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INVERSE SEMIGROUPS OF PARTIAL
TRANSFORMATIONS AND 6-CLASSES

N. R. REILLY

If S is an inverse semigroup and ¢ is the relation on the
lattice A(S) of congruences on S defined by saying that two
congruences p;,0. are f-equivalent if and only if they induce
the same partition of the idempotents then ¢ is a congruence
on A(S) and each f-class is a complete modular sublattice of
A(S). If X is a partially ordered set then Jx denotes the
inverse semigroup of one-to-one partial transformations of X
which are order isomorphisms of ideals of X onto ideals of X,
while if X is a semilattice, Ty denotes the inverse subsemigroup
of Jy consisting of those elements a whose domain 4(«) and
range (o) are principal ideals. It is shown that any inverse
semigroup is isomorphic to an inverse subsemigroup of Jx for
some semilattice X.

For an inverse subsemigroup of Jy, 0(S) = 4(S)/6 is related to
certain equivalence relations on X. The weakest of these is a convex
congruence which is an equivalence relation on X, convex in the partial
ordering and compatible with the operation in S. It is shown that
there is a natural order preserving mapping a of 6(S) into the lattice
I'(X) of convex congruences. If X is a semilattice, the set of those
convex congruences which are also semilattice congruences on X is
denoted by I'y(X). If S contains the idempotents of T, that is, if
S is full in J, then a is a semilattice homomorphism of 6(S) onto
Iy(X). If Sis full in T, then « is a lattice isomorphism of 6(S)
onto I'y(X). Conversely, there exists an order preserving mapping A
of I'y(X) into 6(S). If S is full in J,, then g is an order isomor-
phism into 6(S): if S is full in T, then B is a lattice isomorphism
onto 4(S) and g = a™.

We adopt the notation and terminology of (2). In particular, a
semigroup S is called an wnverse semigroup if ac aSa, for all ae S,
and the idempotents of S commute. Then there is a unique element
2 such that ¢ = axa and a = vax. We call © the inverse of a and
write ¢ = a™'. For any inverse semigroup S, we denote by Ej the
subsemigroup of idempotents of S. If we define a partial ordering
on E by saying that ¢ < f if ef = ¢ then S is a semilattice where,
by a semilattice, we mean a partially ordered set in which any two
elements have a greatest lower bound. For the basic results on
inverse semigroups the reader is referred to (2). All semigroups con-
sidered in this paper will be inverse semigroups.
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Denote by A(S) the lattice of congruences on the inverse semi-
group S; that is, the lattice of equivalence relations p such that, for
a, b, ceS, (a, b) € o implies that (ac, bc) € 0 and (ca, ¢b) € p. Define the
relation 0 (cf. 9) on A(S) by

(0, 0:) €8 if and only if p,|Es = 0,| E;

where 0;| Es denotes the restriction of the congruence p; to Es. Then

LEmMmA 1.1, ((9) Theorem 5.1). Let S be an inverse semigroup and
the relation 6 be defined as above.
Then

(i) 6 1s a congruence on A(S);

(ii) each O-class is a complete modular sublattice of A(S) (with
a greatest and least element).

We shall denote the lattice of #-classes of an inverse semigroup
S by 6(S).

Now each congruence on an inverse semigroup S determines a
normal partition of Eg; that is a partition P = {E,: «c J} such that

E(i) «a,pBedJ implies that there exists @ v € J such that E.E, S FE,;

E(ii) aecd and ae S implies that there exists a geJ such that
ab, a0 S Fl.

Likewise we call an equivalence relation p on E; a normal equiva-
lence if its classes constitute a normal partition of Ej.

Conversely, if P is a normal partition of E; then P is induced by
some congruence on S. Thus the lattice of normal partitions of E is,
clearly, just (isomorphic to) &(S).

The least and greatest congruence in the f-class corresponding to
the normal partition P can be characterized as follows:

LEMMA 1.2. ((9) Theorem 4.2) Let P = {E,.acdJ) be a normal
partition of the semilattice of idempotents of S. Let o = {(a, b) e SX S:
there exists an a€J with aa™, bb™ e E, and, for some ec E,, ea = eb}
and o0 ={(a, b)eS X S: aedJ implies that, for some Bed, a E,a™,
b Eb S Es}. Then o and 0 are, respectively, the smallest and largest
congruences on S in the 6-class corresponding to the normal partition

P.

By a omne-to-one partial transformation of a set X we mean a
one-to-one mapping « of a subset Y of X onto a subset Y’ = Ya of
X. We call Y the domain of a, Y’ the range of @« and write 4(a) =
Y, V(@) = Y'. If we denote by I, the set of all one-to-one partial
transformations of X then, with respect to the natural multiplication
of mappings, I, is an inverse semigroup called the symmetric inverse
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semigroup on X (2).

Let X be a partially ordered set. By an <deal of X we mean a
subset Y of X such that ¢ < ye Y implies that xe Y. If X is trivi-
ally ordered, that is, if no two distinct elements are comparable, then
any subset of X will be an ideal. We consider the empty set @ as
being an ideal of X. By a principal ideal we mean an ideal of the
form {z: % < y} for some fixed element y. Then we call {x: z < ¥} the
(principal) ideal generated by y and denote it by <y >. For an
arbitrary subset 4 of X we write < A > = {xe X: 2 < a, for some a¢c
A},

If X is a partially ordered set, let J, denote the set of all a eI,
such that

(i) 4() and V(a) are ideals of X;

(ii) « is an order isomorphism of 4(a) onto /(«); that is, a one-
to-one mapping of 4(a) onto /(a) such that, for z, ye d(a), x < y if
and only if za < ya.

It is straightforward to verify that J, is an inverse subsemigroup
of I,. If X is trivially ordered then, of course J, = I,.

By the following theorem, any inverse semigroup S can be em-

bedded in I.

THEOREM 1.3. ((2) Theorem 1.20) Let S be an inverse semigroup
and for each ac S define the element a, of Is by

(i) 4(a,) = Sa™

(ii) for xe d(a,), xa, = xa.
Then the mapping a: a— &, is an isomorphism of S into Is.

