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OPERATOR-VALUED INNER FUNCTIONS ANALYTIC
ON THE CLOSED DISC

STEPHEN L. CAMPBELL

It is shown that the class of operator valued inner func-
tions analytic on the closed disc is sufficiently large for the
invariant subspace problem. These inner functions are then
transferred to the upper half-plane and studied via the differ-
ential equation U' — iAU. The relationship between A and U
is investigated. Necessary and sufficient conditions are given
on A for U to be the Potapov inner function of a normal
operator.

l First we establish our notation* H is a fixed separable, in-

finite dimensional Hubert space. Hπ is the usual Hardy spaces

of the circle or upper half-plane with values in H. Which HH will
be clear from the context. We will always denote a real variable by
x, variables in the disc by u or w, and variables in the upper half-
plane by z. S denotes multiplication by w. S* is the adjoint of S
restricted to HH. An operator-valued function U(w), defined on the
circle, is inner if UfeHH for every f e HH and U(w), \w\ = 1, is
unitary. U has an analytic extension into the unit disc which we
shall identify with U. The map z = i(l — w)/(l + w), w = (z — i)/
(z + i)9 transfers U(w) to U(z), an inner function on HH of the upper
half-plane. Ur will always denote differentiation with respect to z,
or x if we are restricting U to the real axis. If T is a bounded
operator on H, r(T) is its spectral radius, N(T) is its null space. If
M, R are subspaces of a Hubert space, then MQ R — M Π R1 and 0
is an orthogonal sum.

2. If T is an operator on if, || Γ|| g 1, and Tn-* 0 strongly, then
associated to T is an inner function Vτ(w) called the Potapov inner
function for T. If K — HH Q VTHHJ then £* restricted to K is similar
to T. The question then of invariant subspaces for T reduces to finding
invariant subspaces for S* restricted to K. This is equivalent to
whether Vτ factors into two nonconstant inner functions. For a more
complete discussion of these ideas see [6, 8].

3* Two special classes already proposed are the (JiV)-operators
of Herrero [7] and the scalar inner operators of Sherman [11]. Both
of these classes are too restrictive for the invariant subspace
problem. Sherman's calculations can be made to show Vτ is scalar
if and only if T is normal. In this case the invariant subspace problem
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is solved. But if one is looking for invariant subspaces, no gener-
ality is lost in assuming | |Γ | | <S 1, r(T) < 1. Then Vτ{w) is analytic
on the closed disc. We will see later that || V'τ(x)\\ is then integrable
and hence Vτ(w) is a finite Blaschke product if it is (IN) [2].

4* The preceding paragraph suggests a natural class of operator-
valued inner functions, those which are analytic on the closed unit
disc. We shall refer to these as analytic inner functions, or the class
(AI). This includes all Potapov inner functions for T such that r(T) <
1, || Γ|| ^ 1, and hence is big enough for the invariant subspace problem.
(AI) also has the advantage that one is not bothered by irregular
behavior on the boundary of the disc.

A slightly more general class was originally studied by Helson
[5]. He worked on the upper half-plane and utilized the differential
equation U'(x) — iA(x) U(x) that all norm-differentiable inner functions
on the real axis satisfy. A(x) is a self-adjoint, positive, norm-con-
tinuous operator-valued function. If U is norm-differentiable on the
axis it is analytic on the real axis [5]. Some of his results were
generalized in [1].

5* (AI) is only slightly larger than the class of Potapov inner
functions as Theorem 2 will show. The motivation for Theorem 2 is
contained in a theorem of Jackson [8, p. 29]. Our proof essentially
follows here.

THEOREM 2. // U(w) is an analytic inner function such that
N(UW(1)) = {0}, then

(1) U(w) = c Vττ Uo where Uo is an arbitrary constant unitary
operator, τ is an isometry onto the range of (I — TT*)1'2, c* is an
isometry onto the range of (I - Γ*Γ)1/2, || Γ|| ^ 1, r(T) < 1,

(2 ) A(x) = cAτ(x)c* and
(3) if \\Tφ\\ < \\φ\\ for all φ in H, then U(w) differs from a

Potapov inner function by a constant unitary operator on the right.

Proof. Let K = Hf{ Q M, where M = UH2

H. Identify H with the
constant functions in Hϊf.

( i ) MΠH = {0}. For if not, let H, = MΓ) H. Then H2

Hι^M
and £7= Uo © Uλ where Uo is constant on H,. But then N(UW(1)) a
U*(l)Hι which is a contradiction of the assumption that N(UW(1)) =
{0}.

