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ON THE ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF
x"" + a(O)f(x) = e(t)

T. BuRTON AND R. GRIMMER

In this paper sufficient conditions are given which insure
that all solutions of

' + a(t) flx) = e(t)

tend to zero as t > . Results obtained are comparable to
those obtained for the linear equations via two Liouville
transformations. Also, related results concerning stability
and boundedness of solutions and, when e¢(¢{) = 0, necessary
and sufficient conditions for the uniqueness of the zero solution
on an interval where a(f) is negative are given.

1. We consider the equation:
(1) &’ + (p(t) + d@))f (@) = e(®), (= d/di) ,

where p,d, e: [0, «)— R, f: R— R, p(t) > 0, zf(x) > 0 for x > 0, and
" (t), d(t), e(t) and f(x) are continuous.

In this paper the basic problem is to give conditions which
guarantee that all solutions of (1) tend to zero as ¢t — «. Also, con-
ditions are given which insure that all solutions of (1) are bounded
and, in the case e(t) = 0, we examine the Liapunov stability of the
zero solution of

¥ =w
w = — (p@) + d@) f(2) .

The problem of insuring that all solutions of (1) tend to zero as
t tends to infinity has been examined by a number of authors (cf.
[3], [5], [7], [8], [9], [11], [12], [13] and the references therein). The
problem of boundedness and stability of the solutions of (1) and (2)
has also been studied quite extensively (cf. [2], [3], [5], [9], [12]).
Our results however, differ from most of the results found in the
above references in that it will not usually be assumed that p(¢) +
d(t) is positive or even differentiable. Even if a(t) = p(t) + d(t) is
positive and differentiable our results will differ from much previous
work in that o'(t) or a'(t)/a”(t) where r is any fixed positive number
may behave in an extremely wild manner (cf. [8], [9]).

We shall first examine the case where (1) is linear and then
consider the nonlinear case. In the last section we compare the results
obtained with some well known results for the linear equation.

(2)
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4 T. BURTON AND R. GRIMMER
2. In the linear case (1) has the form
(3) " + (p(t) + dt)x = e(t)
where p, d, and ¢ are as above. The Liouville transformation

(4) ¥e) = o), s =| Ve

maps (3) into

d*y
dst

+ [p'()/2p™(6)] % + 1 + d@)/p@)y = et)/p()

which we write as
(5) ¥ +2p0y + A+ d@)/p@®)y = e@®)/p@), (= djds) ,
where p(t) = p'(t)/4p**(t) and consider the equivalent system

¥=2z— ptty
2= —pt)z + (50 + 2O — 1 — d@)/p@)y + e®)/p() .

THEOREM 1. All solutions of (3) tend to zero as t tends to infinity

(6)

if
(i) [Trew 1 vpm @t < -,

(i) [7(= 200 + 1£0) + a0 — OO Dds = = -

and either
(ili) There exists M > 0 so that for any r and s with 0 < r < s,

| (=200 + 1£2) + 20 — d/p(®) s < M

or
(iv) e(t) = 0.

Proof. Define a Liapunov function V by
(7) Viy, 2,8 = 2%/2 + y'/2 .

Differentiating V along a solution of (6), we see that

V= =2u®)V+ @) + 2@ — dO)/p@) llyz] + (e@)|/p(@) 2]
= (= 2p@) + [2£¢) + £@) — dO/p@) | + [e®)|/2pE) V + |e(t) |/2p()

which we write as

(8) VM)V + M) .



ON THE ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF z/ + a(¢t) f(x) = e(?) 45

Assume first that (iii) holds. Then, for s = s, = 0, V as a function
of s along a solution of (6) satisfies

V) < oxp | nwdul Vi) + | exp = [T n@donan) .

