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SEMIGROUPS WITH DIMINISHING ORBITAL DIAMETERS

Mo Tak KiaNG

In this paper, fixed point theorems for semigroups of self-
mappings on a metric space (X, d) subject to conditions on
the size of the orbits are considered.

The concepts of diminishing orbital diameters (d.o.d.) for
semigroups of mappings on a metric space and that of
convex diminishing orbital diameters (c.d.o.d.) for semigroups
of mappings on a convex subset of a normed linear space
are introduced. Also discussed are the concepts of linearly
ordered semigroups and in particular those that are Archime-
dean at some of its members. Certain results of Belluce and
Kirk concerning a single mapping satisfying d.o.d. are gener-
alized. Also included are results on semigroups of self-mapp-
ings on a weakly compact, convex subset of a Banach space.

1. The concept of “diminishing orbital diameters” of a single
self-mapping f on a metric space (X, d) was first introduced by Belluce
and Kirk in their paper [1]. For any point ze X, let O(x) =
{z, f(x), fA(x), +--} and J[O(x)] denote the diameters of O(x). It is
clear that the sequence {3[O(f*(®))]:% =1,2, ---} is nonincreasing.
Let »(x) = inf {0[O(f"(x))]: % =1, 2, ---}, then r(x) = 0 for every z € X.
The mapping f is said to have diminishing orbital diameters (d.o.d.)
on X if and only if for every xe€ X, the condition r(x) < 6[0(x)] holds
whenever 6[0(x)] > 0.

In this paper, we consider semigroups &# of self-mappings with
identity. Let &# (x) = {f(®):fe .} and & f(z) = {gf(x):9€ F }.
Suppose 0[.# (x)] denotes the diameter of F (x), and r(x) =
inf {0[.7 f(®)]: fe€ 5} for every x€ X. & is said to have diminish-
ing orbital diameters (d.o.d.) on X, if and only if for every xze¢c X,
we have [ (¢)] < o and the conditions 7(z) < 6[.& (x)] holds when-
ever o[ (x)] > 0. It is clear that if & is generated by a single
mapping f, then & has d.o.d. implies that f has d.o.d. and vice
versa. When & is a group, it clearly fails to have d.o.d.

If & satisfies d.o.d., then for every z¢ X, 6[.# (x)] > 0 implies
that there exists ge.& such that [ g(x)] < 8[F (v)], i.e. there
exists pe & (z) such that o[ (p)] < 6[F# (#)]. A requirement on
& weaker than d.o.d., when X is a convex subset of a normed linear
space, is motivated by the above observation and the next example.

ExaMpLE. Let X = E* with the sup norm metrie, and f: X— X
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defined by f(a, d) = (|b], — b) for every (a, b) € X.

The mapping f can be easily shown to be nonexpansive. Let &
be the semigroup generated by f and the identity. For z = (1, 1),
since d[.# (2)] > 0 and & | (2) is a family of isometries, & fails
to have d.o.d. However, the point p = (1,1/2) in co F (z) satisfies
7 (] =1< 2 =067 (). Infact, every point p€ co 7 (z) satisfies
o7 (p)] < o[.F (2)]-

Let X be a convex subset of a normed linear space and . &% : X — X
a semigroup of self-mappings. & is said to have convexr diminishing
orbital diameters (c.d.o.d.) on X if and only if for every xze X,
o[ (x)] < c and the condition 6[.& (x)] > 0 implies that there exists
p € co & (x) such that 6[.7 (p)] < o[.F (x)].

We introduce next the concept of a linearly ordered semigroup.
This is motivated by the observation of certain properties possessed
by a flow (see [4]). Let {f.:s€ S} be a set of continuous self-map-
pings of a subset X of a Banach space B, where S (written additively)
is a commutative topological semigroup with identity element & such
that f3(x) = « for all x€ B, and f,(f.(x)) = fi(f,(x)) = fir.(x) for all xe B
and s, t€ S, and satisfying the continuity condition that for each te S,
sup {|| fu(x) — fi(x)|]|]: x€ B} — 0, as s—t. Then {f,:s€ S} is called a
S-semigroup of operators on X. In the case when S = R*, the non-
negative real numbers with the usual topology, the semigroup
{f.:se€ R*} is called a flow.

The following two properties are satisfied by a flow:

(1) Let &, = f,={f..ae R + t}. For s<t, we have ¥, = . Z,.
Hence, the linear ordering of R* induces a linear ordering in & in
an obvious fashion.

(2) Let f,, f,e &, with s <t. Suppose s #= 0, then there is an
integer n such that n.s > t. Hence, we have & (f,)"S . f..

