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SUPERSIMPLE SETS AND THE PROBLEM OF
EXTENDING A RETRACING FUNCTION

T. G. MCLAUGHLIN

An infinite set A of natural numbers is called regressive
if there is a (non-repeating) sequential ordering α0, CLU " of
A and a partial recursive function / such that A <i domain (/),
/(βo) = #0, and (V%)[/(αn+i) = &J; in case αo> du * * * is the natural
ordering of A by increasing size of elements, A is called retra-
ceable and / is said to retrace A. It sometimes happens that a
retraceable set does not admit an everywhere-defined retracing
function, or that it does not admit a finite-to-one retracing func-
tion. Question: does there exist an infinite set A of natural
numbers such that A is retraced both by a total recursive
function and by a finite-to-one partial recursive function, but
not by a function which is both total recursive and finite-to-
one? Via some theorems relating to D. A. Martin's notions
of supersimple and superimmune sets of natural numbers, a
strongly affirmative result is obtained.

1* Introduction* Let N denote the set of all natural numbers.
In [3], Martin has termed supersimple any co-infinite Σ°λ subset S of
N for which there does not exist a two-place total recursive function
f(x, y) with the properties: (i) f(x, y) is characteristic (i.e., it maps
N into {0, 1}); (ii) for each pair of distinct natural numbers xx

and xif the sets {y \ f(x19 y) = 0} and {y \ f(xi9 y) = 0} are finite and
disjoint; and (iii) for every x, the set (N — S) ΓΊ {y\f(x, y) — 0} is
nonempty. Martin further suggests ([3, p. 306, footnote 2]) that
a (not necessarily co-r.e.) set IaN be called superimmune provided
that I is infinite and that there is no two-place total recursive charac-
teristic function f(x, y) such that the sets {y \ f(x, y) — 0}, x = 0, 1, 2,
• , are mutually disjoint (but not necessarily finite) and satisfy
{v I /(», y) = 0} Π / Φ 0 for all x. However, as we shall see, the adop-
tion of that terminology would require the admission of supersimple
sets having non-super immune complements, which would not be in
keeping with traditional recursion-theoretic nomenclature. Therefore
we shall designate as strongly superimmune those sets which Martin
recommended calling superimmune; and we shall say that an infinite
set I is superimmune if its complement S (not necessarily a Σ[ set)
admits no total recursive function f(x, y) satisfying (i), (ii) and (iii)
above. If S is Σ\ and has a strongly superimmune complement, we
shall say that S is strongly supersimple.

The following theorem, due originally to Martin, is proved in [4]:
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THEOREM 1. An infinite set IaN is strongly superimmune <=>
no infinite subset of I can be retraced by a total recursive function.

A partial function / : K—> N, K S N, is downward <=>df range (/) S
domain (/) and (Vx) [xe domain (/) => f(x) ^ x]. If / is a downward
partial function, then for each x e domain (/) we denote by f*(x) the
least number n such that fn+ι(x) = /•(&)• (Here f°(x) =df x, fn+1(x) =

dff(fn(x)).) More generally, if / has the property that range (/) £Ξ
domain (/) and (vα) [x e domain (/) => (ln)(fn+1(x) = fn{x))], then we say
that / is grounded and we denote by f*(x) the least n such that

fn+1(χ) = Γ(χ).
In case I is Σ°2, Theorem 1 can be strengthened as follows:

THEOREM 1*. Suppose that I £ N is infinite, is Σ°2, and is not
strongly superimmune. Then there exist an infinite set / £ / and a
pair of functions gf and g such that gf is partial recursive and finite-
to-one, g is total recursive and downward, g is an extension of g', gr

retraces J, and J is the only infinite set retraced by g.

A proof of Theorem 1* will be given in §2. In §3 we shall prove
that a form of Theorem 1* having a weaker conclusion is optimal
with respect to the arithmetical hierarchy, and indicate how to prove
the following natural analogue of Theorem 1:

THEOREM 3. An infinite set I £ N is superimmune <=> there is no
infinite subset J of I such that J can be retraced by a finite-to-one
total recursive function.

In §4, we apply material from [6] to establish the distinction
between superimmunity and strong superimmunity for co-r e sets:

THEOREM 4. There exists a supersimple set S such that S is not
strongly supersimple.