Now, if V(s) is eventually bounded away from zero, say V(s) =k > 0
for s = s, we have

V(s) exp — So M@ydu < V(s,) + So Viw) (exp — S M (0)dv) () [ At
and by Gronwall’s inequality,
V(s) exp — g () du < V(s,) exp g ) /B) du .
From (i), (i), and (4), however, it follows that
rxz(u) du < o and rm(u) du = — o

and so it must be that V{s) tends to zero as s — . This contradiction
implies that there must be a sequence {s,} tending to infinity with
n with the property that V(s,) — 0 as n — o,

Now, for s = s,, we have,

V(s) < V(s,) exp § () du + 5 e(t1) €xp S M) dv du

= V(s,) exp M+ | nufw) exp M du

and thus, V(s) tends to zero as s tends to infinity.

From (7), we see that y(s) must have limit zero as s goes to
infinity. As y(s) = x(t), the proof is now complete if (iii) holds.

If (iv) is valid, from (ii) and the fact that )\,(s) is identically zero,
it follows that V(s) tends to zero as s goes to infinity and the proof
may be completed as above.

As an example, we see that all solutions of

4 (B 4+t sint?) x = P,
with « being any positive number, tend to zero as t— <. Here,
p(t) = 8, d(t) = t'*sint*. Also, we should note that (ii) in Theorem 1
implies p(t) — oo as t — o as

| ety as = way | @reyymey a .

3. For the purposes of this section we write
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(9) p(t) = c(t) b(t)

where ¢(t) and b(t) are defined by

et) = p(0) exp || 19/():/p)] ds
(10) >
bt) = exp — | [1'(9)-/p(3)] ds

with p'(¢). = max {p'(f), 0} and »'(¢)_- = max {— p’(t), 0} so that p'(¢) =
p'(t). — p'(t)-. We shall require throughout this section that

[ 0@ o) ds <

so that b(¢) is bounded away from zero. With this decomposition of
p(t), we see that c¢(f) is nondecreasing and b(t) is nonincreasing and
that ¢/(¢) and b'(f) exist and are continuous. Actually, it is easy to
see, as p”/(t) is continuous, that ¢’(¢) is of bounded variation and ¢”(¢)
exists almost everywhere. As ¢”(t) will not in general be continuous
some of the systems which we will examine will be of Caratheodory
type. This will present no difficulties, however, as the Liapunov
functions which we use will always be continuously differentiable (see
for example [15: pp. 10-11]) and, hence, in the future we will take
the second derivative of ¢(f) when convenient and without further
comment.

The following definition and lemma will be helpful in our analysis
of the nonlinear case.

Suppose f is defined and continuous on [0, =) X N— R" where N
is a neighborhood of the origin in R” and consider the equation

(11) & = f(t,x) .

DErFINITION. The set {0} is eventually uniformly stable with respect
to (11) if, for every ¢ > 0, there exists 6 = d(¢) >0 and 7 = 7(c) > 0
so that ||z(¢, ¢, z,) || < e, t=t, = 7(e) t, = 7(¢), provided ||z,|] < §, where
2(t, t, %,) is any solution of (11) with (¢, ¢, ) = =,.

LemmA 1. If v is a nonnegative constant and \;: [0, o) — [0, o)
1= 1,2, are continuous and satisfy S () dt < o0, 1 =1, 2, then {0}
18 eventually uniformly stable with respect to the scalar equation

(12) = N(E)rTsgn r + No(2) .

Further, of v =1, then all solutions of (12) are bounded as t — .
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Proof. We consider only the case where r, > 0, the case where
7, < 0 being similar follows from the fact that » = \,(¢)7" sgn r. Let
€ > 0 be given, let 6 = ¢/2, and let 7 = 7(¢) > 0 be chosen so that

o r () dt + S” N(t) dt < /2 .
We see from (12) that if 0 < 7, < 9 and t, = 7(¢), then 7, t, r) < ¢
for ¢ = t, = t(e).
If v=<1,7 £ M@7r + M) for » = 1 and the result follows.
We now consider equation (1) which we write as

13) @' 4 (e(t) b(t) + d(t) f(x) = e(?)

where c¢(t) and b(t) are defined by (10).
For the nonlinear case, the Liouville transformation defined by

14y y(s) = (t), s= | Ve au

maps (13) into
(14) §+2u@) g + (@) + d@)/e@®) fy) = e(®)/c(@)
where p(t) = ¢/ (t)/4c*2(2).

