PERIODIC H-SEMIGROUPS AND t-SEMISIMPLE PERIODIC H-SEMIGROUPS

MARY JOEL JORDAN, S. C.

An H-semigroup is a semigroup such that every right and every left congruence is a two-sided congruence on the semigroup. It is known that the set of idempotents of an H-semigroup form a subsemigroup. A semigroup is t-semisimple provided the intersection of all its maximal modular congruences is the identity relation. Let S be a periodic H-semigroup such that the subsemigroup E of idempotents of S is commutative. In this paper it is shown that S is a semilattice of disjoint one-idempotent H-semigroups, and that every subgroup of S is a Hamiltonian group. Moreover, if S is t-semisimple, then S is an inverse semigroup such that the one-idempotent H-semigroups of the semilattice are the maximal subgroups of S, and a complete characterization is given.

If σ is an equivalence relation on a semigroup S and α is equivalent to b, then we shall write $a\sigma b$. The σ -class containing a will be denoted by σ_a . An equivalence relation σ on a semigroup S is a right (left) congruence if $a, b \in S$ and $a\sigma b$ imply $(ac)\sigma(bc)((ca)\sigma(cb))$. If an equivalence relation is both a right and a left congruence, we shall call it a two-sided congruence, or, more briefly, a congruence. We use the natural partial ordering on relations and say that $\sigma \leq \rho$ if and only if $a, b \in S$ and $a\sigma b$ imply $a\rho b$. Clearly the identity relation ι and the universal relation ν are congruences and $\iota \leq \sigma \leq \nu$, for each congruence σ on S. A congruence $\sigma \neq \nu$ is called maximal if, for each congruence σ' on S such that $\sigma \leq \sigma' \leq \nu$, either $\sigma = \sigma'$ or $\sigma' = \nu$. A congruence σ on S is called modular if there is an element e of S such that $(ea)\sigma a$ and $(ae)\sigma a$ for all a in S. The element e is called an identity for σ . The intersection of all the maximal modular congruences on S is called the t-radical of S [4] and it will be denoted by τ .

1. Preliminary definitions and results. In his initial paper on H-semigroups, Oehmke [3] obtained several useful results. For reference we summarize those results which are essential to this work. The set E of idempotents of an H-semigroup S forms a subsemigroup. For each $a \in E$, the subset R_a of E is the set of all $b \in E$ such that ab = b and ba = a. Similarly, the set L_a of E is the set of all $b \in E$ such that ba = b and ab = a. The collection of all $R_a(L_a)$ induces a decomposition of E and the corresponding equivalence

relation is a right (left) congruence. The set of all W_a , where $W_a = L_a R_a$, $a \in E$, is a semilattice where the commutative multiplication operation (denoted by \circ) is defined as $W_a \circ W_b = W_{ab}$, and where the partial ordering relation is defined by $W_a \leq W_b$ if and only if $W_a \circ W_b = W_a$. If there is a minimal W_a in the set, then it is unique. It follows that either $W_a = L_a$ or $W_a = R_a$ and, for all $a \in E$, either W_a is trivial, that is, $W_a = \{a\}$, or W_a is minimal. If W_a is minimal and $W_a = R_a$, then $R_a c = \{ac\}$, for all $c \in S$. If W_a is minimal and $W_a = L_a$, then for any c in S we have $cL_a = \{ca\}$. If there is no mimimal W_a , then each W_a contains a single element. It then follows that E is commutative. These results yield the following theorem.

THEOREM 1. Let W_a be minimal and $W_a = \{x_i: i \in I\}$. Then $S = \bigcup\{S_i: i \in I\}$ where the S_i are disjoint H-subsemigroups of S. If $R_a = W_a$ then $S_iS_j = \{x_j\}$, for $i \neq j$, and S_i is the set of all b such that $R_ab = \{x_i\}$. If $L_a = W_a$ then $S_iS_j = \{x_i\}$, for $i \neq j$, and S_i is the set of all b such that of all b such that $bL_a = \{x_j\}$. For any i, the set E_i of idempotents of S_i is a commutative subsemigroup [3].