Our interest in Theorem 4 stems not so much from its character
as a structural classification theorem as from the fact that when
combined with Theorem 1* it provides an easy proof of the following
new result on extensibility of retracing functions:

THEOREM 5 There exist an infinite set Re N and a pair of func-
tions f and g such that

(5 i) g is a downward, total recursive function which retraces
R and no other infinite set,

(5 ii) f is a finite-to-one, partial recursive restriction of g which
retraces R, and

(5 iii) no infinite subset T of R can be arranged in a sequence
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{U}T=Q in such a way that {£jΠ=o admits a finite-to-one, total recursive
regressing function.

Proof. Applying Theorem 4, let S be a supersimple set wiiose
complement is not strongly superimmune. By Theorem 1*, there exist
an infinite set Iξ^N— S and a total recursive, downward function g
such that (a) I is the unique infinite set retraced by g and (β) I is
retraced by some finite to one, partial recursive restriction / of g.
Choosing such an I, such a g, and such a restriction / of g gives us
(5 i) and (5 ii) with R = I. Keeping R ~ I, / a s just chosen above,
we shall establish (5 iii) by contradiction. Suppose that T^R, T is
infinite, and T is regressive via some finite-to-one, total recursive
function. Let h be a particular finite-to-one, total recursive function
and {ti}Z=Q a particular ordering of T into a (non-repeating) sequence
such that h(t0) = t0 and (Vn)[h(tn+1) = tn]. We shall replace h by a
finite-to-one, total recursive function k such that k(t0) = t0, (Vri)[k(tn+ι) —
tn\, and (Vx)(lri)[kn+1(x) = kn(x)]. To do this, we first note that for
any given x there are just two ways in which it can fail to be the
case that (ln)[hnJrl(x) = hn(x)]: either (a) (3n)(3m)[ra ^ n + 2 and hm(x) =
hn(x) and hn+1(x) Φ hn(x)\ (i.e., the Λ-orbit of x contains a proper loop),
or (b) (Vri)(Vm)[n Φ m=> hn(x) Φ hm(x)\ (i.e., the A-orbit of x is an
infinite "splinter" in the sense of [6]). The elimination of failures of
type (a) presents no problem. To eliminate failures of type (b), we
take advantage of the fact that the complement of the supersimple
set S does not include any infinite X? set and hence, in particular,
does not include any infinite set of the form {y\(ln)[y = hn(xQ)]}. It
follows that for each xe N, exactly one of three conditions holds: (a')
same as condition (a) above, (b') {hn(x) \neN}ΠSφ 0 , or (c')(ln)[hn+ι(x) =
hn(x)\. Moreover, we can effectively determine (uniformly in x) which
one of (a'), (b')> (c') holds, by simultaneously enumerating S and {hn{x) \ n e
N}. Thus we are able to define k as follows:

ίh(x), if (c') holds for x;

0, if (cr) does not hold for x and - Ί (3z)[z < x and

(c') holds for z];
k(x) = <

the largest z such that z < x and (c') holds for z,

if (c') does not hold for x and (lz)[z < x and (c')

holds for z].

It is easily verified that k, so defined, is a finite-to-one, total recursive,
grounded function such that k(t0) = t0 and (Vn)[k(tn+ι) = tn]. (In par-
ticular, as regards finite-to-one, note that for any y there can be only
finitely many x such that —i (3z)[y < z < x and (c') holds for z\.) We
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n e x t replace k by a t o t a l recurs ive, g rounded, finite-to-one function I
such that l(t0) = t0 and (Vn)[l(tn+1) = tn] and (Vx)[l(x) = x=>x = t0].
The construction of I from k is very easy:

k(x), if &&*(#)(#) = t0

the least z

Jsuch that k*(z) = x and &*(£) — £0,

if kk*(x)(x) Φ t{

Now define ;?'(#, y) = 0 or 1 according as £*(?/) = a? or £*(?/) =£ #; then
j is a total recursive characteristic function such that the sets {y\j(x,
y) — 0} are finite and mutually disjoint and, for every x, {y\j(x, y) —
0}Π TΦ 0. But T g i2 S N- S, from which it follows that S is not
supersimple: contradiction. (5 iii) follows for R, and the proof of
Theorem 5 is complete.