(ii) K is infinite dimensional. We note that if f e K, then /
is analytic on the closed disc since Uis [6, p. 76]. Thus (f(w), φy =
(/(0), φ) where <,> is the inner product in HH and (,) is the inner
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product in H. If K were finite dimensional, there would exist φ in
H such that φ JL K, and this contradicts i.

(iii) Following [8], we let B: H-^K be unitary and define Γby
S*B = BT. Then S*nB = BTn so that B = B0(I- wT)~ι and (I-T*Ί) =
B*B0. Thus B0 = c(I- Γ*T)1/2 where c is a partial isometry with
N(c) = N(B0) = iV(I - Γ*T). But by (ii), 5 0 has dense range and hence
c* is an isometry onto (I - T* Γ)1/2iϊ. Thus UH^ = KL = cVτH

2

H.
r(S*\K)<l by [5, p. 76].

(iv) FΓ = - T* + w(/- T*T)1/2 (/- wT)-1 (I- TTψ2. If φ is in
iV(Z- TT*), then Vτφ = - T*φ and cVτφ - 0. On the other hand,
Vτ(w), \w\ = 1, maps the closure of (/— TT*)ί/2H onto the closure of
(/_ T*T)1!Ή. Let r be as in the statement of the theorem. Then
cVττHί = cVTH% = UH*H. For \w\ = 1, cVτ(w)τ is an isometry of H

onto if and hence is an inner function. (1) follows.
(v) To prove (2) we calculate A(x) = — ίU'(x)U*(x) and use the

fact that ττ*FΓ*c* - F^c*.
If ||?V|| < \\φ\\ for all φ in iί, then N[(I - T*Tf12] = {0} and c

is unitary. The identity cVτ— VcTc*c, valid for unitary c, implies (3).
The next theorem connects Helson?s class of inner functions with

ours.

THEOREM 3. If U(x) is a norm-differentiable inner function acting
on HH of the upper half-plane and U'(x) — iA(x)U(x), then U(w) is
analytic on the closed disc if and only if \ \\ A(x)\\ dx < co.

Proof. A(x) integrable gives us that U(x) has a finite limit as x ap-
proaches infinity [3, p. 43]. But U is bounded and analytic on the upper
half-plane, so it approaches this limit uniformly in the upper half-plane
and in the lower-plane for sufficiently large \z\ [4, p. 162]. Thus U
is in (AI).

To prove the converse, we observe that U(w) is analytic on the
closed disc so U(z) is analytic at infinity. Differentiating the Laurent
series for U(z) we get that ||A(a?)|| is integrable.

6. The preceding sections suggest that it might be useful to
find out the relationship between the properties of innner functions
U(x) and those of A(x). This relationship has been studied in [1, 2, 5].
Unlike [2], we will not restrict our attention to (IN)-operators. [1]
will be used for purposes of simplification. Our results are of a
different nature then those in [5].

Some results are well known. If Vτ(w) is analytic on the closed
disc, then there is a compact set a of the open upper half-plane such
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that Aτ(x) has an analytic extension everywhere into the upper half-
plane except on σ. σ is the image of the spectrum of T under the
map z = i(l — w)/(l + w). We also know that N(A(x)) is constant

[1]
Our next result is

THEOREM 4. // || T\\ ^ 1, r(T) < 1, then
(1) Aτ{x) is one-to-one for all x if and only if (I — T* T) is and
(2) Aτ(x) is invertible for all x if and only if (I — T* T) is.

Proof. We observe that the conditions on (I — Γ* T) occur if and
only if they occur for (I— T*T)lβ. Secondly we note that Aτ{x) is one to
one or invertible precisely when Vi(x) is. But up to a nonzero scalar
function, Vί(x) = ( I - T*T)1/2(I- wT)-\l - wT)-\I- TTψ2. (I-
TT*)1/2 i s invertible or one to one if and only if ( / - T*T)1/2 is.

COROLLARY 1. Aτ(x) is invertible for all x if and only if \\ T | |< 1.

Proof. One way is obvious. On the other hand if (I — T*T) is
invertible, then infp| \\φ\\2 - || Tφ\\2\ > 0 and || Γ|| < 1.

REMARK. The condition r(T) < 1 may be replaced by Tn —* 0
strongly.

REMARK. The formula Vτ(w) = (I - T* T)-ιβ(w - T*)(I - wT)-\I -
y»jτ*y/2 which i s used by some authors under the condition Tn —> 0
strongly or r(T) < 1 is not valid for (I ~ Γ*T)1/2 may fail to exist.
Γ = QQ is an example.