Considering S as a trivially ordered set we then have that S can
be embedded in Js. However, on any inverse semigroup S there exists
a partial ordering, called the natural partial ordering which can be
defined as follows: for any a, be S,

a=<0b if and only if a™'b = a'a.

For several equivalent definitions of this partial ordering see §7.1 of
(2). The natural partial ordering is compatible with the multiplica-
tion of S.

Suppose that y e Sa™ and that « < y. Then y = sa™, for some
seS and v'y =27'2. Hence v =xx 'z =22 'y =22 'as™ ¢ Sa™'. Thus
d(e,) is an ideal in the partially ordered set S. Moreover, for any
x <y, with 2z, y € 4(a,), xa, = va < ya = ya,, since the natural partial
ordering is compatible with the multiplication. Conversely, if za, <
ya,, for x, y e d(a,) then xa < ya and zaa™ < yaa™'. Since z, y ¢ d(a,) =
Sa™, xzaa™ = 2 and yaa™* = y. Thus ¢ £ y and «, is an order isomor-
phism of 4(a,) onto /(a,). Thus
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ProPOSITION 1.4. Let S be an inverse semigroup. Then the em-
bedding a — a, of S imto Is, of Theorem 1.3, also embeds S in Jg
where S is considered as a partially ordered set with respect to the
natural partial odering.

Let X be a partially ordered set and S & J, (we shall sometimes
just write S< Jy for “S is an inverse subsemigroup of J;”). We
shall be interested in certain kinds of equivalence relations on X.
Consider the following conditions on an equivalence p on X:

(i) =y =%, (¢, 2) e o implies that (z, y) € p;

(ii) (2, yep, ®, yed(a), acS, implies that (xza, ya) € o.

If p satisfies these conditions then we shall call o a convex congruence,
or just a c-congruence on X.

If X is actually a semilattice and we denote by x A vy the greatest
lower bound of any two elements #, y of X, then we can also con-
sider the conditions:

(iii) (x, y) € p implies that (x, x A y) € o;

(iv) (=, y)€p, z€ X implies that (xAz, y A 2)€p.

If o satisfies conditions (i), (ii) and (iii) we shall call p an s'-con-
gruence, while if o satisfies (ii) and (iv) then we shall call o a semi-
lattice congruence or just an s-congruence. Although these definitions
depend on S, S will generally be held fixed and so the terminology
should not lead to any confusion. If X is a semilattice and o satisfies
condition (iv), then clearly o satisfies conditions (i) and (iii). Thus
an s-congruence is an s’-congruence and an s’-congurence is a c-con-
gruence.

If X is totally ordered then the three types of congruence coincide.

By a complete sublaitice A of a lattice B we mean a sublattice
such that for any nonempty subset C of A the least upper bound
(greatest lower bound) of C in A exists and is the least upper bound
(greatest lower bound) of C in B.

ProposITION 1.5. Let X be a partially ordered set and S & J,.
Then the set I'(X) of c-congruences on X, partially ordered by set
wnclusion (as subsets of X X X) is a complete lattice.

If X is a semilattice then the set I'(X) of s'-congruences on X is
a complete lattice (but not necessarily a sublattice of I'(X)) and the
set I'y(X) of s-congruences is a complete sublattice of I'(X).

Proof. Let {0;: 1€ I} be a family of c-congruences (s’-congruences,
s-congruences). Then clearly M..;0; is also a c-congruence (s'-con-
gruence, s-congruence). Since I'(X) (I'(X), I'y(X)) has a largest ele-
ment, the universal congruence o = X x X, it follows from purely
lattice theoretic considerations that I'(X) (I"(X), I',(X)) is a complete
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lattice.

Now let C be a nonempty subset of I',(X). Clearly the greatest
lower bound of C in I'(X) and I'y(X) is just Nsecc 0. Now define a
relation 7 on X by

(x, yyen—for some & = x, ®, +++, %, =y X,
(% Z)E Oy 2 =1, =+, m, for some p;eC .

Then, from (1) Chapter 2, Theorem 4, 7 is an equivalence relation on
X such that, if (», y) €7 and z€ X then (¢ A 2, ¥y A 2) €7. Hence, to
show that ne I'(X), it only remains to be shown that if (v, y) €7 and
(x, v) € 4(a) then (xa, ya)en. Letx =12, 2, -+, 2, =yeXandp, -,
0.€C be such that (v,_, x;)ep;, for =1, +--, n. Then (x, A @,
X N\ %) €0t =1, -<-, nand, since x, A @; < x, %, A &; € d(a), for ¢ =
1, ---m. Therefore, ((x, A %;_)a, (x,Ax)a)€ 0; for ¢ =1,, -+« n and
so (xa, (x A ywa) = ((x, A\ z)a, (2, A x,)a) €n. Similarly, (ya, (x A y)a) €
7. Hence (za, ya) ey and ne I'y(X).

But 7 is the least upper bound of C in the lattice of equivalence
relations on X and hence is the least upper bound of C in I'(X). Thus
I'y(X) is a complete sublattice of I"(X); in fact, we proved that I',(X)
is a complete sublattice of the lattice of equivalence relations on X.

We now give an example to illustrate some of the points that
have arisen.

ExAMPLE. Let X be the semilattice of Figure 1 and S = E, .

w

Y
FIGURE 1.

Let o, be the equivalence relation on X which partitions X as
X = {u} U {y} U {x, v}; let p, be the equivalence relation partitioning X
as X = {&, u} U {v} U {y} and let p, be the equivalence relation parti-
tioning X as X = {«} U {y} U {», v}.

Now p, is a c-congruence but not an s’-congruence since (x, © A v)=
(z, y) € p.. Also 0, is an s’-congruence but not an s-congruence since
(x, wyep, but (x A v, u A v) = (y, v) € 0,.. Similarly o, is an s'-con-
gruence, but not an s-congruence. Finally, the least upper bound of
0, and p, in ['(X) partitions X as X = {«, u, v} U {y} which is not an
s’-congruence.

2. From normal equivalences to congruences. Throughout this
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section, let X be a partially ordered set and S be an inverse subsemi-
group of Jy. We now begin to relate the f-classes of S and the con-
gruences on X.

If A is a subset of S then we shall denote by Aw the set {s€S:a <
s, for some a e A}.