Comment. It is known ([5, Theorem 5.2]; [4, Lemma 3]) that if
J is the unique infinite set retraced by some partial recursive, finite-
to-one function, then J has degree of unsolvability ^ 0'. So, in par-
ticular, the set R of Theorem 5 has degree ^ 0'.

2* Proof of Theorem 1** To begin with, we note that it essentially
suffices to prove Theorem 1* under the assumption that I is infinite,
not strongly superimmune, and of degree ^ 0\ For suppose the
theorem has been established subject to that stronger assumption. Let
JΓ0 be a Σ\ subset of N satisfying the hypotheses of Theorem 1*. Then Jo,
being Σ°2, is the range of a function v: N~+ N such that v is of degree ^
0'. Let f(x, y) be a total recursive characteristic function witnessing
the failure of Io to be strongly superimmune, and such that (V#)[/o Π
{y\f(χ,y) = 0} is infinite]. (Clearly, such an / must exist, if Io is
not strongly superimmune.) It is clear that using v and / we can
define a function ξ: N—*N such that (i) ξ is strictly increasing, (ii)
ξ is of degree ^ 0r, and (iii) (Vn)[ξ(n) elo Π {y\f(n, y) = 0}]. Hence,
if E — range (f) then E is an infinite subset of Jo such that (iv) E is
of degree <̂  0f and (v) E satisfies the hypotheses of Theorem 1*. It
follows that E, and therefore also Jo, satisfies the conclusion of Theorem
1*. We now proceed to show that if I is an infinite set of degree ^ 0'
which is not strongly superimmune, then I satisfies the conclusion of
Theorem 1*. Let f(x, y) witness the failure of I to be strongly
superimmune. As is well-known, since / is of degree ^ 0' there
exists a recursive characteristic function h(s, x) such that (yφ\\im9^h{8,
x) exists and = cz(α?)], where cx is the characteristic function of I (i.e.,
cτ(x) — 0 if x e I and cx(x) = 1 if x & J). We shall construct the required
function g by stages, using a sequence {Λjjlo of "markers"; the con-
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struction will be such that at the end of stage s there is a number
t(s) ^ 8 such that exactly the first t(s) + 1 markers, Ao, Λl9 •••, Λt(8),
are associated with numbers. (When the construction has been com-
pletely described, it will be clear that t(s) is a recursive function.) No
marker will ever be associated with more than one number at a
time; nor will any number ever have more than one marker-associate
at a time. We shall denote by Xs

u the number with which Λu is
associated at the beginning of Stage s + 1, for each u ^ t(s). The
construction proceeds thus:

Stage 0. Associate Λo with α0, where α0 is the least a e I such
that /(0, a) = 0. Let v0 be the least number v such that v > 0 and
(V2/)[/(v, y) = 0=> y > α0]. Associate Λ, with (/m)[/(v0, w) = 0]. Set
gQ = {(x, x) I x < α0 or /(0, a?) = 0} U {(a?, a0) | /(v0, α?) = 0}; then pass to
Stage 1.

Stage s + 1. Suppose that precisely the markers Λo, Λl9 •••, Λt(s)

are associated with numbers at the end of Stage s, where t(s) is a
number ^ s whose exact value is known at the end of Stage s. (Note,
in particular, that t(0) = 1.) There are three cases.

Case I. (V2)[0 < z ^ t(s)=>h(s, Xs

z) = 0]. In this case, let r0 be
the least r such that (i') no member of {y | /(r, y) = 0} belongs to the
domain of gs, and (ii') (Vy)[f(r, y) = 0 =* y > λf(β)]. Let ^ s + 1 = ^ U
{(», λf(β))|/(r0, x) = 0}; and define # s + 1 = ^ s + 1 U {(ί, α0) | ί ^ s and ί g
domain (̂ β+i)}. Associate Λt(s)+1 with 6̂0, where ^0 is the least number
u such that /(r0, u) = 0. Letting t(s + 1) = t(s) + 1, proceed to Stage
s + 2.

