and S be an inverse subsemi-
group of Jx. We now begin to relate the ^-classes of S and the con-
gruences on X.

If A is a subset of S then we shall denote by Aω the set {se S: a ^
s, for some ae A}.

Let τ be a normal equivalence on Es and # G X. Let F(ff) =
(eGί/s:xGzί(e)} and Vτ(x) = {\Jeerier}ω.
Then we have

LEMMA 2.1. F(a?) ϋ FΓ(i/) implies that Vτ{x) § Fr(i/).

Proo/. Let /, Λ G # 5 , (/, /,) e τ and /, G V(x). Then Λ G Fr(̂ /) and
so Λ ^ /2, (/2> /3) e r and /3 e F(τ/), for some /2, /8 G #,. Hence / ^ //2,
(/Λ /iΛ) e τ, Λ/2 = /2, (/2, /3) G τ and /8 e F(τ/); that is, / ^ //2, (//2, /3) e
τ and / 3 GF(T/). Hence / G F Γ ( T / ) . Thus U w ) ^ S ^(2/) and so
Vτ{x) S FΓ(τ/).

THEOREM 2.2. Lei X be a partially ordered set and S gΞ J z . Lei
T be a normal equivalence on Es. Define the relation p = p. on X by

(x, y)eρ if and only if Vτ(x) = Vτ(y) .

Then p is a c-congruence on X. Moreover, if σ is another normal
equivalence on Es and τ <Ξ σ, then pτ g pσ.

Proof. ( i ) Suppose that x ^ y <̂  z and (x, z) e p. Then V(z) S
V(y) S 7(a?) and so Vτ{z) s Fr(i/) S FΓ(a?) = Fr(s), by Lemma 2.1.
Hence Vτ{x) = V-(y) and so (x, y) e p.

(ii) Suppose that (#, y)eρ, aeS and #, yeΛ(a). Let / e Fί^α).
Then xaeA{fa~l) and so xeΛ{afa~ι). Hence α/α" 1 G F(.τ) g K(τy).
Therefore, for some /1? /2 G JE^, we have afa~ι ^ / :, (fl9 /2) G τ and f2 e
V{y). Hence ya = yf2a e A{a~f2) = A(a~f2a) where (a~f2a, a~fλa) e τ,
a~fxa ^ a~Lafa~ιa ̂  / . Thus f e Vτ(ya) and, by Lemma 2.1, VT(xa) S
VT(ya). Similarly we have the converse inclusion and so V7(xa) =
Vz(ya) and (ίcα, ?/α) G ô. Hence ,o is a c-congruence. Now τ s σ implies
that Vτ(x) C Fσ(ίc), for all ίcG X, and so (x, y) e pτ implies that V(x) S
Fr(2/) S K(?/). Therefore Fσ(a;) S K(j/)> by Lemma 2.1, and similarly
the converse inclusion holds. Thus (x, y) e po and px g (oσ.

In general, of course, this mapping from normal equivalences to
c-congruences is not one-to-one. However, in some circumstances, as
we now show, it will be.

For any sets A and B let A\B = {x: x e A, x ί B}. For e e Es, let
δ(e) = A{e)\\Jf<e A(f) = {x: x e A(e), x $ A(f) for any / G Es such that
f<e).

By an order isomorphism a of one partially ordered set X into
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another Y, we mean a one-to-one mapping a of X into Y such that,
for x, y e Xy x ̂  y if and only if xa ̂  ya.

PROPOSITION 2.3. Let X be a partially ordered set and S £ Jλ.
Let the normal equivalence τ on Es induce the c-congruence p = pτ

on X as in Theorem 2.2. Let e, f e Es, xeδ(e) and yeδ(f). Then

(2.1) (x, y)ep if and only if (e, f) e τ .

Thus, ifX— \JeeESδ(e)> then the definition of p in Theorem 2.2
may be replaced by the statement (2.1).

Finally, if δ(e) Φ 0 , for all eeEs, then the mapping τ —> p.
defines an order isomorphism of the lattice Θ(S) into Γ(X).

Proof. Let e, / e Es, x e δ(e), y e <?(/). First suppose that (e, /) e
τ. Then, for geV(x) we have that, g >̂ β, (β, /) e τ and feV(y).
Thus V(x) S Vτ(y), Vτ(x) S Vτ(y) and, by similarity, Vτ(x) = Vτ{y); that
is, (x, y) e p.

Now suppose that (x, y) e p9 Then V~(x) = VT(y). Hence e e V(x) £
Vτ(y). Thus, for some e19 e2e Es, e ̂  eu (e19 e2) e r , e 2 ^ / . Similarly,

for some fl9 f2 e E,, f ^ /,, (fl9 f2) e τ and f2 ^ e. Then

β ^ ejT, (β,/, /) - (ej, ej) e r

and

/ ^ e/i, (eΛ, e) = (e/Ί, e/2) e τ .

Hence

(βi/, e/) = (e-atj, ef)eτ

and

(efί9ef) = (efrf,ef)eτ.