We first consider the equivalent system,

Y =2z
(15) 2= —2ut)z — (b(t) + d()/c(?) f(y) + e®)/c(t)
where we shall assume
(1) |71 + le s dt < - .

Also, it frequently will be useful to assume that there exist nonnegative
constants v, k,, and k, so that

(1) (@) = b F(%) + k.
where F(x) is defined by
Flo) = S Fw) du .

We note that if f(z) = z"sgnx, n > 0, we may choose v = 2n/n + 1

and k, = 0. Also, (II) is clearly satisfied in a bounded neighborhood

of # = 0 by any f(x) and will certainly be satisfied if f(x) is bounded.
If we define the Liapunov function W(y, z, s) by
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(16) W(y, z, 5) = (#/2 + b(t) F(y)) E(s) ,

where
E(s) = exp — | [(140)] + |e@))/e)] du

with ¢t = t(u), and differentiate W along trajectories of (15), we have,

W= [(d@)| + 1@ D/e@IW + [(1dE) || FW)z| + le@®) ||2)/e®)] E(s)
= [(1d@®) [ f*(v) + |e() )/2e(t)] E(s)
< (k. |d(8)|/20(8)) F(y) E(s) + [(k]d(®)] + |e(t)])/2¢(8)] E(s)

and hence,
(17) W< M) W7+ Nofs)

where N;(s) = 0,7 =1, 2, and
r)w(s)ds<oo, i=1,2.

With the aid of (17) we are now prepared to prove the following
theorem.

THEOREM 2. If (I) and (II) are walid, then {(0,0)} is eventually
uniformly stable with respect to (15). If in (II) v can be chosen so
that v =<1 and

(18) | s du =

0

then all solutions of (15), and hence, all solutions of (13) are bounded
i the future. If c(t) is bounded and e(t) = 0, the zero solution of

o =w
w' = — (c(t) bt) + d(t)) f ()

is uniformly stable if either vy =1 and k, = 0 or c(t) b(t) + d(t) s
positive and continuously differentiable.

(19)

Proof. With the functions \(s), 7= 1,2, in (17) we see from
Lemma 1 that {0} is eventually uniformly stable with respect to (12).
It follows now from [10; Theorem 3.14.1, p. 223], (16) and (17) that
{(0, 0)} is eventually uniformly stable with respect to (15).

If v £ 1, we see that all solutions of (12) are bounded in the future.
Hence, it follows from (17) and a standard comparison theorem that
W is bounded along trajectories of (15). From (16) we see that if
(18) is valid then the solutions of (15) are bounded in the future and



ON THE ASYMPTOTIC BEHAVIOR OF SOLUTIONS OF 2" + a(t) f(x) = e(t) 49

as x(t) = y(s), all the solutions of (13) are bounded in the future.

If ¢(t) is bounded, the stability properties of (19) are the same as
those of (15) as 2'(t) = y(s)c'/*(t). Also, if k, = 0 and e(t) = 0, A\y(s) is
identically zero and if v = 1, the zero solution of (12) is unique and
thus, the zero solution is uniformly stable ([10; p. 222]) and so the zero
solution of (19) is uniformly stable ([10; Theorem 3.3.4, p. 141]). If
c(t)b(t) + d(t) is positive and continuously differentiable, the zero solution
of (19) is unique, ([2; Theorem 7]) and the result follows.

REMARK 1. As (II) can be satisfied in a bounded neighborhood of
2 = 0 by any function f, we see that {(0, 0)} is eventually uniformly
stable with respect to (15) if (I) holds. Similarly, (I) is not required
to hold for all x to obtain the stability of the zero solution of (19).
Finally, we note that Theorem 2 is an extension to the nonlinear case
of the theorem which states all solutions of

2+ 1+ o) + 4(t)e =0

are bounded if S'” 16(t)|dt < <o, S“’ |9/(8) |dt < oo, and ¢ (t) — 0 as t— oo
(cf [1; p. 112]).
Write (14) now in the equivalent form

¥=2z— pQy
¢= — pt)z + (A1) + @)y — () + d(t)/e(t) () + e()/e(t) .