Case II. Case I does not obtain, and if z0 = the least z such that
0 < z ^ ί(s) and A(s, XI) Φ 0 then (3w) [w ^ s and A,(s, w) = 0 and
(Vk)[f(k, Xs

z) = 0=> f(k, w) = 0]]. Let s0 be the least 2, 0 < z ^ ί(s), such
that h(s,Xs

z) = 1. Disassociate the markers ΛZQ, ΛZo+1, •• ,Λt{8) from
their current associates λjo, λ|0+1, , λ*tβ). Let w0 be the uniquely
determined number w such that f(w, XS

ZQ) = 0. (The existence of w0

will be clear once our description of the construction is complete.)
Let uQ be the least number u such that f(w0, u) = 0 and A(s, %) = 0.
Re-associate ΛZQ by associating it with u0 (i.e., set λf0

+1 = u0). Set
#s+i = gs U {(ί, α0)Iί ^ s and ί g domain (gs)}. Letting t(s + 1) = zQ,
proceed to Stage s + 2.

Case III. Neither of Cases I, II obtain. Make no marker changes.
Set gs+ι = gs, and go to Stage s + 2.

To complete the construction of #, we define g = \JSeNQS' To see
that g, as so defined, is a partial recursive function, we merely note
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t h a t a t every point in t h e construct ion where a specific n u m b e r needs
to be computed or a specific a l te rnat ive needs t o be decided, t h e
computat ion or decision in question can be made effectively, uniformly
in all parameters involved. F o r example, if a t S tage s + 1 we assume
t h a t we know a computat ion procedure ^(s + 1) for determining t h e least
n u m b e r q such t h a t {y \ f(q, y) = 0} Π domain (g8) = 0 (the existence of
such a q being obvious from t h e description of Stages 0 and s + 1), and
if we also assume t h a t t h e value of Xs

tis) is known, t h e n in Case I we can
uniformly effectively determine r0 from 0>{s + 1) a n d λ (,, But, in
view of our description of Stage s + 1 in its t o t a l i t y , i t is clear t h a t
we can assume inductively that we have such knowledge of domain(gs)
and of λj(β); in particular, we obviously have it for domain (g0) and λj
Again, it is clear from the statement of the construction for the general
stage s + 1 that (Vx)[x < s=> (gs(x) is defined and gt(x) ^ x)]; thus
9 = USSN 9s is total recursive and downward. We next verify, by
mathematical indution on s, that lim^ooλ* exists for all u (i.e., that
each marker Λu eventually attains permanent association with some
number) and that lim^oo λ* e I. To begin with, since Cases I and II
of Stage 8 + 1 concern only z which are greater than zero, we see at
once that λo = α0 for all values of s. Suppose lim^oo λ* exists and
belongs to I for all u < v; and let s0 be the smallest number such that
(Vu < v)(Vs ^ 80) [Xs

u is defined and = lims_>co λ*]. Let sL ^ sQ be chosen
so that h(s, λ;) = 0 for all s ^ ^ and all u < v. Then Λv becomes
associated with some number m0 via Case I at Stage sλ + 1, if it is
not already attached by the end of Stage 8t; here f(p0, m0) = 0 holds
for a certain (uniquely determined) number p0. If, subsequent to Stage
sί9 say at Stage sx + w + 1, Λv loses its association with m0, it must
be because Case II applies with h(st + w, mQ) — 1. But in that event,
Λv is immediately re-associated with a new number mt satisfying f(p0,
mj = 0 and h(s1 + w, mj = 0. If Λv later loses its association with
m19 it is due to another application of Case II, and again Λv is at once
re-associated, this time with some number m2 satisfying f(pOy m2) — 0
and h(s2, m2) = 0 where s2 is the stage in question. And so on. Since
{y\f(Po, y) = 0} Π IΦ 0 and (Vy) [lim^oo h(s, y) = Cj(y)], we see from
the description of Case II that this process can lead to only finitely
many changes in the value of Xs

v; whence lim^coλ? exists and lies in
I. So, by induction, lim^coλj exists and lies in I for all u. We
denote lim^coλ^ by Xu. It is evident from the construction that
(Vu)[Xu < λw+1 and g(Xu+1) = Xu; also, we clearly have g(X0) = g(aQ) = α0 =
λ0. Thus, setting J — {Xn\neN}y we have that Jis an infinite subset
of / retraced by g. We claim that g can retrace no other infinite set.
For suppose —i (ln)(x = Xn]. Then there is a stage s such that s' ^
s =* (Vri)[x Φ λ»l (For, our description of the construction makes it
clear that no number x can satisfy both (3u)[x — λ*] and ($v)\x = Xv

eJ
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with e1 Φ e2.) But it is trivial to show by induction on s that if
(Vri)[x Φ λ£], then ye domain (# s + 1 )—domain (ga) => —i (lw)[g?+ί(y) = x].