Therefore (eLf, ef) G r and so (e, /) G Γ.

The remainder of the theorem then follows easily.

A congruence p on an inverse semigroup S is called idempotent
separating if no two distinct idempotents of S lie in the same p-class.
There exists a unique maximal idempotent separating congruence μ
on S which can be characterized as follows (Howie [4]):

(α, 6) G μ <=> a"ιea = b~ιeb for all e e Es .

If μ is the identity congruence, then we shall call S fundamental.
Although, for S £ Jx and X a semilattice, we shall be considering



222 N. R. REILLY

the general problem of defining a normal equivalence on Es from an
s'-congruence on X in the next section and althought it appears essen-
tial in general to assume that X is a semilattice and that the con-
gruence on X is an s'-congruence, we can, at least, establish the
following theorem without these assumptions.

THEOREM 2.4. Let X be a partially ordered set and S S Jλ. De-
fine the relation v on X by:

(x, y)ev~ V(x) = V(y) .

Then v is c-congruence on X. Define the relation ζ on S by

(α, 6) e £ « (i) {xv: xv Π Δ(a) Φ 0} = {xv: xv Π A(b) Φ 0}

(ii) x G A(a)9 y e A(b), (x, y)ev

implies that (xa, yb) e v .

Then ξ = μ, the maximum idenpotent separating congruence on S.

Proof. Let (x, z) e v and x ^ y ^ z. Then V(x) a V(y) a V(z) =
V(x). Thus V(x) = V(y) and (x, y) e v.

Now let (x,y)ev and x,yeJ(a). Let eeF(#α). Then aea~ιe
V(x) = V(y). Thus β G % ) and F(m)SF(?/α). Similarly V(ya) g
F(a?α) and so F(#α) = V(ya). Thus (xα, /̂α) e v and v is a c-congruence.

It is straightforward to see that ξ is an equivalence relation. To
show that ξ = μ, we first show that τ = ξ\Es = c. Let (e, / ) e r and
a G J(β). Then a j; Π J(/) Φ 0 and so j/ea vn Δ{f), for some /̂. Then
fe V(y) = V(x). Thus xeΔ(f) and J(e) g J(/). Conversely, Δ(f) £
z/(e) and so Δ(e) = Δ(f) and β = /.

Let (α, 6) e ξ. Then, for any a; e X, αv Π J(α) ^ 0 if and only if
xv Π Λ(δ) ̂ 0 . But Δ(a) = A{aa~ι) and Δ(b) = A{bb-1). Hence OT Π
A(aa~ι) Φ 0 if and only if α v Π A(bb~ι) Φ 0 . Moreover, for (x, y) e
v,xe A(aa~ι), y e Aφb*1), (xaa~\ ybb~ι) = (a;, y) e v. Hence (a, b) e ξ implies
that (aa~\ bb~ι) e ξ and so aa~ι = bb~ι and A (a) = Δ(b).

Now we show that f is a congruence on S. Let (α, 6) G ς and
ce S. If eT 6 J(αc) then sc G A(a) = A(b) and rra G z/(c). However, (,τα, xb) e
v and so cc^e V(xa) = F(xδ). Thus xeAφc) and Λ(αc) s z/(6c)β By
similarity, z/(αc) = J(6c) and condition (i) is satisfied by ac and be.
If x e A(ac) = Δ(bc), then (xa, xb) e v, since (α, 6) G ς, and so (tταc, ,τδc) G
v, since v is a c-congruence. Thus (ac, be) e ξ.

Now xeA(ca) if and only if xeA(c) and xcez/(α) = ^(δ). Thus
Δ(cά) = z/(cδ) and condition (i) is satisfied by ca and cδ. Clearly ca and
cδ then satisfy condition (ii). Thus (ca, cb) e ξ and ξ is a congruence.

Since ξ\Es — t we have that ξ Q μ and to complete the theorem
we need only show that μ § f. Suppose that (α, δ) e JM. Then αα"1 —
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bb~\ A{aa~l) = A(bb~ι) and condition (i) is satisfied. Now let xe A(a),
yeA(b) and (x,y)ev. Let feV(xa). Then xaeA(f) and so xe
A{afa~ι). But, since (α, b) e μ, a fa"1 = bfb~ι. Thus x e A{bfb~ι). Now
F(α) = V(y) and so yeA{bfb~~ι). Hence ybeA(f) and F(αα) g F ( # ) ,
By similarity, we have that V(xa) = V(i/6) and (a α, 2/6) e u. Thus con-
dition (ii) is also satisfied by a and 6 and so (α, δ) e f. Hence ξ = μ.

If, in Theorem 2.4, y is the identity relation on X, then clearly
(α, δ) e £ if and only if a — 6. Thus we have immediately:

COROLLARY 2.5. Let X be a partially ordered set and S S J x .
// v is the identity relation, then S is fundamental.

Let Xbe a partially ordered set and xe X. Then we shall denote
by ex the idempotent of Jx with domain equal to the principal ideal
< x >. Let S S Jx, then we say that S is /%ZΪ in Jx or (if X is a
semilattice and S S 2V) that S is /ẑ ZΪ in T x if {ex: xe X} QES, where
Tx is as defined in §3.