If z«(t) is bounded as t — <, then as z = £z + ¢y, we see that all solutions
of (15) are bounded in the future if and only if all solutions of (20)
are bounded in the future. Also, we see that {(0, 0)} is eventually
uniformly stable with respect to (15) if and only if it is eventually
uniformly stable with respect to (20). Thus, if (t) is bounded we
may apply the results of Theorem 2 to (20).

(20)

THEOREM 3. Assume (1), (II), and (18) hold and that v in (II) can
be chosen so that v < 1. If ¢(t) — o as t — o, u(t) ts bounded, and if

1) [0 + 2ty ds <

then every solution of (13) tends to zero as ¢ — oo.

Proof. We shall show that every solution of (20) tends to zero as
s — oo and, hence, as the solutions of (20) and (13) are related by y(s) =
x(t), we will have every solution of (13) tending to zero as ¢{— oo.
Let (y(s), 2(s)) be a solution of (20). If

lim inf [|(y(s), 2(s)[| = 0,
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Theorem 2 yields that {(0, 0)} is eventually uniformly stable with
respect to (20) as p(t) is bounded and, thus, we must have (y(s), 2(s)) —
(0,0) as s— - and we are done.

From Theorem 2 we also see that (y(s), z(s)) is bounded in the
future so if

lim inf [[(y(s), 2(s))[| > 0,
there is an annulus A with center at the origin and s, = 0 with the

property that (y(s), 2(s))e A for s =s,. If we define the Liapunov
function J(y, 2z, s) by

J =22 + b(t) F(y) ,
along trajectories of solutions of (20) we have,

S = — p)@ + @) f (W) + |40 + w(@)] |z
+ ([ d@) /e f(W)z] + (et)|/e(t))]2] .

For (y, 2) € A, there exist positive constants M,, M, so that | f(y)z| =
M, |yz| = M, [2| = M, and (Z* + b(?) f(y)y) = M.. Thus, along (y(s),
2(s)) for s = s, we have,

J = — )M, + (£0) + £O] + (d®)| + [e@)D/e®)M, .

Since ¢(t) — = with ¢, we see that

S‘” (t) ds = o

and so J(y(s), #(s), s) — — o as s-—> o which is a contradiction and
the proof is complete.

REMARK 2. Theorems 2 and 3 are “best possible” as ¢(¢)b(t) + d(t) =
a(t) need not be smooth nor even eventually positive. In particular,
if a(t) is negative on some interval [¢, ¢,] and

Sm 1+ F@)]™" de < o

then the equation
(22) & + a(t) f(z) = 0

has solutions which go to infinity monotonically in finite time [4: Theo-
rem 2]. Thus, if v > 1 in (II) we cannot in general have all solutions
of (13) bounded or tending to zero as t — oo since f(x) = «* satisfies (II)
with v > 1. It a(f) is positive, (22) may still have solutions with
finite escape time, [6], if a(t) is not locally of bounded variation.
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Also, if the zero solution of (19) is not unique to the right
at ¢t = ¢, it clearly cannot be stable at ¢,. The next theorem gives
criteria for the uniqueness of the zero solution of (19) from which
we will see that if there is 7,0 < v <1, for which f*(x) = k. F7 ()
with k, > 0, then the zero solution is not unique to the right when
a(t) < 0.

THEOREM 4. Suppose a(t) < 0 on some interval [t, t,]. The zero
solution of (19) is unique on [t, t,] of and only if

@) S [F(@)]"" do = oo
and
(b) S__ [F(2)]" do = — oo

Proof. Suppose (a) doesn’t hold and consider solutions of (19) with
initial conditions (0, w(¢,)), w(t,) > 0. As a(t) and f(x) are continuous,
if 0 < w(t) <1, there exists ¢, > ¢, so that these solutions exist on
[t, t] and it follows, [15; Theorem 3.7], that these solutions are
uniformly bounded on this interval. Without loss of generality we
may assume t; = t,.