Thus if x belongs to an infinite set retraced by g while yet x <£ {Xn | n e
N}, then there is a stage s of the construction such that (Vn >
0)(ly)[g:+ί(y) = x < gn

sll{y) < < gs+1(y) < y]. From the definition
of g8, however, using induction on s, we see that this cannot be
the case. Hence J = {λn \ n e N} is the only infinite set retraced
by g. It remains only to prove that there exists a finite-to-one
partial recursive restriction g' of g which retains the property of
retracing /. The existence of such a function g', however, follows
from [5, Theorem 8], since it is easily verified that {Xn\neN} has
degree of unsolvability ^ 0' (Simply note that λ« is a recursive
function of n and s if we set Xs

n = 0 whenever Λn is unattached at
the end of Stage s.) That completes the proof of Theorem 1*.

3. Optimality of Theorem 1* and Proof of Theorem 3* The
following result shows that the Σ\ classification of I in Theorem
1* cannot be carried any further within the standard arithmetical
hierarchy, even if we drop the requirement that J be the only in-
finite set retraced by g'.

THEOREM 2. There exists an infinite Π\ subset I of N such that
(2 i) I is the unique infinite set retraced by a total recursive,

downward function g;
(2 ii) I is not strongly superimmune; and
(2 iii) no infinite set J £ I can be regressed by a finite-to-one

partial recursive function.

Proof. By [1, Theorem 4.14(2)], there exists a total recursive
function g and an infinite Π\ set I g N such that I has degree 0" and
/ is the unique infinite set retraced by g; clearly we may suppose also
that g is downward. Next, if we define f(x, y) — 0 <=* g*(y) = x and
f(x9 y) = 1 otherwise, then plainly / witnesses the failure of I to be
strongly superimmune. (This is just the proof of the easier half of
Theorem 1.) Finally, suppose J £ /, J infinite, and g regresses J
where g is a finite-to-one partial recursive function. Then, by a
standard argument, we see that there exists an infinite set H^ J such
that H is retraced by a finite-to-one partial recursive function ζ. Let
ζ be defined as follows:

(x, y)eζ <^df(x, y)eζ and (3z)[gz(x) = y] .

Then ζ is a finite-to-one partial recursive function such that
every infinite set which it retraces is a subset of /. Certainly, ζ
retraces H among (possibly) others. Hence by [5, Theorem 2], I has



492 T. G. MCLAUGHLIN

a n infinite (retraceable) subset of degree strictly less than 0". B u t
therefore also / has degree <; 0", since I is retraceable and so is
reducible to all of its infinite subsets. Since this contradicts our
choice of I, Theorem 2 is proven.

We now sketch an argument for Theorem 3. Let / be a finite-
to-one, total recursive function which retraces an infinite subset R of
I. We first replace / by a finite-to-one, total recursive, downward
function g which likewise retraces R; the procedure for defining g
from / is similar to, but less involved than, the procedure used to
obtain k from h in our proof of Theorem 5. Setting r(x9 y) = 0 or 1
according as g*(y) = x or g*(y) Φ x, we then have r a witness to non-
superimmunity of I. Conversely suppose g(x9 y) is a total recursive
characteristic function witnessing non-superimmunity of I. We modify
the construction on p. 258 of [4] as follows, all notation being exactly
as in [4]:

Stage 0. Same as Stage 0 on p. 258 of [4].

Stage s + 1. Same as Stage s + 1 on p. 258 of [4], except that
at the last step of the stage, instead of placing (t, 0) in / provided
t < s and t is not yet in domain (/), we place (t, k) in / just in case
t < s and k < t and t is not yet in domain (/) and /*(&) is defined
by the end of stage s and k is the largest number I < t for which
f*(l) is defined by the end of stage s.