As Theorem 3 shows, the integrability of A(x) is one of the
analytically distinguishing characteristics of analytic inner functions.
A(x) can not be too small, however.

THEOREM 5. Suppose U(x) is a norm-differentiable inner function
and U'(x) = iA(x)U(x). Then U(x) is identically constant if and only
i / Γ \\A(x)\\dx<l.

J-oo

Proof. If U is constant, then clearly A{x) — 0. So assume

Γ \\A(x)\\dx = d<L Let V(x) = U(x)U*(0), so that V'(x) = iA(x)V(x)

and V(Q) = L E is the identity operator on H2

H. V is V(x) thought of

as an operator on H2

H. Now \\V{x)-I\\ ̂  || Γ V'(y)dy\\ £ ['\\A(y)\\dy ^ d.
Jo Jo

Thus || V — E\\ ̂  d < 1 as operators in ΈL2

H. Hence V is invertible,
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that is, VHH = H& and V is constant. So U is constant.

This theorem can be used to test whether one norm-differentiable
inner function can divide another.

COROLLARY 2. IfU~ VW where U, V, and W are inner operator

functions and U is norm-differentiable, then \ \\A(x) — M(x)\\dx < 1
J—oo

implies W is constant where V'{x) = iM(x)V(x) and U'(x) — iA(x)U(x).

Proof. Helson has shown that if ί7is norm-differentiable, then so are
V and W [5, p. 318]. Let W\x) = iD(x)W(x). Then A(x) = M(x) +
V(x)D(x)V*(x). (~ \\D(x)\\dx = (°° \\A(x) - M(x) \\ dx<l implies that

J—CO J—OO

W is constant by Theorem 5.

7* We conclude with a theorem motivated by some results of
Sherman [11].

THEOREM 6. If \\ T\\ < 1, then T is normal if and only if Aτ(x)
commutes with Aτ(y) for every real x, y.

Proof. If T is normal, then clearly Vτ(x) and Vτ(y) commute for all
x and y. Suppose that Vτ(x)Vτ(y) = Vτ(y)Vτ(x). Then Vτ(x)V*(— x) =
Vτ(—x)Vτ(x). But Vf(— x) — Vτ*(x). Thus Vτ and Vτ* commute.
Hence T is normal [11, p. 395]. It suffices then to show that Vτ(x)
commutes with Vτ(y) for all x and y if and only if Aτ(x) commutes with
Aτ(y) for all x and y

Suppose that Vτ(x)Vτ(y) = Vτ(y)Vτ(x). Then differentiation with
respect to x and the commutivity of the Vτ's enables us to get
Aτ(x)Vτ(y) = Vτ(y)Aτ(x). Differentiate this equation with respect to
y and simplify to get Aτ(x)Aτ(y) — Aτ(y)Aτ(x) as desired.

Now suppose that Aτ{x)Aτ(y) = Aτ(y)Aτ{x). Multiply this equation
on the right and left by [/- T*T]~112. Invert both sides to get

(ul- T*)(I-uT)[I- T*T\-ι{wI- T*)(I- wT)
~ T*T]-\uI- Γ*)(I- uT) .

Here u — (i — y)/(i + y). Both sides are entire functions in u and
w. Equating w coefficients gives T*[I - T*T\-ι[I + T*T) =
[/- Γ*Γ]-1[/+ Γ*Γ]Γ*. But ^Γ*! 7 ) is in [0, 1]. Hence T*(T*T) =
(Γ*Γ)Γ*. The equation now becomes (ul - T*)(I - uT)(wI - T*)(I -
wT) = (w/- Γ*)(/- wT)(uI- Γ*)(/- %Γ). Equating w2 coefficients
gives Γ*Γ= TΓ*. Hence T is normal.

Theorem 6 is not valid without the assumption that the norm of
T is less than one.
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EXAMPLE. Let T = [Ά Then Vτ(w) = Γ J ™Ί and Aτ(x) =

(4/|(l + #2)) 0Q . Thus ^4Γ(#) commutes with Aτ(y) for all x and 2/,

but FΓ(a?) does not commute with Vτ(y) unless w2 = u2.

8* With the exception of the example, we have assumed through-
out this paper that H was infinite dimensional. This was done, in
large part, to set up a theory with the invariant subspace problem
in mind. The finite dimensional case has been considered by [6,9,10],
though they were interested in different aspects of inner functions
than considered here.
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