Let © be a normal equivalence on E and ze¢ X. Let Viz) =
{ee Es: xe d(e)} and V.(x) = {U.crmeT}o.
Then we have

LEMMA 2.1. V(z) S V.(y) implies that V.(x) < V.(y).

Proof. Let f,fie Es, (f,f)€e7and f,€ V(x). Then f, € V.(y) and
so fi = fy (fy fs) € T and fi€ V(y), for some f,, f;€ Es. Hence f = ff.,
(ffo [ €T, [ifo=fo (s f) €T and fy€ V(y); that is, f = ffy, (ffy fo) €
v and f;€ V(y). Hence feV.(y). Thus U.crweT S V.(y) and so
Vi(z) = V(y).

THEOREM 2.2. Let X be a partially ordered set and S = Jy. Let
T be a normal equivalence on Es. Define the relation o0 = p. on X by

(@, y)eo if and only if V.(x) = V.(y).

Then o is a c-congruence on X. Moreover, if o is another mormal
equivalence on Es and © S o, then p. S 0,.

Proof. (i) Suppose that x <y <z and (v, 2) € 0. Then V(z) =
Viy) & V(z) and so V.(2) & V.(y) & V.(x) = V(2), by Lemma 2.1.
Hence V.(x) = V.(y) and so (z, y) € o.

(ii) Suppose that (x, y)ep,ae S and z, ye 4(a). Let fe Viza).
Then wzac 4(fa™) and so xz€ d(afa™). Hence afa'e V(z) S V.(y).
Therefore, for some f,, f,€ Es, we have afa™ = f, (f, fo) €7 and f,€
V(y). Hence ya = yfiac d(a™'f;) = 4(a"'f,a) where (a"'f.a, a”'fia) €T,
a’fie < a'afata < f. Thus fe V.(ya) and, by Lemma 2.1, V.(za) &
V.(ya). Similarly we have the converse inclusion and so V.(za) =
V.(ya) and (za, ya) € p. Hence p is a c-congruence. Now T & ¢ implies
that V.(x) < V,(x), for all € X, and so (2, y) € p. implies that V{x) =
V-(y) € V,(y). Therefore V,(x) S V,(y), by Lemma 2.1, and similarly
the converse inclusion holds. Thus (z, y) € 0, and 0. < 0,.

In general, of course, this mapping from normal equivalences to
c-congruences is not one-to-one. However, in some circumstances, as
we now show, it will be.

For any sets A and B let A\B= {x:xv€ A4, x¢ B}. For ec Ej, let
o(e) = d)\Uj<. 4(f) = {w:w€ 4(e), x ¢ 4(f) for any fe E; such that
S < e

By an order isomorphism « of one partially ordered set X into
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another Y, we mean a one-to-one mapping « of X into Y such that,
for z, ye X, ® < y if and only if za < ya.

ProposITION 2.3. Let X be a partially ordered set and S < J,.
Let the normal equivalence © on E; induce the c-congruence 0 = Q.
on X as in Theorem 2.2. Let e, fe E xcole) and yco(f). Then

(2.1) (x,y)ep if and only if (e, fleT.

Thus, if X = U.czs0(€), then the definition of o in Theorem 2.2
may be replaced by the statement (2.1).

Finally, iof d(e) = @, for all ec Eg, them the mapping T— 0.
defines am order isomorphism of the lattice O(S) into I'(X).

Proof. Let e, fe€ E;, xc€d(e), yeo(f). First suppose that (¢, ) e
7. Then, for ge V() we have that, g=e¢ (¢, /)€t and fe V(y).
Thus V(z) S V.(y), V.(x) S V.(y) and, by similarity, V.(x) = V.(y); that
is, (z, y) € 0.

Now suppose that (z, y) € p. Then V.(x)=V.(y}. Henceece V(z) &
V.(y). Thus, for some e, e,c E; e =e¢, {¢,e,)€T, ¢, = f. Similarly,
for some f, fobe E., f =1, (f,foeT and f, = e. Then

e=ef, (ef, f) = (ef, ef) €T

and
fzefy(ef, &) = (ef, efder.
Hence
(e.f, ef) = (era.f, ef) et
and

(ef, ef) = (ef.-f,ef)etT.
Therefore (e.f, ¢f) et and so (¢, f)e.

The remainder of the theorem then follows easily.

A congruence o on an inverse semigroup S is called idempotent
separeting if no two distinet idempotents of S lie in the same p-class.
There exists a unique maximal idempotent separating congruence g
on S which can be characterized as follows (Howie [4]):

(@, ye r=a'ea = b7'¢b for all ee K.

If ¢ is the identity congruence, then we shall call S fundamental.
Although, for S & J, and X a semilattice, we shall be considering
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the general problem of defining a normal equivalence on E from an
s’-congruence on X in the next section and althought it appears essen-
tial in general to assume that X is a semilattice and that the con-
gruence on X is an s’-congruence, we can, at least, establish the
following theorem without these assumptions.

THEOREM 2.4. Let X be a partially ordered set and S & Jy. De-
fine the relation v on X by:

(@, y)ev= V(@) = V(y) .
Then v is c-congruence on X. Define the relation & on S by

(a,b)e &= (i) {xv:av N d(a) + @} = {av:ay N 4(0b) # O} ;
(i) we d(a), ye 4(b), (x, y)ev
implies that (xa, yb)ey .

Then & = p, the maximum idenpotent separating congruence on S.

Proof. Let (z,2)ey and <y <2 Then V(z) 2 V(y) 2 V(2) =
V(z). Thus V(x) = V(y) and (=, y) € v.

Now let (x,y)ev and =, ye d(a). Let ec V(xa). Then aea™'e€
V() = V(y). Thus ee V(ya) and V(za) S V(ya). Similarly V(yae) =
V(za) and so V(za) = V(ya). Thus (za, ya) € v and v is a c-congruence.

It is straightforward to see that & is an equivalence relation. To
show that & = p, we first show that = = &|,, =¢. Let (¢, f)er and
xe d(e). Then xv N 4(f) = @ and so y<ay N 4(f), for some y. Then
feV(y) = V(z). Thus xe 4(f) and 4dle) & 4(f). Conversely, 4(f) =
4d(e) and so 4(e) = 4(f) and e = f.

