INEQUALITIES FOR POLYNOMIALS WITH A PRESCRIBED ZERO

J. D. DONALDSON AND Q. I. RAHMAN

Let \mathscr{P}_n denote the linear space of polynomials $p(z) = \sum_{k=0}^n a_k z^k$ of degree at most *n*. There are various ways in which we can introduce norm (|| ||) in \mathscr{P}_n . Given β let $\mathscr{P}_{n,\beta}$ denote the subspace consisting of those polynomials which vanish at β . Then how large can $|| p(z)/(z-\beta) ||$ be if $p(z) \in \mathscr{P}_{n,\beta}$ and || p(z) || = 1? This general question does not seem to have received much attention. Here the problem is investigated when (i) $|| p(z) || = \max_{|z| < 1} |p(z)|$, (ii) $|| p(z) || = (1/2\pi \int_0^{2\pi} |p(e^{i\theta})|^2 d\theta)^{1/2}$.

It was shown by Rahman and Mohammad [1] that if $p(z) \in \mathscr{P}_{n,1}$ and $\max_{|z| \leq 1} |p(z)| \leq 1$ then

(1)
$$\max_{|z| \leq 1} |p(z)/(z-1)| \leq n/2.$$

We observe that if $p(z) \in \mathscr{P}_{n,\beta}$ and $\max_{|z| \leq 1} |p(z)| = 1$ then $\max_{|z| \leq 1} |p(z)/(z-\beta)|$ can be greater than n/2 if β is arbitrary. For n = 1 we may simply take p(z) = z. When n > 1 we consider the polynomial

$$p(z) = (n/2) (n^2 - 1)^{-1/2} (1 + z + z^2 + \cdots + z^{n-1}) (z - 1 + 2n^{-2})$$
.

If $z = e^{i\theta}$ then for $\cos \theta \leq 1 - 2n^{-2}$

$$\mid p(z) \mid \leq (1/2) \mid (1 + z + z^2 + \dots + z^{n-1}) (z-1) \mid \leq 1$$
,

and also for $\cos \theta \ge 1 - 2n^{-2}$

$$\mid p(z)) \mid \leq n(n^2 - 1)^{-1/2} (n/2) \mid z - 1 + 2n^{-2} \mid \leq 1$$

while

$$\max_{|z|=1} \mid p(z)/(z-1+2n^{-2}) \mid = (n^2/2)(n^2-1)^{-1/2} > \frac{n}{2}$$

We note howevever that if $p(z) \in \mathscr{P}_{n,\beta}$ and $\max_{|z| \leq 1} |p(z)| \leq 1$, then

(2)
$$\max_{|z|=1} |p(z)/(z-\beta)| \leq (n+1)/2.$$

Proof of inequality (2). Without loss of generality we may assume β to be real and nonnegative. Put $p(z) = (z - \beta)q(z)$ and write

 $p^*(z) = (z-1)q(z)$. Then

$$(3) \qquad |p^*(e^{i heta})/p(e^{i heta})| = |(e^{i heta} - 1)/(e^{i heta} - eta)| \leq 2/(1 + eta)$$

which gives us

$$(4) \qquad \max_{|z|=1} |p^*(z)| \leq 2 (1+\beta)^{-1} \max_{|z|=1} |p(z)|.$$

From inequalities (1) and (4) we obtain

$$\begin{array}{ll} (5) & \max_{|z|=1} |q(z)| \leq (n/2) \max_{|z|=1} |p^*(z)| \leq n(1+\beta)^{-1} \max_{|z|=1} |p(z)| \\ & \leq \frac{n+1}{2} \max_{|z|=1} |p(z)| \end{array}$$

provided $\beta \ge (n-1)/(n+1)$. For $\beta \le (n-1)/(n+1)$ we have

$$(6) |q(e^{i\theta})| = |p(e^{i\theta})/(e^{i\theta} - \beta)| \le (1 - \beta)^{-1} |p(e^{i\theta})| \le \frac{n+1}{2} |p(e^{i\theta})|$$

and hence

(7)
$$\max_{|z|=1} |q(z)| \leq \frac{n+1}{2} \max_{|z|=1} |p(z)|.$$

This completes the proof of inequality (2). Unfortunately, with the exception of n = 1 the bound (n+1)/2 does not appear to be sharp.

We now examine the L^2 analogue of the above problem. We prove the following theorem.

THEOREM. If p(z) is a polynomial of degree n such that $p(\beta) = 0$ where β is an arbitrary nonnegative number then

$$(8) \quad \int_{0}^{2\pi} | \ p(e^{i\theta})/(e^{i\theta} - \beta) |^2 \ d\theta \leq \left(1 + \beta^2 - 2\beta \cos\left(\frac{\pi}{n+1}\right)\right)^{-1} \int_{0}^{2\pi} | \ p(e^{i\theta}) |^2 \ d\theta \ .$$

Proof of the theorem. Let us write

$$(9) \qquad p(z)/(z-\beta) = \alpha_{n-1} \, z^{n-1} + \alpha_{n-2} \, z^{n-2} + \cdots + \alpha_1 z + \alpha_0, \, \alpha_{n-1} \neq 0 \, .$$

Then

(10)
$$p(z) = \alpha_{n-1} z^n + (\alpha_{n-2} - \beta \alpha_{n-1}) z^{n-1} + \cdots + (\alpha_0 - \beta \alpha_1) z - \beta \alpha_0.$$