By Theorem 1, we can reduce the study of H-semigroups to the study of those H-semigroups in which the idempotents form a commutative subsemigroup.

An element b of a semigroup S is an inverse of an element a of S provided aba = a and bab = b. Then e = ab is an idempotent of S such that ea = a, and f = ba is an idempotent of S such that af = a. S is an inverse semigroup provided every element of S has a unique inverse. The inverse of an element a of an inverse semigroup S will be denoted by a^{-1} so that $aa^{-1}a = a$ and $a^{-1}aa^{-1} = a^{-1}$.

A left (right) zero of a semigroup S is an element a of S such that as = a (sa = a), for each $s \in S$.

An element a of a semigroup S is regular provided $a \in aSa$. Then a has at least one inverse in S, namely bab, where aba = a.

All of the definitions following Theorem 1 are taken from [1].

Let T be the set of regular elements of an H-semigroup S. Let $a, b \in T$. Then there exist s_1, s_2 in S such that $a = as_1a$, where $as_1, s_1a \in E$, and $b = bs_2b$, where $bs_2, s_2b \in E$. We assume that E is a semilattice, that is, E is a commutative idempotent semigroup with the induced ordering given by $e \leq f$ if and only if ef = e. Then

$$ab = a(s_1a)(bs_2)b = a(bs_2)(s_1a)b = ab(s_2s_1)ab$$
.

Hence $ab \in T$ and T is a subsemigroup of S. Since s_1as_1 is an inverse of a in S, then s_1as_1 is in T and $a \in aTa$. Hence T is a regular

semigroup. It follows that T is an inverse semigroup [1, p. 28]. Thus T is an inverse subsemigroup of S. Let c be a left zero of S. Then $c \in T$ and $c^{-1} = c$. Let $s \in S$. Then cscc = c and sccsc = scimply $sc \in T$ and $c^{-1} = sc$. Hence sc = c. Since s was arbitrary in S, then c is a right zero of S. Analogously, if c is a right zero of S, then c is a left zero of S. Hence S has at most one (left, right) zero.

If S is an H-semigroup and I is a right (left) ideal of S, then for $b \in S$, $bI \subseteq I(Ib \subseteq I)$ or $bI = \{c\}$, where c is a left zero $(Ib = \{c\},$ where c is a right zero) [3]. Using this, we get that a right (left) ideal of an H-semigroup S such that E is commutative is a twosided ideal, and it follows that, for each e in E, for each a in S, ea = a if and only if ae = a.

THEOREM 2. Let S be an H-semigroup such that the subsemigroup E of idempotents of S is a semilattice. Then the set T of regular elements of S is an inverse semigroup which is a semilattice of disjoint groups.

Proof. Let $a \in T$. Then there exists a unique element a^{-1} in T such that $aa^{-1}a = a$ and $a^{-1}aa^{-1} = a^{-1}$. Since aa^{-1} , $a^{-1}a \in E$, we have $a(aa^{-1}) = a$ and $(a^{-1}a)a = a$. Hence

$$a^{-1}a = a^{-1}(aaa^{-1}) = (a^{-1}aa)a^{-1} = aa^{-1}$$
.

It follows that T is a union of disjoint groups [1, ex. 10, p. 34]. Let $G_e = \{b \in T: bb^{-1} = e\}$. Then G_e is a maximal subgroup of T and $T = \bigcup \{G_e: e \in E\}$, where $G_e \cap G_f = \emptyset$ for $e \neq f$. As in [2], we get that T is a semilattice of disjoint groups.

2. For the remainder of this work, unless otherwise indicated, we assume not only that S is an H-semigroup such that the subsemigroup E of idempotents of S is a semilattice, but also that S is a periodic semigroup [1, p. 20]. Let $P_e = \{s \in S: s^n = e \text{ for some}$ positive integer n}. Let T be the inverse subsemigroup of regular elements of S. Clearly $P_e \cap T = G_e \subseteq P_e$. Let $P_e - G_e = W_e$ and let $a \in W_e$, where $a^n = e$. Then

$$(ae)^n = (a^{n+1})^n = (a^n)^{n+1} = e \Longrightarrow ae \in P_e$$
,

and

$$ae(ae)^{n-1}ae = (ae)(ae)^n = ae^2 = ae \Longrightarrow ae \in T$$
.