COROLLARY 2.6. Let S be full inverse subsemigroup of JX9 then
S is fundamental.

Proof. If S is full then v must be the identity relation and then
so must ζ.

Corollary 2.6 is a slight generalization of a theorem ([6] Theorem
2.6) of Munn's and could be established directly along the same lines
as Munn's proof. Corollary 2.5 is a little stronger, however, as the
following example shows:

EXAMPLE. Let X be the set of real numbers under their natural
ordering. Let S = {a e Jx: A{a) is not principal}. Then S is an inverse
subsemigroup of Jx. Clearly v is the identity relation and hence S
is fundamental. However, S is not a full inverse subsemigroup of Jx.

3. X a semilattice* Let X be a semilattice, then we can define
another subsemigroup of Ix as follows. Let Tx denote the set of α e
Ix such that

(i) A (a) and V(a) are principal ideals;
(ii) a is an order isomorphism of A (a) onto j(α).
It is straightforward to verify that Tx is an inverse subsemi-

group of Ix and Jx. For a discussion of Tx and its importance in
connection with bisimple inverse semigroups see Munn [7].

PROPOSITION 3.1. Let X be a partially ordered set and let X
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denote the set of all ideals of X, partially ordered by set inclusion.
Then X is a semilattice and there exists an embedding tc: Jx —> Tj.

Proof. Clearly X is a semilattice. For a e Jx define tca e Tj by:
(i) A(tca) = {IeX:I^A(a)};
(ii) for Ie A(tca), Itca = {xa: xe I}.

Then tc: a—>tca is an isomophism of Jx into T-χ.
We now give several ways in which inverse semigroups might be

considered as subsemigroups of Tx for some semilattice X. First, from
[7] Lemma 3.1,

PROPOSITION 3.2. Let S be an inverse semigroup and Es = E.
Define a mapping θ: S —> TE by the rule that aθ = θa where

(i) A{θa) = Eaa'1;
(ii) for ee/!(θa), eθa = a~ιea.

Then θ is a homomorphism of S into TE inducing the maximum
idempotent separating congruence on S and hence is an isomorphism
if S is fundamental.

Combining either Theorem 1.3 (considering S as a trivially ordered
set) or Proposition 1.4 with Proposition 3.1 we have:

PROPOSITION 3.3 Let S be an inverse semigroup then there exists
a semilattice X and an isomorphism tc: S—> Tx.

Presently we shall be considering inverse subsemigroups S of Jx,
where X is a semilattice, such that X — Uee^ <5(e) or such that δ(e) Φ
0, for all eeEs. In this connection, we have

PROPOSITION 3.4. Let S be an inverse semigroup then there exists
a semilattice X and an isomorphism tc: S —> Jx such that

(i) 3(etc) Φ 0 for all e e Es:
(ii) X=\JesESS(eιc).

Proof. Let Θ:S—>JS be the embedding of Proposition 1.4. Let
X denote the set of all subsets of S which are inversely well ordered
with respect to the natural partial ordering of S, together with the
empty set. Partially order X by set inclusion. Then X is clearly a
semilattice. Define φ:Js-+Jχ as follows: for aeJSf

(i) A{aφ) - { i e l A g A(a)};
(ii) for A e A(aψ), A(aψ) = {aa: ae A}.

Then φ is an isomorphism and so tc = θoφ is an isomorphism of S into

For e e Es, ee A(eθ) and so {e} e A(etc). Clearly {e} e A(ftc), for / e
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Es if and only if e i£ / in the natural partial order on S. Thus {e} e
δ(etc) and δ(e/c) Φ 0 for all e e Es.

Let A e X have greatest element a, in the natural partial order
on S. Then a e δ((a-ιa)/c). Thus X = \JeeEs S(eιc).

Finally, we give a representation of slightly less general applica-
bility which is interesting on account of the relationship that the set
X bears to the semigroup.

Before doing so, we need the following special case of Lemma 1.2.
due to Munn [5]:

LEMMA 3.5. Let S be an inverse semigroup and let a relation σ
be defined on S by the rule that xσy if and only if there is an idem-
potent e in S such that ex = ey {or, equivalently, xe = ye). Then σ is
a congruence on S and S/σ is a group. Further, if τ is any congru-
ence on S with the property that S/T is a group, then σ Q T and so
S/τ is isomorphic with some quotient group of S/σ.

Then σ is called the minimum group congruence on S.

PROPOSITION 3.6. Let S be an inverse semigroup, let σ be the
minimum group congruence on S, let μ be the maximum idempotent
separating congruence on S and let σ Γ\ μ = c, the identity congruence
on S. Let X — Es U S/σ (j {0}, where for x, y e X, we have x ^ y if
and only if

either ( i ) x, ye Es and x ^ y in the natural partial ordering
of Es;

or (ii) y£Es and xeS/σ;
or (iii) x = 0.