E:rom (19) we obtain ww’ = — a(t) f(x)2’ which yields w*(¢t) — w(t,) =
—2521 a(s) f(x(s)x’' ds. For t, < t<t, as x and w are increasing,

_om S:l F@(s)2(s) ds > w(t) — wi(t) > — oM S F(@(s)a(s) ds
where m and M are constants so that m < a(t) < M < 0 for t, <t <
t,. Hence,

w(t,) — 2mF(a(t)) > w(t) > w’(t) — 2MF(x(t))
or
[wi(t) — 2mE(z(t)]'* > w(t) > [w(t) — 2MF(x(t)]'"* .

As o = w,

(23) S:(” [W(t) — 2MF(s)]~" ds = {: [Wi(t) — 2MF(x(s))] " &/(s) ds

=t—t

= 1

for t, £t < t,. Now as Sl+ [F(z)]7* do < <o, there is Z > 0 so that
0

gi [— 2MF (x)] " de < t, — t,.. If (x(t), w(t)) is any solution of (19)
0
with 0 < w(t) = 1, 2(¢,) = 0, we have from (23)
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S:"’ [— 2MF(s)]-" ds > S:(“ [wi(t) — 2MF(s)]""" ds = & — t,
In particular, we obtain
S:“Z’ [—2MF(s)]~" ds = #, — ¢,

and so a(t) > % > 0.

Choose a sequence of solutions of (19), {(x,(t), w.(t))} defined on
[t., t.] with (x,(¢), w.(t)) = (0, 1/n). This sequence of solutions is uni-
formly bounded and equicontinuous and by Ascoli’s Theorem there is
a subsequence which converges uniformly to a solution (x(t), w(¢)) of
19) on [t,t)]. Now, as «,¢) =0 and w,(t) = 1/n, x(t,) = w(t) = 0.
Also, x,(t) > x > 0 for every » and we obtain x(¢,) = £ > 0. This
solution contradicts the uniqueness of the zero solution to the right.
In a similar fashion one can show the existence of a solution (x(¢), w(t))
of (19) in the fourth quadrant with the property that (x(t,), w(t,) =
(0, 0) and ((t,), w(t;)) #= (0, 0) for some t,, t, < ¢, < t,. If (b) is not valid
we proceed as above in the second or third quadrant.

Now suppose (a) and (b) are valid but the zero solution of (19) is
not unique to the right on [¢, ¢;]. Without loss of generality, we may
assume the existence of a solution (x(¢), w(t)) of (19) with (a(¢,), w(t)) =
(0, 0) and (x(¢), w(t)) = (0, 0) for ¢, < ¢t < ¢,

From (19) it is easy to see that (x(¢), w(¢)) must be in the first or
third quadrant for ¢, < t £ t,. We assume it is in the first quadrant,
the argument in the other case being similar.

Arguing as above with m < a(t) < M < 0 for ¢, <t < ¢, yields

24) S“"") [WH(t) — 2mF(s)] "2 ds < t, — t <ty — ¢, .
z(t)

From (a), given k > 0, there is a value of x, say Z, 0 <Z < x(t,),
so that

gf“” [— 2mF(s)] " ds > k .
Also, as F(s) > 0 on [Z, #(t,)], there exists 6 > 0 so that if w(t) < d,

wi(t) — 2mF(s) £ — 8mF(s). As x(t) = w(t) = 0, there exists 7, t, <
t < t, so that 0 < a(f) < T and w*?) < 6. From (24), we obtain

t—t, = Sifi [w(E) — 2mF(s)]~" ds
= w2 | [~ 2mEE" ds

> k/2.
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The constant %k is arbitrarily large, however, and we have a con-
tradiction.

If the zero solution of (19) is not unique to the left the argument
is similar being carried out in the second or fourth quadrant and the
theorem is proved.

With regard to condition (II), suppose f*(x) = kF"(x) with 0 < v <
1 and £ > 0. Then

f
o> [P
ot
= |, 76 @I ds
>k S‘+ [F(s)]* ds

and (a) does not hold and hence, if a(f) < 0 on any interval we see
that the zero solution of (19) is not unique to the right and cannot
be stable where a(t) < 0. In a similar fashion it can be shown that
if f3®) = kF7(x) with 1 <~ and k& > 0 then (19) has solutions which
have finite escape time whenever a(t) < 0.