Let (a, b)€ &, Then, for any ze X, av N 4(a) = @ if and only if
xv N 4(b) = @. But 4d(a) = d(aa™) and 4(b) = 4(bd™"). Hence a2y N
d(ae™) = @ if and only if av N 4(bb') = @. Moreover, for (x, y)€
v, x € dlaa™?), y € 4(bd7), (xaa™, ybb~')=(x,y) € v. Hence (a, b) € & implies
that (aa™, bb')e & and so aa™ = bb™' and A(a) = 4(b).

Now we show that & is a congruence on S. Let (a, b)e& and
ceS. If xe d(ac) then z € Ma)=4(b) and xa € 4{c). However, (za, xb) €
v and so cc'€ V(za) = V{xb). Thus xe 4(b¢) and 4(ac) & 4(be}). By
similarity, 4(ac) = 4(bc) and condition (i) is satisfied by ac and be.
If ze€ 4(ac) = 4(be), then (xa, xb) € v, since (a, b) € &, and so (wac, xbc) €
v, since v is a c-congruence. Thus (aec, be) € &.

Now x € 4(ca) if and only if xe€ 4(c) and xzce 4(a) = 4(b). Thus
A(ea) = 4(eb) and condition (i) is satisfied by ca and ¢b. Clearly ca and
¢b then satisfy condition (ii). Thus (ca, ¢b) € & and & is a congruence.

Since &|z; = ¢ we have that £ & ¢ and to complete the theorem
we need only show that ¢ = & Suppose that (a, b) € . Then aa™ =
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bb7, d(aa™) = 4(bb™") and condition (i) is satisfied. Now let x¢€ 4(a),
ye 4(b) and (x, y)ev. Let fe€ V(xa). Then 2zac A(f) and so z€
Adlafa™). But, since (a, b) e g, afa™ = bfb~'. Thus xz€ 4(bfb~"). Now
V(z) = V(y) and so ye€ 4(bfb~Y). Hence ybe 4(f) and V(za) < V(yb).
By similarity, we have that V(za) = V(yb) and (xa, yb) € v. Thus con-
dition (ii) is also satisfied by a and b and so (e, b)) €& Hence & = p.

If, in Theorem 2.4, y is the identity relation on X, then clearly
(a, b)e & if and only if a = b. Thus we have immediately:

COROLLARY 2.5. Let X be a partially ordered set and S & Jy.
If v is the identity relation, then S is fundamental.

Let X be a partially ordered set and x€ X. Then we shall denote
by e, the idempotent of J, with domain equal to the principal ideal
< x>. Let S&J,, then we say that S is full in J, or (if X is a
semilattice and S & T,) that S is full in T, if {e,: xe€ X} S E;, where
T. is as defined in §3.

COROLLARY 2.6. Let S be full inverse subsemigroup of Jy, then
S is fundamental.

Proof. If S is full then v must be the identity relation and then
so must &.

Corollary 2.6 is a slight generalization of a theorem ([6] Theorem
2.6) of Munn’s and could be established directly along the same lines
as Munn’s proof. Corollary 2.5 is a little stronger, however, as the
following example shows:

ExaMPLE. Let X be the set of real numbers under their natural
ordering. Let S = {a e J,: 4() is not principal}. Then S is an inverse
subsemigroup of J,. Clearly v is the identity relation and hence S
is fundamental. However, S is not a full inverse subsemigroup of J,.

3. X a semilattice. Let X be a semilattice, then we can define
another subsemigroup of I, as follows. Let T, denote the set of a €
I, such that

(i) 4(a) and F(«) are principal ideals;

(ii) « is an order isomorphism of 4(a) onto ().

It is straightforward to verify that T, is an inverse subsemi-
group of I, and J,. For a discussion of T, and its importance in
connection with bisimple inverse semigroups see Munn [7].

PropPOSITION 3.1. Let X be a partially ordered set and let X
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denote _the set of all ideals of X, partially ordered by set imelusion.
Then X is a semilattice and there exists an embedding k: Jy — T=.

Proof. Clearly X is a semilattice. For aeJ, define £,€ Tz by:

(i) dk) ={Ie X: 1< 4)};

(ii) for Ie A(k,), Ik, = {wa: e I}.
Then k: o — k, is an isomophism of J, into Ts.

We now give several ways in which inverse semigroups might be
considered as subsemigroups of T, for some semilattice X. First, from
[7] Lemma 3.1,

PropoSITION 3.2. Let S be an inverse semigroup and E, = E.
Define a mapping 0: S— Ty by the rule that af = 0, where

(1) 4(0.) = FEaa™;

(ii) for ee 4(8,), ef, = a'ea.
Then 6 is a homomorphism of S into T inducing the maximum
wdempotent separating congruence on S and hence is an isomorphism
if S is fundamental.

Combining either Theorem 1.8 (considering S as a trivially ordered
set) or Proposition 1.4 with Proposition 3.1 we have:

PROPOSITION 3.3 Let S be an tnverse semigroup them there exists
a semilattice X and an tsomorphism £: S — Ty.

Presently we shall be considering inverse subsemigroups S of Jy,
where X is a semilattice, such that X = {J,.z, 0(e) or such that d(e) #
@, for all ec E,. In this connection, we have

PROPOSITION 3.4. Let S be an itnverse semigroup then there exists
a semilattice X and an isomorphism k: S — J, such that

(i) Od(ek) = @ for all ec Eg:

(ii) X = U.czg0(ek).

Proof. Let 6:S— Js be the embedding of Proposition 1.4. Let
X denote the set of all subsets of S which are inversely well ordered
with respect to the natural partial ordering of S, together with the
empty set. Partially order X by set inclusion. Then X is clearly a
semilattice. Define ¢: Jg— J, as follows: for a € Jg,

(1) 4dlag) = {Ae X: A < A)};

(ii) for Ae d(ag), Alag) = {aa: a € A}.
Then ¢ is an isomorphism and so £ = fo¢ is an isomorphism of S into
Iy

For ec Es, ec 4(ef) and so {e} € d(ex). Clearly {e} e 4(fk), for fe
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E if and only if ¢ < f in the natural partial order on S. Thus {¢} €
o(ek) and o(ex) + @ for all ee Ei.