Then X is a semilattice and there exists an embedding tc: S —> Tx, such
that d(efc) Φ 0 for all e e Es.

Proof. Let θ: a —+θv be the Munn representation of S of Proposi-
tion 3.2. Then, for ae S, define aic e Tx as follows:

( i ) Δ(μκ) = Esaa~ι U S/σ (J {0};
(ii) x(afc) — xθa if xe Es f) Δ{aκ)\
(iii) x{aκ) — x{aσ) it xe S/σ;
(iv) x(a/c) = x if x = 0.

Then it is clear that tc is a homomorphism of S into Tx inducing the
congruence σ Π μ, that is, the identity congruence. Thus K is an
isomorphism.

We now turn to the problem of relating, for S £ Jx and X a
semilattice, s'-congruences on X to normal equivalences or ^-classes
of S. For p an s'-congruence on Xand aeS we shall denote by U(a)
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the set {xp: xp Π A(a) Φ 0} . We suppress any indication of the de-
pendence of U(a) on p since this will not lead to any confusion.

THEOREM 3.7. Let X be a semilattice, S be an inverse subsemi-
group of Jx and p be an sr-congruence. For ae S, define aa e JxlP, as
follows:

( i ) A(aa) = U{a)
(ii) for xpe A(aa), (xp)aa = (xLa)p where xγ is any element in xpΓ)

Δ{a).
Then a: a—>aa is a homomorphism of S into Ixjp. If p is an s-con-

gruence then a partial ordering of X/p can be defined as follows:

xp <̂  yp <=> xL <? yι for some x1 e xp, yγeyp .

With respect to this partial ordering X/p is a semilattice and Sa g

Proof. Since p is a c-congruence, aa is clearly well defined and
it is straight forward to show that aa e Ixlp, that is, that aa is one-
to-one. Let a,beS and xpe A(aah). Then there exists an Xj_expΠ
A(ab). Hence xxexp Γ\ A(a) and xλae A(b). Thus xpe A(aa) and xλae
(xp)aa Π A(b). Thus {xp)aae A(ah) and xpe A(aaab). Conversely, let
xpe A(aaab). Then there exists an xxe xp n A (a) and an x2e (xρ)aa ΓΊ
A(b) = {xxa)p Π A(b). With x3 = x2 A xYa, we have x3e x2p = {xp)aa and
x3 e A(a~ι) Π A(b), since xλa e A(μrι) and x2 e A(b). Thus x3a~λ e xp, xza~ι e
A(a) and (^α"1)^ = χzG A(b). Thus xza~ι e xp Π A{ab). Hence xp e A(aah).
Thus A(aab) = A(aaab). Now let xpe A(aab) = A(aaab), and x.expf]
A(ab). Then

(xρ)aab = (xLab)ρ

and

(xp)aaab = {Xya)ρab = (xLab)ρ .

Hence aaab = aab and a is a homomorphism.
If p is an s-congruence then X/p is clearly a semilattice and it

only remains to be shown that Sa^Jxίp.
So suppose that xp ^ yp and yp e A(aa). Then there exists xλ e xp,

Vi, Vi^VP such that x^yt and y2eA(a). Hence (x19 xι A y2) =
(a?! Λ 2/1, #! A y2)e p and so (a?, ^ A y2)e p where xλ A y2^y2^ A(a).
Thus a?! Ay2eA(a) and xped(aa). Therefore Λ(αα) is an ideal and it
is routine to verify that aa is order preserving. Thus Sa £ Jx / / 0.

To see the difficulty that arises if p is just a c-congruence, con-
sider the semilattice X of Figure 2.

Let S be the inverse subsemigroup of Jx consisting of the idem-
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potents el9 e2, e3 where Δ{e^ = {x, w}, A(e2) = {u, v, w] and A(e3) = {w}.

Let p be the c-congruence on X determined by the partition X =
{x, v) U {u} U {w}. Then there is no natural homomorphism of S into Jz/P.

From Theorem 3.7, we have

COROLLARY 3.8. Let X be a semίlattice and S be an inverse sub-
semigroup of Jx. Let p be an sr-congruence on X and define the rela-
tion τ — τp on Es as follows: for e, f e Es,

(e,f)eτ~U(e)= U(f) .

Then τ is a normal equivalence on Es. If p £ p' then z £ τ\

In certain circumstances we can give a more direct difinition of
the normal equivalence induced by an s-congruence.

LEMMA 3.9. Let X be a semilattice and S be an inverse subsemi-
group of Jγ. Let p be an s-congruence on X and let p induce the
normal equivalence τ on Es. If ex, ey e Es then

(ex, ey) e τ <=> (x, y) e p .

In particular, if S £ Tx then this defines τ.

Proof. Let (x, y) e p and zp Π A(ex) Φ 0 . Without loss of gener-
ality, let z e A(ex). Then z ^ x, (z, z A y) = (zΛx, zΛy) e p and z Λy£
A(ey). Thus zp Π A{ey) Φ 0 and U(ex) £ U(ev). By similarity, we have
the converse inclusion and so (ex, ev) e r.