In general, let (X, d) be a metric space and & a semigroup of
self-mappings on X. & will be called linearly ordered if it satisfies
the condition that for every f, ge &, either Ff< . Fg or Fg< 7 f.
In the case when ZfZ .99, we say that f follows ¢ and denote this
fact by f = g. Let . # be a linearly ordered semigroup. .& is said to
be Archimedean at ge # with g # Id (the identity mapping) if for
every fe.# with g < f, there exists a positive integer n such that
9" = f. The semigroup & is said to be linearly ordered, Archime-
dean, if & is Archimedean at each g€ .&# where g = Id.

Clearly a flow and also any semigroup with a single generator
are linearly ordered, Archimedean semigroups.

2. In this section, results of Belluce and Kirk [1], [5], concern-
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ing mappings satisfying diminishing orbital diameters (d.o.d.) are
generalized.

For a single mapping f on a metric space, Belluce and Kirk [1]
showed that the condition that the mapping f satisfies d.o.d. is suf-
ficient for it to have a fixed point if f is furthermore nonexpansive
and possesses a f-closure point. It was shown later by Kirk [5] that
for a compact metric space, this condition guarantees a fixed point
when nonexpansiveness of f is replaced by continuity.

We generalize the above results on a single mapping on a metric
space to the case of a commutative semigroup of self-mappings having
d.o.d. While in the nonexpansive case a result of Edelstein [2] is
used by Belluce and Kirk to prove their result for a single mapping,
the following proposition uses a result of Holmes and Narayanaswami
[3] concerning commutative asymptotically-nonexpansive semigroups
of self-mappings.

A semigroup & : (X, d) — (X, d) is called asymptotically-nonexpan-
sive iff for every «, y € X, there exists g€ 7 such that d[fg(x), fg(¥)]=
d(z, y) for all fe .

The set {z€ X: there exists xz€ X such that for every fe &,
€ > 0, there exists ge . & with d[fg(%), 2] < ¢} is called the .&# -closure
of X and is denoted by X .

LeEmmA 2.1. (Proposition 2 in [3]). Let (X, d) be a commutative
semigroup of continuous asymptotically-nonexpansive mappings on X.
If ze X7, then & | & (2) is a family of isometries.

ProrOSITION 1. Let X be a wmetric space, F a commutative
semigroup of continuous asymptotically-nonexpansive self-mappings
on X. If & has diminishing orbital diameters (d.o.d.) and there
exists ze€ X7, then z is a common fixed points of F .

Proof. By the preceding lemma, & | () is a family of iso-
metries. Hence, we have

ol.7 f(»)] = sup {dlgf(2), ¢ f(2)]: 9,9 € F}
sup {d[f9(z), f9'(R)]: 9,9 € F}
sup {d[g(2), 9'(&)]: 9, 9" € F}

=o[l.7 (2)] .

Il

Il

Il

Since the above is true for all fe. &, we have
r(z) = nf{o[.F f(2)]: fe &} =0[F (2)] .

As & has d.o.d., we have 0[.# (2)] = 0, showing that 2z is a common
fixed point of & .
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The following corollary is immediate.

COROLLARY. Let X and & be as in Proposition 1 and replace
the condition that # has d.o.d. by the condition that F s moniso-
metric on the orbit of some point z€ X~ (i.e. there exists ge & and
points 2, y in the orbit of some point z in X such that d[g(x), 9(v)] =
d(xz, y)). Then z is a common fixed point of F .

THEOREM 2.2. Let X be a compact metric space, & :X—X a
commutative semigroup of continuwous mappings with d.o.d. Then
for every xe X, there exists z€ [Vse s f(x) such that z is a common

fized point of F .

Proof. For every ze X, by the commutativity of & and the
compactness of X, Nsc~F f(x) = @. Let A = NyesrF f(x). Then
A is a nonempty closed (and hence compact) subset which is invariant
under & .

By Zorn’s lemma, there is a nonempty, minimal closed subset K
of A which is invariant under .&# . Suppose 6[K] > 0. Let ze K,
then # (z) is a closed subset of A which is invariant under % . Hence
K = 7 (2).

Since &+ has d.o.d., we have 7(z) =inf{0[F f(?)]: feF} <
o[ (2)] = 6[K]. Hence, there exists he & such that i[.F h(z)] <
0[.# (2)] which shows that [ # h(z)] < 0] (2)]. Consequently, & h(z)
is a proper closed subset of K which is invariant under &%, which
is impossible. This contradiction shows that J[K] = d[.F ()] = 0.
Hence, z is a common fixed point of & .

3. In the case when X is a weakly compact subset of a Banach
space, the following is known (cf. Corollary 2 to Theorem 2 in [1]):-

Let X be a nonempty, convex, weakly compact subset of a Banach
space and f a nonexpansive self-mapping on X. Suppose f has d.o.d.,
then f has a fixed point in X.