Hence, $ae = aa^n = a^na = ea \in G_e$ and, for each b in G_e , $ab = aeb \in G_e$ and $ba = bea \in G_e$, so that G_e , is an ideal in P_e . Let $T_e = \bigcup \{P_f : e \leq f\}$. LEMMA 3.1. $ae \in G_e \Leftrightarrow a \in T_e$.

Proof. Let $a \in T_e$. Then there exists $f \ge e$ such that $a \in P_f$ and $af \in G_f$. Hence $afe \in G_{fe}$, that is, $ae \in G_e$. Conversely, if $ae \in G_e$, then there exists $b \in G_e$ such that aeb = ab = e. Say $a \in P_f$, where $a^n = f$. Then $fb^n \in G_{ef}$ and

$$fb^n = a^n b^n = a^{n-1} a b b^{n-1} = a^{n-1} e b^{n-1} \ = a^{n-1} b^{n-1} = \cdots = a a b b = a e b = a b = e \; .$$

Thus $fb^n \in G_{ef} \cap G_e$. But this implies ef = e so that $e \leq f$. Hence $a \in T_{e^*}$

LEMMA 3.2. For each e in E, T_e is a subsemigroup of S, and if $a \notin T_e$ and there exists $b \in S$ such that $ab \in T_e$, then $b \notin T_e$.

Proof. Let $a, b \in T_e$, say $a \in P_f$ and $b \in P_h$, where $e \leq f, h$. Then $af \in G_f$ and $bh \in G_h$ imply that $af bh = abfh \in G_{fh}$ so that $ab \in T_{fh}$. Now ef = e and eh = e imply that efh = e so that $e \leq fh$. Hence $ab \in T_e$ and T_e is a subsemigroup of S. Let $S - T_e = T'_e$ and suppose e is not minimum so that $T'_e \neq \emptyset$. Let $a \notin T_e$ and suppose there exists $b \in S$ such that $ab \in T_e$. Assume $b \in T_e$. Then $abe \in G_e$ and $be \in G_e$ imply $abe(be)^{-1} = ae$ is in G_e so that $a \in T_e$, contradiction.

LEMMA 3.3. For each f in E, T_f is an H-semigroup of S, and if f is not minimum in E, then $T'_f \neq \emptyset$ and T'_f is an ideal of S.

Proof. Let $f \in E$. Let $U_x = \{b \in S: xb \in T_f\}$. Define σ on S by

 $a\sigma b \iff U_a = U_b$.

Clearly σ is a (right) congruence on S. Let $a, b \in T_f$. Then, using Lemma 3.2, we have

$$x \in U_a \Longleftrightarrow ax \in T_f \Longleftrightarrow x \in T_f \Longleftrightarrow bx \in T_f \Longleftrightarrow x \in U_b$$
 .

Thus $U_a = U_b$ and $a\sigma b$. Further, if $a\sigma b$ and $a \in T_f$, then, for each x in T_f , $x \in U_a = U_b$. In particular, $a \in U_b$ so that $ba \in T_f$ and, using Lemma 3.2, $b \in T_f$. Thus T_f is an equivalence class of σ . Since $f \in U_f$, $U_f \neq \emptyset$. Let $a \in S$.

$$x \in U_a \Longleftrightarrow ax \in T_f \Longleftrightarrow fax \in T_f \Longleftrightarrow x \in U_{fa}$$
 .

Then $U_a = U_{fa}$ and $(fa)\sigma a$, for each a in S. Let $x \in U_{af}$. Then $afx \in T_f$. Now $(fx)\sigma x$ implies $(afx)\sigma(ax)$, so that $ax \in T_f$ and $x \in U_a$.