Now suppose that (ex, ey) e τ. Then x e xp n A(ex) and so there
exists an xY such that (x, xλ)e p and x1eA(ey), that is, x1 ^ y. Simi-
larly, there exists a yγ such that (y, yj e p and yx e A(ex), that is, yΣ rg
x. Then (x A y, xd = (x Ay,xLAy) e p and (x A y, y,) = (x A y, x A yd e
p. Hence (xl9 y^ e p and so (x, y) e p as required.

We conclude this section with an instance where the mapping p —>
r is one-to-one.

THEOREM 3.10. Let X be a semilattice and S be a full inverse
subsemigroup of Jx. If z is a normal equivalence on Es then z induces
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an s-congruence on X. On the other hand, if p is an s-congruence on
X, if p induces the normal equivalence τ on Es and τ, in turn, in-
duces the s-congruence p' on X, then p = p'. In particular, the
mapping β:p-+τ defines an order isomorphism of Γ2{X) into Θ(S),
and the mapping τ —> p into Γ2(X) is into Γ2(X). Thus, if S is full
in Tx then, by Proposition 2.3, the mapping τ —• p defines an order
isomorphism of Θ(S) onto Γ2{X).

Proof. Let the normal equivalence τ on E8 induce the c-congru-
ence p on X. For any x, ye X, we clearly have

Δ(exey) = A{ex) Π A{ey)

= {z: z <; x] Π {z: z<,y)

= {z:z <£ x A y)

Hence exey = exAy. Also, from Proposition 2.3, we have that (x, y) e
p if and only if (ex, ey) e τ. So now suppose that (x, y)e p and ze X.
Then (ex, ey) e τ and so (exAz, eyAz) = (exez, eyez) e τ. Hence (xΛz, y Λz)e
p and p is an s-congruence.

Now suppose that p is an s-congruence, that p induces the normal
equivalence τ and τ, in turn, induce p\ Let (x, y) 6 p. Then, by Lemma
3.9, (ex, ey) e τ. Hence, for e e V(x), e ^ ex, (ex, ey) e τ and ey e V(y).
Thus ee Vτ{y) and V(x) S Vτ{y). Similarly, V(y) S VT(x) and so Vτ(x) =
Vz(y) and (x, y) e ρ\ Thus p £ p'.

Conversely, let (x,y)eρ\ Then Vτ(x) = Vz(y). Hence exeV7(y)
and β̂ G FΓ(aj). Thus there exist e19 e2, fχ,f2^Es such that

(3.1) ex ^ ely (e19 e2) e τ a n d e2 ̂  e^

a n d

(3.2) ey ^ /,, ( Λ / 2 ) G r a n d f 2 ^ e x .

T h e r e f o r e

and

βy ^ /iβ*, (/iβα:, βj = (fex, f2βx) G Γ .

Hence

(e&y, e
x
e
y
) = {e

x
e

γ
e

y
, e

x
e
y
) G τ

and
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(Aex, exey) = {eyfxeX9 eyex) G τ .

Thus faey, fxex) G τ and (ex, ey) G r. Hence, by Lemma 3,9, (x9 y) e pr

and p' g p Thus ^ = ô'.
Let the s-congruences p and pr induce the normal equivalences τ

and τ\ If <o g <o' then τ g τ', by Corollary 3.8. Let τ g r\ Since,
by the above τ and τf induce, in turn, p and pf it follows from Theorem
2.2 that (O g !</. Hence /9 is an order isomorphism of Γ2(X) into Θ(S).

4. The case δ(e) Φ 0* Throughout this section we assume that
X is a semilattice, that S ^ Jx and that 5(e) ^ 0 for all e e Es. The
representations of Propositions 3.2, 3.3, 3.4 and 3.6 all satisfy this
condition. However, for the main result of this section we shall require
further hypotheses.

LEMMA 4.1. Let X be a semilattice, S g Jτ and δ(e) Φ 0 , for
all e G Es. Let τ be a normal equivalence on Es and suppose that τ
induces an sT-congruence p on X. Let p, in turn, induce the normal
equivalence τf on Es. Then τr g r.

Proof. Let (e, /) e τ'. Then U{e) = U(f). Let xeδ(e). Then
xp Π Δ{f) Φ 0 and so there exists a yexp such that y G Δ{f) or / G
V(y). Thus / G V(y) g Vτ(y) = Fr(α?) and so there exist fl9 f2 e Es such
that

(4.1) / ^ Λ, (Λ Λ) G r and /2 ^ e ,

since /2 G V(x) if and only if f2 ^ β. Similarly, there exist elf e2 e Es

such that

(4.2) e ^ el9 (el9 e2) e τ a n d e2 ^ / .

Now (4.1) and (4.2) are just the statements (3.1) and (3.2) with e and
/ replacing ex and ey. Hence, as in Theorem 3.10, we can deduce
that (e, /) G τ.

In the absence of the assumption that δ(e) Φ 0 , for all eeEs,
Lemma 4.1 need not hold.