The assumption of convexity of X was removed later by Kirk in
[6] where he proved the following:—

ProPOSITION 2 (Theorem 5 in [6]). Suppose X is a monempty,
weakly compact subset of a Banach space. If f: X — X is nonexpan-
stve and has d.o.d., then f has a fixed point in X.

We proceed to prove a related result for semigroups of self-
mappings.

LEMMA 3.1. Let (X, d) be a metric space and F : X — X a line-
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arly ordered semigroup of mappings. Suppose & has d.o.d. and
there exists a g F with g = Id such that

(i) ¢ has a fixed point

(i) & 1is Archimedean at g.

Then & has a common fixed point.

Proof. Let ze X be a fixed point of g. If & (2) is a singleton,
then z is a common fixed point of % . Suppose o[ (2)] > 0. Since
Z has d.o.d., inf{0[F f(2)]: fe #} <[5 (2)]. This implies that
there exists a mapping ke . & such that o[.F h(z)] < 0[.F# (2)]. How-
ever, by (ii), there exists an integer » such that ¢g" = A, i.e. & 9" .~ h.
Hence, we obtain & g"(z) & F h(z) & & (2) = & ¢g"(z), showing that
Z (2) = . h(z), which is a contradiction.

THEOREM 3. Let X be a nonempty weakly compact subset of a
Banach space and F :X— X be a linearly ordered semigroup of
mappings. Suppose F has d.o.d. and there exists a ge & with
g = Id such that

(i) ¢ is a nonexpansive mapping with d.o.d.

(i) &# s Archimedean at g.

Then .# has a common fixed point.

Proof. By Proposition 2, the mapping ¢ has a fixed point in X.
By the preceding lemma, .& has a common fixed point.

COROLLARY. Let X be as in Theorem 3. Suppose & : X — X 1s
a flow having d.o.d. If there ewists a mapping g€ F with g+ Id
such that g has a fixed point, then % has a common fixed point.

Proof. Since a flow is a linearly ordered, Archimedean semigroup,
the result is immediate from the lemma.

3.2. The weaker hypothesis of c.d.o.d. is used in the next result.
We proceed by first proving a lemma.

LEMMA. Let X be a nonempty, convex, weakly compact subset of
a Banach space. Suppose 7 : X — X is a commutative lineary order-
ed semigroup of nonexpansive mappings with & having c.d.o.d. If
for every weakly closed F -invariant subset K, of X there exists a
member g,€ F with ¢, % Id such that

(i) ¢, has a fixed point in K,

(il) & 1is Archimedean at g, then F has a common fixzed point.
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Proof. Let K be a nonempty convex subset which is minimal
with respect to being weakly closed and invariant under & . If
0[K] = 0, we immediately obtain a common fixed point of & .

Suppose 6[K] > 0. By the hypotheses of the lemma, there exists
a mapping ¢g,€ .&# with g, # Id, such that & is Archimedean at g,,
and a point ze K such that g,2) = 2. Suppose z is not a common
fixed point of 7, then 6] (z)] > 0. Sinece .&# has c.d.o.d., there
exists a point peco # (2) € K such that 6[.7 (p)] < 6[.F (2)]. Hence
there exists » > 0 such that 6[.7 (p)] < r < 0[.F (2)].

Let C,(p) = Ny.B(fg(p), r) and U = U,..-C,(p). Since for each
ge &, the set C,(p) contains & (p), we have U= . We proceed
to show that U is convex and invariant under & .

(1) Each C,(p) is clearly convex. Since & is linearly ordered,
the collection {C,(p):ge .7} is nested. Hence, U is convex as the
union of a nested family of convex subsets.

(2) Letxe U, thenxze C,(p), for somege & ,ie.|lx— fgp) | <7,
for all fe. & . Since each te. & is nonexpansive, we have

@) — o)l = llv — folp)l| =7,
for all fe &# . Hence,

t(x) € N~ B(tfo(p), 1) = C,(D S U,

showing that U is invariant under & .

Consequently, (1) and (2) imply that U is closed, convex and in-
variant under & .

Since U N K2 .7 (p), and K is invariant under .#. UNK is a
nonempty, closed, convex, weakly compact subset in K which is in-
variant under % . By the minimality of K we have KN U = K,
which implies that K< U.