Let Ae X have greatest element a, in the natural partial order
on S. Then acd((a'a)r). Thus X = U.czz0(ek).

Finally, we give a representation of slightly less general applica-
bility which is interesting on account of the relationship that the set
X bears to the semigroup.

Before doing so, we need the following special case of Lemma 1.2.
due to Munn [5]:

LEMMA 3.5. Let S be an inverse semigroup and let a relation o
be defined on S by the rule that xoy if and only if there is an idem-
potent e in S such that ex = ey (or, equivalently, xe = ye). Then o is
a congruence on S and S/o is a group. Further, if T is any congru-
ence on S with the property that S/t is a group, then o =T and so
S/t is isomorphic with some quotient group of S/o.

Then ¢ is called the minimum group congruence on S.

PROPOSITION 3.6. Let S be an wnverse semigroup, let o be the
minimum group congruence on S, let (1 be the maximum idempotent
separating congruence on S and let 0 N ¢ = ¢, the identity congruence
on S. Let X = E;U S/o U {0}, where for x,ye X, we have v <y if
and only if

either (i) x,yeEs and x <y in the natural partial ordering

of HEg;
or (ii) ye Es and x€ S/o;
or (i) = =0.

Then X is a semilattice and there exists an embedding k: S — Ty, such
that d(ek) = @ for all ec E.

Proof. Let 0:a —6, be the Munn representation of S of Proposi-
tion 3.2. Then, for a€ S, define ax € T, as follows:

(i) 4(ak) = Esaa™ U S/o U {0};

(ii) «(ak) = 26, if x€ Es N d(ak);

(iii) a(ak) = x(ao) if xe Sjo;

(iv) @(ak) = x if = 0.
Then it is clear that £ is a homomorphism of S into T, inducing the
congruence o N 4, that is, the identity congruence. Thus £ is an
isomorphism.

We now turn to the problem of relating, for S J, and X a
semilattice, s’-congruences on X to normal equivalences or 6-classes
of S. For o an s'-congruence on X and a € S we shall denote by Ul(a)
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the set {z0: 20 N 4(a) = ©}. We suppress any indication of the de-
pendence of U(a) on p since this will not lead to any confusion.

THEOREM 3.7. Let X be a semilattice, S be an inverse subsemi-
group of Jy and o be an s’-congruence. For a€ S, define a, € Jy;p, as
follows:

(i) 4(a) = Ula)

(ii) for xpe d(a,), (xp)a, = (®,0)0 where x, is any element in xpN
A(a).

Then a: a — «a, is a homomorphism of S into Iy,. Lf o is an s-con-
gruence then a partial ordering of X/o can be defined as follows:

roSyo=u, =y, [for some x EXP, Yy EYP .

With respect to this partial ordering X/o is a semilattice and Sa =
JIx/00

Proof. Since p is a c-congruence, «, is clearly well defined and
it is straight forward to show that «,€ I,,,, that is, that a, is one-
to-one. Let a,be S and zpe€ 4(a,;). Then there exists an x,exoN
A(ab). Hence x,€xp N 4(a) and xz,a€ 4(b). Thus 20€ 4(a,) and za€
(xo)a, N 4(b). Thus (z0)a, € 4(e,) and wpo€ d(a,,). Conversely, let
xp € d(a,c;). Then there exists an x, € 20N 4(e) and an x,€ (o), N
4(b) = (z,a)p N 4(b). With x; = x, A v,0, we have z;€ 0,0 = (x0)a, and
23 € 4(a™) N 4(b), since x,a € 4(a™") and x,€ 4(b). Thus x.a™' € xo, z,a™' €
A(a) and (2,07 )a = 23 € 4(b). Thus a0 € xo N 4(adb). Hence zo € ().
Thus 4(a,) = 4(a,e). Now let zpe d(a,) = 4(a,a), and x,€x0 N
A(ab). Then

(zo)aa, = (w,ab)0

and
(xp)a.a, = (w,a)pa, = (v,ab)o .

Hence «a,a, = a,, and a is a homomorphism.

If o is an s-congruence then X/po is clearly a semilattice and it
only remains to be shown that SaZ J,.

So suppose that 20 < yo and yp € 4(e,). Then there exists z, € 0,
Yy, ¥.€yo such that x <y, and y,€ 4(a). Hence (x, x Ay, =
(@ ANy, ANy)ep and so (x,x, Ayy)€0 where z Ay, <y, € 4(a).
Thus #, A y,€ 4(a) and zpe€ 4(,). Therefore 4(w,) is an ideal and it
is routine to verify that a, is order preserving. Thus Sa & Jy,.

To see the difficulty that arises if o is just a c-congruence, con-
sider the semilattice X of Figure 2.

Let S be the inverse subsemigroup of J, consisting of the idem-
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w

FIGURE 2.

potents e, e, e; where 4(e) = {», w}, 4(e;) = {u, v, w} and 4(e;) = {w}.

Let o be the c-congruence on X determined by the partition X =

{z, v} U{u} U{w}. Then there is no natural homomorphism of S into Jy/,.
From Theorem 3.7, we have

COROLLARY 3.8. Let X be a semilattice and S be an inverse sub-
semigroup of Jy. Let o be an s'-congruence on X and define the rela-
tton T =7, on Eg as follows: for e, f e Ky,

(e, flec = Ule) = U(S) .

Then © is a normal equivalence on K. If p S 0 then t & 7.

In certain circumstances we can give a more direct difinition of
the normal equivalence induced by an s-congruence.

LeEMMA 3.9. Let X be a semilattice and S be an inverse subsemi-
group of Jy. Let p be an s-congruence on X and let p induce the
normal equivalence T on Es. If e, e, € Es then

(e, ) €T =(x,y)€p.

In particular, if SE T, then this defines t.

Proof. Let (x, y)€po and 20 N 4(e,) = @. Without loss of gener-
ality, let z€ 4(e,). Then z < 2, (3,2 A y) = Az, zAy)€pand z Ay €
4(e,). Thus zo N 4(e,) = @ and Ule,) & Ule,). By similarity, we have
the converse inclusion and so (e, ¢,) € 7.