EXAMPLE. Let I = [0, 1], the interval of real numbers from 0 to
1 under the natural ordering. Let J ' denote the half open interval
[0, 1). Let S be the subsemigroup {e*: ie 1} of idempotents of JΓ where

({reΓ.r ^ i) if i Φ 1 ,

{rel:r < 1} if i = 1 .

Let r be the normal equivalence on S — Es determined by the parti-
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tion S = {e{:i < 1} U {eλ} of S. Then τ induces the s-congruence p =
Γ x Γ on Γ and p, in turn, induces the normal equivalence r' = S x
S on S. Thus r c r\

Even in the presence of the assumption that δ(e) Φ 0 , for all
e G Es, we may not have z = z'.

EXAMPLE. Let X be the semilattice of Figure 2.

Let S be the subsemigroup of Jx consisting of the idempotents
/, g, h where A(f) = {u, v, w, x], A{g) = {v, w), A(h) = {w}. If τ is the
normal equivalence partitioning S as S = {/, #} U {&} then ρτ has classes
{̂ , v), {w}, {x} and /OΓ is an s-congruence.

However, if p. induces the normal equivalence τf then τr is the
identity equivalence and so τ' c τ.

THEOREM 4.2. Lei X be a semilattice, S be an inverse subsemi-
group of Jx and δ(e) Φ 0 , for all ee S. Let a normal equivalence τ
on Es induce an sf-congruence p on X. Let p, in turn, induce the
normal equivalence τ' on Es. If any of the following conditions hold
then τ — τf\

(1) X is totally ordered;
(2) p is an ^-congruence and X = UeeES δ(e); in particular, if S

is full in Tx;
(3) p is an s-congruence and S S Tx.

Note. If X is totally ordered or, by Theorem 3.10, if S is full
in Tx, then every normal equivalence induces an s-congruence.

Proof. We have from Lemma 4.1, that z' <ΞΞ r in each case.
(1) Let (e, f)eτ and suppose that xp Π Δ{e) Φ 0 . Without loss

of generality let xeA(e). Since X is totally ordered so also must Es

be totally ordered. If / ^ e then A(f) 3 A(e) and xp Π A(f) Φ <Z>. So
suppose that f < e and that y e δ(f). If y ^ x then x e A(f) and again
xp Π A(f) Φ 0. Suppose that x> y. Then V(x) £ V(y) and so Vτ(x)S
Vτ(y). Now let ge V(y). Then g ^ f, (/, e) e z and eG F(a;). Hence
ge Vτ{x). Thus F(τ/) £ FΓ(α), Fr(i/) = Fr(a?) and (x, y)eρ. Thus we
again have xp Π ̂ (/) Φ 0 . Thus £7(e) £ U(f) and conversely, by
similarity. Thus (e, f) e zf and so z — zf.

(2) Let 0, f)ez and αγ) n (̂β) Φ 0 . Let α; e Δ(e) and a; G δ(&).
Then k ^ e and (A, ife/) = (/be, fc/) G τ. Let 2/ G δ(kf). Then, by Propo-
sition 2.3, (x, y)eρ and yeA(kf) Q A(f). Thus J7(e) g U(f) and con-
versely, by similarity. Hence (e, f) e z' and z — zf.

( 3 ) Let (e, f) e z. Let A(e) = < xe > and A(f) = < xf >. By
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Proposition 2.3, (xe, xf) e p. Let xp Π A(e) Φ 0 and suppose that xe
A(e). Then x ^ xe and (x, x A xf) = (x A xe, x Λ xf) e p, since |O is an
s-congruence. Also x A xfe A(f) and so xp Π A(f) Φ 0 . Hence Z7(e)£
U(f) and conversely. Thus (e, /) e τ' and r = r\

X5* Inducing congruences on S* Let X be a semilattice, S
and /9 be an s'-congruence on X. We have seen that p indhces a
normal equivalence on Es and in this section we show how to define
two congruence relations on S in the corresponding #-class directly.
In certain circumstances these will be the smallest and largest con-
gruences in that 0-classes.

PROPOSITION 5.1. Let X be a semilattice, S be an inverse subsemi-
group of Jx and let p be an ^-congruence on X. Define the relation
ξ = ζp on S by

( α , δ ) e £ « ( i ) U(a) = 17(6)
(ii) x G Δ(a), y e A(b) and (x, y) e p

implies that (xa, yb) e p.
Then ξ is a congruence on S, in fact, the congruence induced on S
by the homomorphism a of Theorem 3.7. If p is induced by some
norrnal equivalence σ on Es, as in Theorem 2.2, if τ — ζ\Es and δ(e) Φ
0 , for all eeEs, then ξ = μτ, the maximum congruence in the θ-
class containing ξ.

Proof. Since ξ is just the congruence on S induced by the homo-
morphism a of Theorem 3.7, the first part of the theorem requires no
verification.

For the final assertion, since we must have ξ £ μτ, it suffices to
show that μτ £ ζ.

Let (a, b) e μτ. Then (aa~\ bb~ι) e τ, while A(a) = A{aa~ι) and A{b) =
A(bb~ι). Hence, by the definition of τ, a and b satisfy condition ( i ) .