If in (II), v must be chosen greater than one it follows from
Theorem 2 and the proof of Theorem 3 that solutions of (13) with
a(t,) and 2'(t)/1Vc(t,) small where t, is large will tend to zero ¢— o
if the hypotheses of Theorem 3, with the exception of v < 1, are valid.
However, if (II) does not hold with v < 1, further restrictions must
be made on ¢b + d to guarantee that all solutions of (13) tend to zero.
The final two theorems of this paper consider this case.

The next theorem should be considered in conjunction with results
on the boundedness of solutions of (13) (ef. [2], [3], [9] and the refer-
ences contained therein).

THEOREM 5. Suppose that d(t) is identically zero and that all
solutions x(t) of (18) are bounded. If pt is bounded, c(t) — ~ as t—
oo, and if (I) and (21) are valid, then every solution of (13) tends to
zero as t—» oo,

Proof. Define W, (y, 2, s) by
Wiy, 2, s) = (#%/2 + b(t) F(y) + 1/2) E\(s)

where
E . (s) = exp — Ss le(t)|/c(t) du with t = t(u) .

Along trajectories of (15), we have



54 T. BURTON AND R. GRIMMER

Wi, 2, 5) < (e(t)/c(®) Bu(s)z — (le(t) /(@) W, < 0 .

Hence, z(s) is bounded and, as 2(t) = y(s), the solutions of (15) are

bounded.
As ¢ is bounded, the solutions of (20) are bounded. Also, from

Remark 1 we see that the origin is eventually uniformly stable with
respect to (20). The remainder of the proof is parallel to the proof
of Theorem 3 and so is omitted.

THEOREM 6. Suppose d(t) is identically zero, c(t) — = as t— oo,
and (I), (18), (21) are valid. Further, suppose yf(y) = 2V F(y) for some
constant v > 0 and given R > 0, there is k(R) > 0 with the property
that |yz| < E(R)(2*/2 + F(y)) for v* + 2 = R*. Then all sclutions of (13)
tend to zero as t— oo,

Proof. Defining J(y, #, s) as in the proof of Theorem 3 and differ-
entiating along the trajectories of solutions of (20) yields for % +
=R

J = — pO)@E + bOFW)Y) + |40 + O |lyz] + (e@) |/e(t) | 2]
= (= kut(t) + kk(R) | 2(F) + ££2@) | + (le(@)]/2¢(8)T
+ (le(?)]2¢(2))
where k, = min {2v, 2} and k, = 1/(inf b(¢)). It follows now from (I), (18),
and (21) that the solutions of (20) are ultimately bounded for bound 2R;
that is, every solution of (20) must eventually enter and remain in

the open 2R ball about the origin. The result now follows as R is
arbitrary and, hence, x(t) = y(s) — 0 as ¢t — co.

4. It is interesting to note that Theorem 6 is directly comparable
to a result for linear equations obtained via two Liouville transforma-
tions. Consider the linear equation

(25) &+ a(t)s = 0

where a(t) has a continuous second derivative on [0, =), a'(t) = 0, a(t) >
0, and a(t) — o> as t— <. The transformation (4) with a(t) = ¢(t) =
p(t), maps (25) into

¥+ 2ty +y=20

where p(t) is as above. If we define v(s) by
u(s) = os) exp — | pit(w) du

we obtain
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(26) o4+ (1= 0 — @) =0.

Thus, if (21) is valid, all solutions of (26) are bounded and all
solutions of (25) tend to zero as t— co. Unfortunately, for the
equation

(27) o+ a(t)x =0

with a(t) as above and a > 1 the quotient of odd integers, the second
Liouville transformation does not yield as tractable an equation as (26).
However, it follows as a corollary of Theorem 6 that (21) is also a
sufficient condition to insure that all solutions of (27) tend to zero as
t— oo,

Also, if 0 <a <1, we see from Theorem 3 that (21) and r«(%)
bounded suffice to guarantee that all solutions of (27) tend to zero as

t — co,
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