Now suppose that (e, ¢,)€7. Then xexo N 4(e,) and so there
exists an z, such that (v, 2,) € o and z, € 4(¢,), that is, , < y. Simi-
larly, there exists a y, such that (y, ) € 0 and y, € 4{e,), that is, y, <
. Then (xAy, ) =@Ay, v, ANy)epand @Ay, y) = @AY, TAY)E
0. Hence (z, y,) €0 and so (z, y) € o as required.

We conclude this section with an instance where the mapping o —
T is one-to-one.

THEOREM 3.10. Let X be a semilattice and S be a full inverse
subsemigroup of Jyx. If T is a normal equivalence on Ey then T induces
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an s-congruence on X. On the other hand, if p is an s-congruence on
X, if o induces the normal equivalence © on Eg and T, in turn, in-
duces the s-congruence o' on X, then o= 0. In particular, the
mapping B: 0 — T defines an order isomorphism of I'y(X) into O(S),
and the mapping T— o into I'y(X) is into I'y(X). Thus, if S s full
in Ty then, by Proposition 2.3, the mapping T — 0 defines an order
isomorphism of O(S) onto I'y(X).

Proof. Let the normal equivalence 7 on Ey induce the c-congru-
ence p on X. For any zx, ye X, we clearly have

d(e.e,) = 4(e.) N 4(e,)
={zmz=aN{zz =<y}
=z Ayl
= A(ex/\y)-

Hence ¢.e, = ¢,,,. Also, from Proposition 2.3, we have that (x, y) €
¢ if and only if (e, ¢,) €7. So now suppose that (x, y) € p and z€ X.
Then (e,, ¢,) € T and S0 (€,n.s eyr.) = (€., €,6.) €. Hence (x A2, y A\ 2)€E
0 and o is an s-congruence.

Now suppose that o is an s-congruence, that o induces the normal
equivalence 7 and 7, in turn, induce p’. Let (x,y) € 0. Then, by Lemma
3.9, (e, e)er. Hence, for ec V(z), e = e, (e, ¢,) €7 and e, € V(y).
Thus e€ V.(y) and V(z) < V.(y). Similarly, V(y) S V.(x) and so V.(x)=
V.(y) and (x, y)€p’. Thus p & 0.

Conversely, let (z, )€ 0. Then V.(x) = V.(y). Hence e, € V.(y)
and e, € V.(x). Thus there exist e, e, f, f:€ Es such that

(3.1 e, =e, (e,e)et and e =e,
and

(3.2) e, =, (fy/)et and fize, .
Therefore

€. = ee, (ee, e,) = (ee, ee)ET,
and
ey = fie,, (fie., €) = (fle., fie) €T .
Hence
(e.ey, €:8,) = (e,:8,, €,6,)ET

and
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(fie., €.,) = (e,fie. €,€) ET .

Thus (ee,, fie.) €t and (e, e) 7. Hence, by Lemma 3.9, (x, y)€ o
and o’ £ p. Thus p = p'.

Let the s-congruences o and o’ induce the normal equivalences 7
and 7'. If p < o' then v 7/, by Corollary 3.8. Let 7 & 7z’. Since,
by the above 7 and 7’ induce, in turn, o and o’ it follows from Theorem
2.2 that p S 0’. Hence g is an order isomorphism of 7I',(X) into 6(S).

4. The case d(¢) # @. Throughout this section we assume that
X is a semilattice, that S = J, and that d(e) # @ for all ec E5. The
representations of Propositions 3.2, 3.3, 3.4 and 3.6 all satisfy this
condition. However, for the main result of this section we shall require
further hypotheses.

LEMMA 4.1. Let X be a semilattice, S< J, and 0(e) = @, for
all ec Es. Let © be a normal equivalence on Eg and suppose that T
induces an s'-congruence p on X. Let o, in turn, induce the normal
equivalence ' on Es. Then v’ & 7.

Proof. Let (¢, f)er’. Then U(e) = U(f). Let x€d(e). Then
2o N 4(f) # @ and so there exists a yexp such that ye 4(f) or fe
V(y). Thus fe V(y) & V.(y) = V.(x) and so there exist f,, f.€ Es such
that

(4.1) fzr (hhfer and foze,

since f,€ V(x) if and only if f, = e. Similarly, there exist e, ¢, € Ej
such that

4.2) e=e,(e,e)eT and e = f.

Now (4.1) and (4.2) are just the statements (3.1) and (3.2) with ¢ and
f replacing ¢, and e¢,. Hence, as in Theorem 3.10, we can deduce
that (e, ) €.

In the absence of the assumption that d(e) = @, for all ec E,
Lemma 4.1 need not hold.

ExAMPLE. Let I = [0, 1], the interval of real numbers from 0 to
1 under the natural ordering. Let I’ denote the half open interval
[0, 1). Let S be the subsemigroup {e;: 1€ I} of idempotents of .J,, where

(frelr<dg i i1,

Ae) = .
@ =loperr<1 it i=1.

Let = be the normal equivalence on S = E; determined by the parti-
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tion S = {e;:4 <1} U {e,} of S. Then 7 induces the s-congruence p =
I' xI'" on I' and p, in turn, induces the normal equivalence 7’ = S x
SonS. Thus tc .

Even in the presence of the assumption that d(e) = @, for all
e€ K, we may not have ¢ = 7',

ExaMPLE. Let X be the semilattice of Figure 2.

Let S be the subsemigroup of J, consisting of the idempotents
fs 9, b where A(f) = {u, v, w, x}, 4(9) = {v, w}, 4(h) = {w}. If 7 is the
normal equivalence partitioning S as S = {f, g} U {k} then p. has classes
{u, v}, {w}, {#} and p. is an s-congruence.

However, if o. induces the normal equivalence 7’ then 7’ is the
identity equivalence and so 7’ C 7.

THEOREM 4.2. Let X be a semilattice, S be an inverse subsemi-
group of Jy and d(e) = &, for all e S. Let a normal equivalence T
on Ey induce an s'-congruence p on X. Let p, in turn, induce the
normal equivalence T’ on K. If any of the following conditions hold
then T = 7';

(1) X s totally ordered;

(2) p is an s’-congruence and X = U..z, 0(e); in particular, if S
is full im Ty;

(3) p is an s-congruence and S = Ty.