Then $U_{af} \subseteq U_a$. Let $x \in U_a$. Then $ax \in T_f$ and $(fax)\sigma(ax)$. As before, $(fx)\sigma x$ implies $(afx)\sigma(ax)$. Hence, $(fax)\sigma(afx)$ implies $afx \in T_f$ so that $x \in U_{af}$. Then $U_a \subseteq U_{af}$ and $(af)\sigma a$, for each a in S. Therefore f is an identity for σ and σ is modular. Let ρ be any congruence on S such that T_f is an equivalence class of ρ and assume $\sigma < \rho$. Then there exist a, b in S such that $a\rho b$ and $a\phi b$, that is, there exists $x \in U_a$ such that $x \notin U_b$, which implies that $ax \in T_f$ and $bx \notin T_f$. But $a\rho b$ implies $(ax)\rho(bx)$ so that $bx \in T_f$, contradiction. Therefore, $\sigma = \rho$ and σ is maximal with respect to having T_f as a σ -class. Let $a \in T'_f$ and assume $x \in U_a$. Then $ax \in T_f$. Thus we have

$$\begin{aligned} (ax)\sigma f &\longrightarrow (a^2x)\sigma(af)\sigma a &\longrightarrow (a^2x^2)\sigma(ax) \\ &\longrightarrow (a^2x^2)\sigma f &\longrightarrow (a^3x^2)\sigma(af)\sigma a &\longrightarrow (a^3x^3)\sigma(ax) \\ &\longrightarrow (a^3x^3)\sigma f &\longrightarrow \cdots \\ &\longrightarrow (a^nx^n)\sigma f , & \text{for each positive integer } n . \end{aligned}$$

Let $a^i = h$, where $h \notin T_f$. Since $ax \in T'_f$, then $x \in T'_f$. Let $x^i = k$, where $k \notin T_f$. Then we have

$$(a^{ij}x^{ij})\sigma f \longrightarrow (hk)\sigma f \longrightarrow hk \in T_f$$
.

But $h, k \notin T_f$ implies $hk \notin T_f$, contradiction. Hence, for each $a \in T'_f$, $U_a = \emptyset$. It follows that T'_f is a σ -class and T'_f is an ideal of S. Let ρ be any right congruence on T_f . Define ρ' on S by

$$a \rho' b \iff a, b \in T_f$$
 and $a \rho b$ or $a, b \in T'_f$.

Clearly ρ' is a congruence on S and the restriction of ρ' to T_f is ρ . Thus ρ is a left congruence on T_f . By analogous proof, any left congruence on T_f is a right congruence. Thus T_f is an *H*-semigroup of S.

With the preceding lemmas, we are now in a position to prove the main results of this section.

THEOREM 3. If S is a periodic H-semigroup such that the subsemigroup E of idempotents of S is commutative, then S is a semilattice of disjoint one-idempotent H-semigroups. Moreover, every subgroup of S is a Hamiltonian group.

Proof. First we show that for each e in E, G_e is a Hamiltonian group. If e = 0, then G_e is trivially Hamiltonian. Assume $e \neq 0$. Let σ be a right congruence on G_e , let H_e be the subgroup of G_e induced by σ and let $a, b \in T_e$. Write

 $a\sigma^{\scriptscriptstyle (e)}b \longleftrightarrow (ea)\sigma(eb)$.

By a straight-forward argument, $\sigma^{(e)}$ is an equivalence relation on T_e , so we need only show right compatibility. Accordingly, assume $a\sigma^{(e)}b$ and $c \in T_e$. Then $(ea)\sigma(eb)$ and $ec \in G_e$ imply $(eaec)\sigma(ebec)$ so that $(eac)\sigma(ebc)$ and $(ac)\sigma^{(e)}(bc)$. Clearly, $\sigma^{(e)}$ restricted to G_e is σ . Since T_e is an *H*-semigroup, then $\sigma^{(e)}$ is a congruence on T_e . Hence σ is a congruence on G_e . Similarly, any left congruence on G_e is a congruence so that G_e is Hamiltonian.