Now let (x, y) e p, xe A (a) and y e A(b). We want (xa, yb) e p. Since
p is induced from σ we wish to show that Vσ(xa) = Vσ(yb).

Let ee V(xa). Then xa e A(e) and xeA(aea~1). Hence aea~ιe
V(x) £ Vσ(y) and so, for some fιy f2 e Es, we have

aea~ι ^ flf (fl9 f2) e σ and f2 e V(y) .

Hence yb = yf2be A(b~f2b), where (b~fxb, b~f2b) e σ, since σ is a normal
equivalence. Also (b~fj), α"1/^) 6 τ, by Lemma 1.2, since (α, b) e μτ.
But, by Lemma 4.1, τ £ σ. Hence (a~fίa, b~f2b) e σ and

e ^ a~ιaea~ιa >̂ a~fγa, (a~fγa, b~ιf2b) 6 σ and b~~f2b e V(yb) .

Thus ee Vσ(yb) and Fσ(α;α) £ Fσ(τ/δ). By similarity, we have equality
and so (xa, yb) e p, as required. Hence (a, b) e ζ, μτ £ ξ and so μτ — ξ.
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PROPOSITION 5.2. Let X be a semilattice and S be an inverse sub-
semigroup Jx. Let p be an ^-congruence on X. Define the relation
η on S by

(a,b)e η « ( i ) U(a)= U(b)
(ii) If xpe (a) = 27(6) then there exists a ye xp such

that y G Δ(a) Π A(b) and za = zb, for all z ^ y, ze
X.

Then η is a congruence on S. If η\Es = z and either of the following
two conditions holds then ΎJ = στ, the minimum congruence in the θ-
class containing rj\

( 1 ) SSEJz;
(2) p is an s-congruence and S is full in Tx• x

Proof. Let (α, b) e η. We first show that (α, 6) e ζ, where f is as
in Proposition 5.1. Then, for any ceS, we shall have (ac9 be) and
(ca, cb) e ξ and so, since ξ is a congruence, we shall have U(ac) =
Uφc) and U{ca) = U(ea) = U(cb).

Since the conditions ( i ) are identical, we need only verify that
a and b satisfy condition (ii) in Proposition 5.1. Let xeJ(a), yeJ(b)
and (α?, y) e p. Then there exists a yι such that (x, yλ) e p and za = zb,
for all z^yx. Hence yίa=y1b, (xa, yxa) e p, (yb, yfi) e p and so (xa, yb) e
p. Thus (α, b) e ξ, U(ac) = Uφc) and U(ca) = U(cb).

Now let xpe U(ac) = U(bc). Then xp Π Δ(a) Φ 0 and xp Π Δ{b) Φ
0 . Hence there is a ytexρ such that za = zb for all z ^ ^ Let
2/2 e xp Π Λ(αc), 2/3 e xp Π J(δc) and y = y1 A y2 A y3.

Then yexpf] Δ{ac) D Δ(bc) and for all z ^ y, zac = ^δc. Thus
(αc, 6c) e 57.

The proof that (ca, cb) e η is similar and so η is a congruence.
To show that η = σr, we need, by Lemma 1.2, to show that, for

any (a, b) e η,
(1) (aa~\ bb-1) e τ;
(2) there exists an ee Es such that (e, aa"1) e z and ea — eδ.
The first requirement is satisfied since η is a congruence and

Now suppose that S 3 £7^^. Let Z7(α) = Z7(δ) = {α? :̂ i e I}. For
each i e /, let ^ G xφ be such that a α = zb, for all 2; ̂  T/̂ . Let e be
the idempotent S with domain {Jiei <yι> Then clearly, by the de-
finition of e, U{aa~ι) = ί7(α) g 27(e). On the other hand, we clearly
have e ^ aa~ι and so U(e) g U(aa~γ). Thus Z7(β) = U(aa~ι) and (β, αα"1) G
τ. Also ea = eδ and so (α, δ) G σΓ. Thus η — στ.

Finally suppose that p is an s-congruence and that S S Γ r Let
aa"1 = ex and δδ"1 = ey. Since (ea, ey) e z, by Lemma 3.9, (x, y) e p and
so there exists a z such that (#, ̂ ) G ^ and ^xα = ^ :δ for all ^ ^ z.
Then, again by Lemma 3.9, (ex, ez) G τ while clearly eza = ezδ. Thus
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(α, b) e στ and η = στ.

COROLLARY 5.3. Let S be a full inverse subsemigroup of Tx. Let
z be a normal equivalence on Es and let T induce the s-congruence p
on X. Then the congruences ξ and ΎJ of Propositions 5.1 and 5.2 are
respectively μ, the maximum congruence, and στ, the minimum con-
gruence in the θ-class determined by r.

Proof. That τ induces an s-congruence p and that ft in turn
induces τ follows from Proposition 3.10. The result then follows from
Propositions 5.1 and 5.2.