Note. If X is totally ordered or, by Theorem 3.10, if S is full
in Ty, then every normal equivalence induces an s-congruence.

Proof. We have from Lemma 4.1, that 7 & 7 in each case.

(1) Let (e, f) e and suppose that o N 4(e) = @. Without loss
of generality let x € 4(e). Since X is totally ordered so also must E
be totally ordered. If f = e then 4(f) 2 4(e) and zo N 4(f) +# @. So
suppose that f < e and that y € 6(f). If y = = then x€ 4(f) and again
20 N 4(f) # @. Suppose that z >y. Then V(z) S V(y) and so V.(z)&
V.(y). Now let ge V(y). Theng= f, (f,e)e7 and ec V(x). Hence
ge V.(x). Thus V(y) € V.(x), V.(y) = V.(x) and (v, y)ep. Thus we
again have zoN 4(f) # @. Thus U(e) < U(f) and conversely, by
similarity. Thus (e, f) €7’ and so 7 = 7.

(2) Let (¢, f)etr and o N 4(e) = @. Let xe d(e) and xz€ (k).
Then k < e and (k, kf) = (ke, kf)et. Let yed(kf). Then, by Propo-
sition 2.3, (%, y)€ o and ye 4(kf) < 4(f). Thus U(e) = U(f) and con-
versely, by similarity. Hence (e, f) €7’ and = = 7',

(3) Let (¢, f)er. Let d(e) = <z, > and 4(f) = <z, >. By
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Proposition 2.3, (z,, #;) € p. Let xo N 4(¢) # @ and suppose that xe
d(e). Then z < x, and (x, 2 A 25 = (® A @, © A ©;) €0, since o is an
s-congruence. Also 2 A x,€ 4(f) and so zo N 4(f) + @. Hence U(e)=
U(f) and conversely. Thus (¢, f) €7’ and 7 = 7.

5. Inducing congruences on S. Let X be a semilattice, S & J,
and o be an s’-congruence on X. We have seen that o indhces a
normal equivalence on E and in this section we show how to define
two congruence relations on S in the corresponding 6@-class directly.
In certain circumstances these will be the smallest and largest con-
gruences in that #-classes.

PROPOSITION 5.1. Let X be a semilattice, S be an inverse subsemi-
group of Jy and let o be an s'-congruence on X. Define the relation
=% on S by

(@, ) eé= (i) Ula) = U ;

(i) xed(@), ye 4(b) and (x, y)€po
implies that (xa, yb) € o.
Then & is a congruence on S, wn fact, the congruence induced on S
by the homomorphism « of Theorem 3.7. If p is induced by some
normal equivalence o on Eg, as in Theorem 2.2, 1f © = &, and d(e) +#
@, for all ec Eg, then & = M., the maximum congruence in the 0-
class containing é&.

Proof. Since & is just the congruence on S induced by the homo-
morphism « of Theorem 3.7, the first part of the theorem requires no
verification.

For the final assertion, since we must have & < p., it suffices to
show that u¢. S &.

Let (a, b) € .. Then (aa™, bb™") € 7, while 4(a) = 4(aa™) and 4(b) =
4(bb~"). Hence, by the definition of 7z, ¢ and b satisfy condition (i).
Now let (x, y)€p, x€ 4(e) and ye 4(b). We want (2a, yb) € p. Since
© is induced from o we wish to show that V,(za) = V,(yb).

Let e€ V(xa). Then zac d(¢) and xz¢€ d(aea™). Hence aea'e
V(x) = V,(y) and so, for some f,, f,€ Es;, we have

aea™t = f, (f, fo€eo and f,e Viy) .

Hence yb = yf.be 4(b7'f,b), where (b7'f.b, b~'f,b) € 0, since o is a normal
equivalence. Also (b7'f.b, a”'fia)e 7, by Lemma 1.2, since (a, b) € /..
But, by Lemma 4.1, = S 6. Hence (a7'f\a, b~f;b) € 0 and

e=a'aea'a = a"fa, (@7fa, b7b)eoc and bTif,be Viyd) .

Thus e€ V,(yb) and V,(za) & V,(yb). By similarity, we have equality
and so (xa, yb) € o, as required. Hence (a, b) €&, p. S & and so p. = &.
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PROPOSITION 5.2. Let X be a semilattice and S be an inverse sub-
semigroup Jy. Let o be an s'-congruence on X. Define the relation
N on S by

@ben=(i) Ua = Ud

(i) If xzoe(a) = U(b) then there exists a y€ x0 such
that y e 4(a) N 4(b) and za = zb, for all z <y, z€
X.
Then m is a congruence on S. If 7|z, = T and either of the following
two conditions holds them 1 = 0., the minimum congruence in the 6-
class containing 7:
(1) S2E,;
(2) p is an s-congruence and S vs full in Ty.

Proof. Let (a,b)en. We first show that (e, b) € &, where ¢ is as
in Proposition 5.1. Then, for any ceS, we shall have (ac, bc) and
(ca, cb) € & and so, since & is a congruence, we shall have U(ac) =
U(be) and U(ca) = Ulca) = Ul(ed).

Since the conditions (i) are identical, we need only verify that
a and b satisfy condition (ii) in Proposition 5.1. Let z¢€ 4(a), y € 4(b)
and (z,y) € p. Then there exists a y, such that (z,y,) € p and za =zb,
for all z<y,. Hence y,a=y,b, (xa, y,a) € o, (yb, y,b) € p and so (xa, yb) €
0. Thus (a, b) €& Ulac) = U(bc) and Ulca) = U(ed).

Now let zpe U(ac) = U(bc). Then zpo N 4(a) + @ and zp N 4(b) #
@. Hence there is a y, € 2o such that ze = 2b for all 2 < y,. Let
y:€x0 N d(ac), ys€ w0 N 4(be) and y = y, A ¥ A ¥s.

Then yexpo N 4(ac) N 4(be) and for all z <y, zac = zbe. Thus
(ac, be) € 7.

The proof that (ca, ¢b) € 7 is similar and so 7 is a congruence.

To show that 7 = 0., we need, by Lemma 1.2, to show that, for
any (a, b)e,

(1) (aa™, 007" ev7;

(2) there exists an ec E such that (¢, aa™) € 7 and ea = eb.