We can now prove that, for each f in E, P_f is an H-semigroup. Let $a, b \in P_f$. Since $a, b \in T_f$, then $ab \in T_f$. Assume $ab \notin P_f$. Then $ab \in P_k \subseteq T_k$, where f < k, for some $k \in E$, so that $a, b \in T'_k$. But then $ab \in T'_k$, since T'_k is an ideal, contradiction. Therefore $ab \in P_f$ and P_f is a semigroup of S. Let σ be any right congruence on P_f . Then σ induces a normal subgroup H_f of G_f . Define σ' on T_f by

 $a\sigma'b \iff a, b \in P_f$ and $a\sigma b$ or $H_f a = H_f b$.

A straight-forward argument shows that σ' is a congruence on T_f . Similarly, any left congruence on P_f is a congruence. Therefore P_f is an *H*-semigroup.

Suppose there exists $a \in P_e$, $b \in P_f$ such that $ab \notin P_{ef}$, say $ab \in P_k$, for some $k \in E$. Now $a \in P_e$ implies $ae \in G_e$, and $b \in P_f$ implies $bf \in G_f$ so that $abef \in G_{ef}$ and $ab \in T_{ef}$. Then ef < k. If $a \in T'_k$ or $b \in T'_k$, then $ab \in T'_k$, since T'_k is an ideal. Thus we must have $a, b \in T_k$. But then $k \leq e, f$ so that $k \leq ef$, contradiction. Thus $ab \in P_{ef}$. Since, for each a in S, $\langle a \rangle$ has exactly one idempotent [1, p. 20], it follows that $P_e \cap P_f = \emptyset$ for $e \neq f$. This completes the proof of Theorem 3.

The obvious corollary follows from Theorem 1.

COROLLARY 3.1. If S is a periodic H-semigroup, then either the idempotents of S are commutative and S is a semilattice of disjoint one-idempotent H-semigroups; or the idempotents of S are not commutative and $S = \bigcup \{S_i : i \in I\}$, where the S_i are disjoint, the idempotents of each S_i are commutative and each S_i is a semilattice of disjoint one-idempotent H-semigroups. Moreover, every subgroup of S is a Hamiltonian group.

3. In this section we examine the *t*-semisimple periodic *H*-semigroups. However, our first result in this investigation is more general.

THEOREM 4. If S is a t-semisimple H-semigroup, then the

idempotents of S are commutative.

Proof. Let S be a t-semisimple H-semigroup and assume that the idempotents of S are not commutative. Then $S = \bigcup \{S_i: i \in I\}$, as in Theorem 1. Let σ be a maximal modular congruence on S with identity x. Say $x \in S_i$. Let $s \in S$, say $s \in S_j$, $i \neq j$. Since either $S_iS_j = \{x_j\}$, where x_j is the zero of S_j , or $S_iS_j = \{x_i\}$, where x_i is the zero of S_i , then $(xs)\sigma s\sigma(sx)$ implies $x_i\sigma s\sigma x_j$ or $x_j\sigma s\sigma x_i$. In either case, for every modular congruence σ on S, $W_a = \{x_i: i \in I\}$ is contained is a σ -class. Since S is t-semisimple then W_a must be a singleton set. But then the idempotents of S are commutative, contrary to the assumption.

In identifying the maximal modular congruences on a periodic H-semigroup where E is a semilattice, we find the classification to be quite similar to that of inverse H-semigroups [2].

LEMMA 5.1. If σ is a maximal modular congruence on the periodic H-semigroup S, where the idempotents of S are commutative, then either σ is cancellative or σ has exactly two equivalence classes, one of which is an ideal of non-identities for σ and the other the semigroup of identities for σ .

Proof. Let σ be a maximal modular congruence on the periodic *H*-semigroup *S* where the idempotents of *S* form a semilattice. Let *a* be an identity for σ , say $a \in P_f$, where $a^n = f$. Then, for each *s* in *S*,

$$(as)\sigma s \longrightarrow (a^2s)\sigma(as)\sigma s \longrightarrow \cdots \longrightarrow (a^ns)\sigma s \longrightarrow (fs)\sigma s$$
,

and similarly $(sf)\sigma s$. Hence f is an identity for σ .