6* Θ(S) and Γ2(X)+ By a lattice (semilattice) homomorphism a
of a lattice (semilattice) A into a lattice (semilattice) B we mean a
mapping a of A into B such that (x A y)a — xa f\ya and (x V y)a —
xa V ya((x A y)a = xa A yoc) for all x, ye A. A lattice (semilattice)
isomorphism is then a one-to-one lattice (semilattice) homomorphism.

In the next two theorems we essentially summarize some of the
previous results.

THEOREM 6.1. Let X be a semilattice. If X is a full inverse
subsemigroup of Jx, then the mapping a: τ —> pτ, of Theorem 2.2,
from Θ(S) into Γ(X) is a semilattice homomorphism onto Γ2(X).

If S is a full inverse subsemigroup of Tx then a is a lattice iso-
morphism of Θ(S) onto Γ2{X).

If X is totally ordered and δ(e) Φ 0 , for all ee Es, then a is an
order isomorphism of Θ(S) into Γ2(X).

Proof. That a maps Θ(S) onto Γ2{X), when S is full in Jx, fol-
lows from Theorem 3.10. Let z\ and r2 be normal equivalences, let
r3 = τγ Π τ2 and ft = (τjα, i = 1, 2, 3. Then from Theorem 2.2, pz £
ρx Π ft. Let (x, y)e ft Π ft. Then by Proposition 2.3, (ex, ey) e τx Π τ2 =
τ3. Hence, again by Proposition 2.3, (x, y) e ft. Thus pB = p^ ρ2 and
a is a semilattice homomorphism.

If /S is full in Tx, then by Proposition 3.10, a is a one-to-one
semilattice homomorphism of Θ(S) onto Γ2(X) and hence is a lattice
isomorphism.

If X is totally ordered, then every c-congruence is an s-congruence
and so, by Proposition 2.3, a is an o-isomorphism of Θ(S) into Γ2(X).

THEOREM 6.2. Let X be a semilattice and S be an inverse sub-
semigroup of Jx. Let β denote the mapping p ~+τp of Corollary 3.8.

If S is full in Jx then β is an o-isomorphism of Γ2(X) into Θ(S).
If S is full in Tx then β = a~\ where a is defined as in Theorem
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6.1.
// X is totally ordered and δ(e) Φ 0 , for all ee Es, then β is an

order preserving mapping of Γ2(X) onto Θ(S).

Proof. If S is full in Jx then, from Theorem 3.10, β is an order
isomorphism of Γ2{X) into Θ(S).

If S is full in Tx then, from Theorem 3.10, βa = cΓ2(x) and,
from Theorem 4.2, aβ = cθ(S).

Hence β = or1.
Finally, if X is totally ordered and δ(e) Φ 0 , for all eeEs, then

β is order preserving, by Corollary 3.8, and β maps Γ2(S) onto Θ(S)
by Theorem 4.2.
If S is a full inverse subsemigroup of Jx, it is natural to ask to what
extent the properties of S are determined by those of S Π Tx. We
shall denote by SΓ2(X) the lattice of s-congruences under S to dis-
tinguish it from the lattice of s-congruences TΓ2(X) under some other
semigroup T.

PROPOSITION 6.3. Let X be a semilattice and S be a full inverse
subsemigroup Jx. Let T = S Π Tx. Then SΓ2(X) = TΓ2(X).

Proof. Clearly SΓ2(X)S TΓt(X). Let p e TΓ2(X), {x, y)ep,x,ye
A{a), for some x, y e X, a e S. Let ex denote the idempotent of T with
domain < x >. Since p e TΓ2(X), we have (x, x A y) e p and x, x Λ y e
Δ(a). Also x, x A y e ̂ ί(βx). Hence x, x A y e A(exa) and exa e T. Hence
(xexa, (x A y)exa) e p; that is, (xa, (x A y)a) e p. Similarly (ya, (x A y)a) e
p and so (xa,ya)ep. Thus ρeSΓ2(X) and we have the result.

COROLLARY 6.4. Under the hypothesis of Proposition 6.3, there
exists a semilattice homomorphism of Θ(S) onto Θ(T).

Proof. The result follows from Theorem 6.1 and Proposition 6.3.

REMARK. Let S be an inverse semigroup and μ be the maximum
idempotent separating congruence on S. Since Θ(S) = θ(S/μ) and
since, by Proposition 3.2, S/μ is isomorphic to a full inverse subsemi-
group of TEs one might question the need to study other kinds of
inverse subsemigroups of Jx apart from those that are full subsemi-
groups of Tx (If S is a full inverse subsemigroup of Tx then it is
not difficult to see that the representation of S as a semigroup of
partial transformations of X is isomorphic in a natural way to the
repesentation of S given by Proposition 3.2. on Es.) However, this
assumes a prior knowledge of the semigroup sufficient to identify the
representation of S on Es. If the semigroup is known as a semi-



INVERSE SEMIGROUPS OF PARTIAL TRANSFORMATIONS 235

group of partial transformations, it may be quite difficult to identify
the representation on Es while it might be relatively simple to work
with the semigroup of partial transformations as given.
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