The first requirement is satisfied since 7 is a congruence and
Nles = T.

Now suppose that S2 E,,. Let U(a) = U(b) = {x;0: 1€ I}. For
each 1€, let y;e x;0 be such that za = 2b, for all 2 < y,. Let e be
the idempotent S with domain U;.; <%;>. Then clearly, by the de-
finition of e, U(aa™) = U(a) < U(e). On the other hand, we clearly
have e < aa™ and so U(e) S U(aa™). Thus Ule) = U(aa™) and (e, aa™) €
7. Also ea = ¢b and so (a, b)€o.. Thus 1 =o0..

Finally suppose that p is an s-congruence and that S < Ty. Let
aa™t = e, and bb™* = ¢,. Since (e, ¢,) €7, by Lemma 3.9, (z, y) € o and
so there exists a z such that (z,2)ep and za = zb for all 2z, < z.
Then, again by Lemma 3.9, (e, ¢,) €t while clearly e, = ¢,b. Thus
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(@, b)eo. and 7 = o0..

COROLLARY 5.3. Let S be a full inverse subsemigroup of Tx. Let
T be a normal equivalence on E and let T induce the s-congruence 0
on X. Then the congruences & and 7 of Propositions 5.1 and 5.2 are
respectively tt, the maximum congruence, and o., the minimum con-
gruence in the 6-class determined by T.

Proof. That 7 induces an s-congruence o and that p, in turn
induces 7 follows from Proposition 3.10. The result then follows from
Propositions 5.1 and 5.2.

6. 0O(S) and I'y(X). By a lattice (semilattice) homomorphism «
of a lattice (semilattice) A into a lattice (semilattice) B we mean a
mapping « of A into B such that (x A y)a = za A ya and @ V y)a =
xa Vo ya((x A y)a = za A ya) for all x, ye A. A lattice (semilattice)
isomorphism is then a one-to-one lattice (semilattice) homomorphism.

In the next two theorems we essentially summarize some of the
previous results.

THEOREM 6.1. Let X be a semilattice. If X is a full inverse
subsemigroup of Jx, them the mapping a:7T— 0., of Theorem 2.2,
from O(S) into I'(X) is a semilattice homomorphism onto I'y(X).

If S is a full inverse subsemigroup of Ty then a s a lattice iso-
morphism of O(S) onto I'y(X).

If X s totally ordered and o(e) = @, for all ec Es, then a is an
order isomorphism of O(S) into I'y(X).

Proof. That a maps O(S) onto I',(X), when S is full in J,, fol-
lows from Theorem 3.10. Let 7, and 7, be normal equivalences, let
,=7,N7, and p; = (t)a, © =1,2,3. Then from Theorem 2.2, o, &
0. N 0, Let (z, y)€p,N .. Then by Proposition 2.3, (e,, ¢,) €7, N T, =
7,. Hence, again by Proposition 2.3, (z, y) € 0,. Thus o, = 0, N p, and
« is a semilattice homomorphism.

If S is full in Ty, then by Proposition 3.10, « is a one-to-one
semilattice homomorphism of @(S) onto I,(X) and hence is a lattice
isomorphism.

If X is totally ordered, then every c-congruence is an s-congruence
and so, by Proposition 2.3, a is an o-isomorphism of @(S) into I,(X).

THEOREM 6.2. Let X be a semilattice and S be an inverse sub-
semigroup of Jy. Let B denote the mapping o — v, of Corollary 3.8.
If S is full in Jy then B is an o-isomorphism of I'y(X) into O(S).
If S is full in Ty then B = a™', where a is defined as in Theorem
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6.1.
If X is totally ordered and 6(e) + &, for all ec Ey, then B 1s an
order preserving mapping of ['y(X) onto 6(S).

Proof. If S is full in J, then, from Theorem 3.10, B is an order
isomorphism of I'y(X) into O(S).

If S is full in T, then, from Theorem 3.10, Ba = ¢, and,
from Theorem 4.2, aB = tg4.

Hence g = a™.

Finally, if X is totally ordered and d(e) = &, for all ec Ej, then
B is order preserving, by Corollary 3.8, and @ maps I,(S) onto 6(S)
by Theorem 4.2.
If S is a full inverse subsemigroup of J,, it is natural to ask to what
extent the properties of S are determined by those of SN T,. We
shall denote by SI,(X) the lattice of s-congruences under S to dis-
tinguish it from the lattice of s-congruences T7,(X) under some other
semigroup T.

PROPOSITION 6.3. Let X be a semilattice and S be a full inverse
subsemigroup Jy. Let T= SN Ty. Then SI'(X) = TIy(X).

Proof. Clearly SI'(X)STTI'(X). Letpe TIy(X), (x,y)ep, x, ye
A(a), for some z, ye X, a€ S. Let e, denote the idempotent of T' with
domain < & >. Since pe TI'(X), we have (v, x Ay)epandx, v A ye
d(a). Also z, x A\ ye 4(e,). Hence 2z, x A ye 4(e,a) and e,ac T. Hence
(ve,a, (x A y)e,a) € p; that is, (va, (x A y)a) € p. Similarly (ya, (x A y)a) €
o and so (za, ya)€ o. Thus pe SI',(X) and we have the result.

COROLLARY 6.4. Under the hypothesis of Proposition 6.3, there
exists a semilattice homomorphism of O(S) onto O(T).

Proof. The result follows from Theorem 6.1 and Proposition 6.3.

REMARK. Let S be an inverse semigroup and ¢ be the maximum
idempotent separating congruence on S. Since O(S) = O(S/¢) and
since, by Proposition 3.2, S/¢ is isomorphic to a full inverse subsemi-
group of T, one might question the need to study other kinds of
inverse subsemigroups of J, apart from those that are full subsemi-
groups of Ty. (If S is a full inverse subsemigroup of T, then it is
not difficult to see that the representation of S as a semigroup of
partial transformations of X is isomorphic in a natural way to the
repesentation of S given by Proposition 3.2. on E;.) However, this
assumes a prior knowledge of the semigroup sufficient to identify the
representation of S on E,. If the semigroup is known as a semi-
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group of partial transformations, it may be quite difficult to identify
the representation on E while it might be relatively simple to work
with the semigroup of partial transformations as given.
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