Suppose σ is cancellative. Let $e, f \in E$, where e is an identity for σ . Then

$$(ef)\sigma f \longrightarrow (ef)\sigma(ff) \longrightarrow e\sigma f$$
.

Hence $E \subseteq \sigma_e$, the σ -class containing e. Conversely, suppose $E \subseteq \sigma_e$ and assume $(ac)\sigma(bc)$ where $c \in P_f$. Since e is an identity for σ and, for each f in E, $e\sigma f$, then $(fs)\sigma s\sigma(sf)$, for each s in S, so that each idempotent is an identity for σ . Let $c^m = f$. Then $(ac)\sigma(bc)$ implies $(ac^m)\sigma(bc^m)$ so that $(af)\sigma(bf)$, and, since $(af)\sigma a$ and $(bf)\sigma b$, then $a\sigma b$ and σ is right cancellative. Similarly, σ is left cancellative.

Suppose σ is not cancellative and let $e \in E$ be an identity for σ . If h is an identity for σ , where $h \in E$, then $h\sigma(eh)\sigma e$ and $h \in \sigma_e$. Since σ is not cancellative, there exists $f \in E$ such that $f \notin \sigma_e$, so that f is not an identity for σ . Let $I = \{f \in E: f \text{ is not an identity} \}$ for σ }. Let $J = \bigcup \{P_f: f \in I\}$. It follows that I is an ideal in E, J is an ideal in S and J' is a semigroup of S. Oehmke [4] has shown that if σ is a maximal congruence on S and J is any ideal of S, then either J is contained in a σ -class S_0 (which is also an ideal of S) or J contains an element of each σ -class. If $x \in \sigma_e \cap J$ then $x\sigma e$ and $x \in P_f$ for some f in I, where $x^m = f$. But

$$x\sigma e \longrightarrow x^2 \sigma(xe)$$
 and $(xe)\sigma e \longrightarrow x^2 \sigma e \longrightarrow x^3 \sigma(xe)$
 $\implies x^3 \sigma e \longrightarrow \cdots \implies x^m \sigma e \implies f \sigma e$.

Then $f \notin I$, contradiction. Hence $\sigma_e \cap J = \emptyset$ and $J \subseteq S_0$. Suppose there exists $b \in S_0$ such that $b \notin J$, say $b \in P_h$, where $h\sigma e$. Let $f \in I \subseteq$ S_0 . Then $b\sigma f$ implies $(bh)\sigma(fh)$ and $(bf)\sigma f$; and $h\sigma e$ implies $(fh)\sigma f$ so that $(bh)\sigma(bf)$. But then $(b^{n-1}bh)\sigma(b^{n-1}bf)$ and $h\sigma(hf)$. It follows that $h\sigma f$ and $f \notin I$, contradiction. Thus $J = S_0$. Since J is an ideal and J' is a semigroup, the relation σ^* , defined by $a\sigma^*b \Leftrightarrow a, b \in J$ or $a, b \in J'$, is a maximal modular congruence on S [2]. Clearly $\sigma \leq \sigma^*$. Hence $\sigma = \sigma^*$. Moreover, for each a in J', say $a \in P_e$, and for each s in S, $a\sigma e$ implies $(as)\sigma s\sigma(sa)$, so that J' is the semigroup of identities for σ . And for each b in J, say $b \in P_f$, b cannot be an identity for σ , since then f would be an identity for σ .

Using Lemma 5.1, we can establish the following characterization.

THEOREM 5. A periodic H-semigroup S is t-semisimple if and only if S is an inverse semigroup such that for each pair of groups G_e , G_f in the semilattice, with $f \ge e$, the homomorphism $\varphi_{f,e}$ on G_f into G_e , defined by $a\varphi_{f,e} = ae$, is a monomorphism; and, for each ein E, for each $a \ne e$ in G_e , there exists a subsemigroup T_p of S such that $a \notin T_p$ and for each f in E, $T_p \cap G_f = H_f$, where $H_f = G_f$ or H_f is a maximal subgroup of prime index p in G_f .