Next, we proceed to show that (),.. ., B(q, ) # @. Let ge 7 (2),
then ge K< U. For any ¢ > 0, there is ¢’ € U such that |[¢ — ¢'|| < &.
Now ¢’ e U implies that ¢ €C,.(p), for some h.e. & . This shows
that ||¢' — fh.(p)|| < r for all fe & . Hence, ||¢g— fh)| <r+5¢&
for all fe ., which implies that B(z, » + ¢) 2 . h.(p). This shows
that B(z, » + ¢)2co . h.(p). Now, for each ge .7, the set co .7 g(p)
is a closed, convex subset of the weakly compact set K and is there-
fore itself weakly compact. By the commutativity of 7, the collec-
tion {co .7 g(p): g 7} has f.i.p. ‘Hence, N, co co.7 g(p) # @. Con-
sequently, we obtain B(q, » + ¢) 2¢0.F h(p) 2,5 O .F g(p). Since
the above result holds for every ¢ > 0, we have B(q, 7) 2 ),..-c0 .7 9(p)-
As q is arbitrarily chosen from & () we obtain

ﬂqefmé(q, r) 2 ﬂgefafg(p) .
As N,.~co . Z g(p) S K, the set A = ,..x[B(g, ) N K] is nonempty.
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That A is a proper, convex, weakly closed, & -invariant subset
of K can be shown as follows:—

(i) Since r < 0[.F (2)], A is a proper subset of K.

(ii) Since each B(q, ) N K (where qe & (z)) is weakly closed, A
is weakly closed.

(iii) To show that A is invariant under &, it suffices to show
that M,. . »B(q, r) is invariant under 7 .

Now, for any z¢ ﬂqe‘y(Z)E(q, r), we have |z — ¢q|| =< r for all
qge ¥ (). Let he &# . For any qe .# (2), we have ¢ = f(z) for some
fesF.

(a) For the case when & f& & :h—

Since f = f'h for some f'e.&# we have

[h(@) — qll = ||Mx) — f@)I = [lh@) = L' @] = lle — f/@)] =7r.

(b) For the case when # hS & fi1—

Since z is a fixed point of g,, we have ¢ = f(2) = fgi(z) for any
n e N.

(1) Suppose . & f9,= . h. As in (a), we obtain

1) — ql] = |[h(x) — fo ()] = 7 .

(2) Suppose & f¢9,2.F h, then F ¢,2 F h,i.e.g, < h. Since
g, = Id and & is Archimedean at g, there exists an integer j such
that g/ = h. This shows that F ¢/ = F h, or F fgi <. h. Hence
fgi = f"h for some f" e ., which implies that

@) — qll = ||M@) — FR@| = [[Mz) — f"h@)]| =7 .

Hence, ||h(x) — ¢|| < » for all ge & (2) in either case (a) or (b),
i.e. (@) e MNyesw=B(q, r), showing that A is invariant under & .

However, results (i)—(iii) contradict the minimality of K, which
shows that K is necessarily a singleton, i.e. a common fixed point.

THEOREM 4. Let X be a nonempty, convex, weakly compact sub-
set of a Banach space. Let # :X— X be a commutative, linearly
ordered semigroup of nonexrpansive mappings such that # has c.d.o.d.
Suppose 7 1is Archimedean at g,€ F with g, + Id such that g, has
d.o.d. Then # has a common fived point in X.

Proof. Let K be a nonempty convex subset in X which is min-
imal with respect to being weakly closed and invariant under & .
Since a mapping having d.o.d. on X also has d.o.d. on every & -
invariant subset of X, g, has d.o.d. on K. By Proposition 2, ¢, has
a fixed point in K since K is weakly compact. By the preceding lemma,
& has a common fixed point in X.
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COROLLARY. Let X be a nonempty, convex, weakly compact subset
of @ Banach space. Suppose F : X — X is a flow of monexpansive
mappings with c.d.o.d. If there exists g, F with g, # Id such that
9o has d.o.d., then Z has a common fixed point.

Proof. Since a flow is a commutative, linearly ordered, Archime-
dean semigroup, the result is immediate from Theorem 4.

4. Examples of commutative semigroups with diminishing orbital
diameters can be easily constructed. The following is an example of
such a semigroup.

ExAMPLE. Let

X:{(o, 21n>:n:O,1, }u{(_zl_zi) n=0,1, ---}U(0,0).

Suppose {f,:m = 0,1, ---} is a family of mappings defined by:

fal, y) = (O, ‘217)’ where y > Eln_
Hob) = (2
H ) = 0. 2)
(@, ¥) = (v, y) where y < zi .

Since {f,:m» = 0,1, ---} is a commutative family, the semigroup
Z generated by it and the identity mapping is commutative. Each
f. is nonexpansive and fails to have d.o.d. while & clearly satisfies
d.o.d. Indeed, for each point p = (z,y) with [ (p)] > 0, since
y=1/2" where nec{0,1,---} we have O[.F f.(p)] < d[F (p)] for
m > Nn.
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