As thus defined by stages, / is obviously a partial recursive
function. Exactly as in [4], we check that / retraces an infinite
subset of I. It then readily follows that / is defined for all but
finitely many xe N, and that / is finite-to-one. An at-most-finite
adjustment of / (to insure totality) then completes the verification
of Theorem 3.

Comment. If we asume I to be infinite, non-super immune, and
of degree ^ 0' then, proceeding very much as in our proof of Theorem
1*, we can find an infinite set Rcz I such that R is the unique infinite
set retraced by some finite-to-one total recursive function. We do
not know whether this can be improved to the extent of assuming
merely that / is infinite, non-superimmune, and ΣJ.

4* Proof of Theorem 4* In [6], Young has studied in some
detail two special classes of Σ ! sets: the class SHS of "strongly
hypersimple" sets, i.e., r.e. sets S such that if {Wr{i)}T=o is any recursive
sequence of disjoint r.e. sets whose union = N then (3i)[Wr(ί) Π (N —
S) — 0 ] , and the class FSHS of "finitely strongly hypersimple" sets,
i.e., r.e. sets S such that if {Wr(i)}T=o is any recursive sequence of
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disjoint finite r.e. sets whose union = ΛΓthen (li)[Wr{i) ΓΊ (N — S) = 0 ] .
(Here {W4}T=o is some standard-type recursive enumeration of the class of
all r.e. sets.) The following lemma, brought to our attention by Carl
Jockusch, establishes the equivalence of Young's definitions to those
used in the present paper:

LEMMA. Se FSHS<=>S is supersimple', and Se SHS<=> Sis strongly
supersimple.

Proof of Lemma. Suppose S is not supersimple. By Theorem 3,
there is a total recursive, finite-to-one function / such that / retraces
an infinite subset of N — S. There is no loss of generality in assuming
/ to be downward. But then if r(x) is a recursive function such that
Wr{x) = {y\f*(y) = x}, the sequence {T7r(i)}Γ=o witnesses Si FSHS. By
a similar argument, using Theorem 1 instead of Theorem 3, we have
S G SHS ==> S is strongly supersimple. For the converse implications,
suppose, for example, that Si FSHS; and let {Wr(i)}T=o witness that
fact. Define g(x, y) = 0 or 1 according as y e Wr{x) or not (since
N = \JnWr{n), this is an effective disjunction); then g witnesses S
non-supersimple. Similarly for SHS. (This same procedure could
be used, instead of Theorems 1 and 3, in the other half of the
proof.)

Returning to the proof of Theorem 4, we observe that Young has
shown, in Corollary 2.9 of [6], that the difference class FSHS—SHS
is nonempty. Hence, by the above Lemma, we have Theorem 4.

Comments. (1) Martin conjectured in [3] that there exist super-
simple sets which are not dense simple, i.e., whose complements
(enumerated in order of magnitude) do not eventually dominate any
given total recursive function. In a footnote added in press to [3],
he remarked that A. H. Lachlan verified this conjecture by demonstrat-
ing the existence of r-maximal Σ\ sets with no dense simple supersets.
(A Σ\ set is r-maximal if its complement is infinite and cannot be
nontrivially split by a recursive set.) Laehlan's result appears as
Theorem 8 in [2]. Young's method of producing elements of FSHS—
SHS is to apply the operator Φf to a member of FSHS, where / is a
finite-to-one total recursive function and Φf(A) = df(A®N) uUeff (W ®
{x\x > f(k)}). (Here (x) denotes Cartesian product.) But it is easily
demonstrated that if / is a strictly increasing total recursive function
then, for any co-infinite Σ\ set A, Φ(A) is not dense simple. Thus the
sets to which we have had recourse in proving Theorem 4 also furnish
(when / is strictly increasing) examples of non-dense supersimple sets
far removed from the class of r-maximal sets.
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( 2 ) I t is n a t u r a l to inquire w h e t h e r Theorem 4 can be raised to
t h e level of non-embedding: is t h e r e a supersimple set w i t h no s t rong ly
supersimple extension? R. W. Robinson has cons t ruc ted a class of
nonrecurs ive r .e . sets none of which has a s t rong ly supersimple ex-
tension; however, each member of Robinson's class in non-supersimple.
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