Proof. Define ρ on S by $x\rho y$ if and only if there exists e in Esuch that ex = ey. Clearly, ρ is a congruence on S. If σ is any maximal modular cancellative congruence on S and $x, y \in S$ such that $x\rho y$, then there exists e in E such that ex = ey. Hence $(ex)\sigma(ey)$ and $x\sigma y$. Thus $\rho \leq \alpha$ where α is the intersection of all the maximal modular cancellative congruences on S. In view of Lemma 3.3, it is clear that the intersection β of all the maximal modular noncancellative congruences of S separates S into its subsemigroups P_f , where $f \in E$. Let e < f and define $\psi_{f,e}$ from P_f into P_e by $a\psi_{f,e} =$ ea. Clearly, $\psi_{f,e}$ is a homomorphism from P_f into G_e . Suppose S is t-semisimple, that is, $\tau = \iota$. If $\psi_{f,e}$ is not a monomorphism then there exist $a \neq b$ in P_f with ea = eb so that $a\rho b$. This implies $a\sigma b$. Since also $a\beta b$, then $a\tau b$ and $\tau \neq \iota$, contradiction. Thus if S is *t*-semisimple, then every homomorphism $\psi_{f,e}$ is a monomorphism from P_f into G_e . Suppose there exists e in E such that $G_e \subset P_e$. Then there exists $b \in W_e$ such that $eb = a \in G_e$, that is, eb = ea. Then, as before, $a\tau b$ and $\tau \neq \iota$, which is a contradiction. Hence, for each e in E, $P_e = G_e$ and S is an inverse semigroup. Considering the characterization of t-semisimple inverse H-semigroups in [2], the proof is complete.

The corollaries parallel those in [2].

COROLLARY 5.1. S is a periodic H-semigroup all of whose maximal modular congruences are cancellative if and only if S is a one-idempotent periodic H-semigroup.

COROLLARY 5.2. S is a t-semisimple periodic H-semigroup all of whose nontrivial maximal modular congruences are not cancellative if and only if S is a semilattice.

COROLLARY 5.3. If S is a t-semisimple periodic H-semigroup, then S is a semilattice of disjoint t-semisimple Hamiltonian groups.

COROLLARY 5.4. If S is a t-semisimple periodic H-semigroup, then S is commutative.

COROLLARY 5.5. If S is a periodic H-semigroup with a minimum idempotent e, then S is t-semisimple if and only if for each semigroup P_f in the semilattice with $f \ge e$, the homomorphism $\psi_{f,e}$ on P_f into P_e , defined by $a\psi_{f,e} = ae$, is a monomorphism and P_e is tsemisimple.

COROLLARY 5.6. If S is a t-semisimple periodic H-semigroup with no nontrivial modular congruences, then S is either a cyclic group of prime order or the unique semilattice of two elements.

COROLLARY 5.7. If S is a periodic H-semigroup with zero, then S is t-semisimple if and only if S is a semilattice.

References

1. A. H. Clifford and G. B. Preston, *Algebraic Theory of Semigroups*, Vol. I, Math. Surveys No. 7, Amer. Math. Soc., Providence, R. I., 1961.

2. Mary Joel Jordan, S. C., Inverse H-semigroups and t-semisimple inverse H-semigroups, Trans. Amer. Math. Soc., 163 (1972), 75-84.

4. R. H. Ochmke, On maximal congruences and finite semisimple semigroups, Trans. Amer. Math. Soc., **125** (1966), 223-237.

^{3.} R. H. Oehmke, A generalization of commutativity for semigroups, Portugal. Math. 24 (1965), 179-187.

Received July 25, 1970 and in revised form June 16, 1971. These results are part of the author's doctoral dissertation written at the University of Iowa under the supervision of Professor Robert H. Oehmke. This research was partially supported by an NSF Science Faculty Fellowship and supported in part under ONR Contract N0014-68-A-0500.

SETON HILL COLLEGE