We therefore have to consider the ratio

(11)
$$R \equiv \left(\sum_{\nu=0}^{n-1} |\alpha_{\nu}|^{2}\right) / \left(|\alpha_{n-1}|^{2} + \sum_{\nu=0}^{n-1} |\alpha_{\nu-1} - \beta \alpha_{\nu}|^{2} + \beta |\alpha_{0}|^{2} \right).$$

Now

$$egin{aligned} R &\leq \left(\sum \limits_{
u = 1}^{n-1} \mid lpha_
u \mid^2
ight) \Big/ \Big((1\!+\!eta^2)\!\sum \limits_{
u = 0}^{n-1} \mid lpha_
u \mid^2 - 2eta \sum \limits_{
u = 1}^{n-1} \mid lpha_
u \mid \mid lpha_{
u-1} \mid \Big) \ &= 1/\Big(1\!+\!eta^2\!-\!2eta\!\Big(\!\sum \limits_{
u = 1}^{n-1} \mid lpha_
u \mid \mid lpha_
u \mid \mid lpha_{
u-1} \mid \Big) \Big/ \Big(\!\sum \limits_{
u = 0}^{n-1} \mid lpha_
u \mid^2 \Big)\!\Big) \,. \end{aligned}$$

Thus we require the maximum of the function

(12)
$$f(|\alpha_0|, |\alpha_1|, \cdots, |\alpha_{n-1}|) = \left(\sum_{\nu=1}^{n-1} |\alpha_{\nu}|^2\right)^{-1} \left(\sum_{\nu=1}^{n-1} |\alpha_{\nu}| |\alpha_{\nu-1}|\right)$$

with respect to $|\alpha_0|, |\alpha_1|, \dots, |\alpha_{n-1}|$. It is clear that the maximum is less than 1.

If for some ν , $\alpha_{\nu} = 0$ and j is the smallest positive integer such that $\alpha_{\nu-j}$, $\alpha_{\nu+j}$ are not both zero (α_{-1} , α_{-2} , etc... are to be interpreted as zero) then

(13)
$$f(|\alpha_{0}|, |\alpha_{1}|, \cdots, |\alpha_{\nu-1}|, 0, |\alpha_{\nu+1}|, \cdots, |\alpha_{n-1}|) \\ \leq f(|\alpha_{0}|, |\alpha_{1}|, \cdots, |\alpha_{\nu-1}|, |\alpha'_{\nu}|, |\alpha_{\nu+1}|, \cdots, |\alpha_{n-1}|)$$

provided

$$|\alpha'_{\nu}| \leq (|\alpha_{\nu-j}|+|\alpha_{\nu+j}|)/f(|\alpha_{0}|, |\alpha_{1}|, \cdots, |\alpha_{\nu-1}|, 0, |\alpha_{\nu+1}|, \cdots, |\alpha_{n-1}|).$$

This implies that the maximum is not attained when one or more of the numbers $|\alpha_{\nu}|$ are zero.

On the other hand if one or more of the numbers $|\alpha_{\nu}|$ are allowed to be arbitrarily large the function $f(|\alpha_0|, |\alpha_1|, \dots, |\alpha_{n-1}|)$ is bounded above by (n-1)/n.

Consider now the partial derivatives of f with respect to the variables $|\alpha_{\nu}|$. For a local maximum we have to find $|\alpha_0|$, $|\alpha_1|$, ..., $|\alpha_{n-1}|$ such that

$$(14) \quad \begin{cases} \left(\sum_{\nu=0}^{n-1} |\alpha_{\nu}|^{2}\right) \frac{\partial f}{\partial |\alpha_{0}|} = |\alpha_{1}| - 2f |\alpha_{0}| = 0, \\ \left(\sum_{\nu=0}^{n-1} |\alpha_{\nu}|^{2}\right) \frac{\partial f}{\partial |\alpha_{\mu}|} = |\alpha_{\mu+1}| + |\alpha_{\mu-1}| - 2f |\alpha_{\mu}| = 0, \\ \mu = 1, 2, \cdots, n-2, \\ \left(\sum_{\nu=0}^{n-1} |\alpha_{\nu}|^{2}\right) \frac{\partial f}{\partial |\alpha_{n-1}|} = |\alpha_{n-2}| - 2f |\alpha_{n-1}| = 0. \end{cases}$$

Let us suppose that the required local maximum is λ . Since $\lambda < 1$ we write $\lambda = \cos \gamma \ (\gamma \neq 0)$. Then from the first n-1 equations of the system (14) we obtain

(15)
$$| \alpha_{\mu} | = U_{\mu}(\lambda) | \alpha_{0} |, \qquad \mu = 1, 2, \cdots, n-1$$

where $U_{\mu}(\lambda) = (\sin (\mu+1)\gamma)/(\sin \gamma)$ is the Chebyshev polynomial of the second kind of degree μ in λ . Using equations (15) the last equation of the system (14) gives us

377

(16)
$$\sin (n+1)\gamma = 0.$$

The only solution of (16) which is consistent with all the numbers $|\alpha_{\nu}|$ being nonnegative is $\gamma = \pi/(n+1)$. Hence

$$\lambda = \cos\left(\frac{\pi}{n+1}\right).$$

Since $\cos(\pi/(n+1)) \ge (n-1)/n$ the required maximum of the function $f(|\alpha_0|, |\alpha_1|, \dots, |\alpha_{n-1}|)$ is $\cos(\pi/(n+1))$. This immediately leads to the inequality (8).

We note that the polynomial

$$p(z) = (z - \beta) \sum_{\nu=0}^{n-1} U_{\nu}\left(\cos\left(\frac{\pi}{n+1}\right)\right) z^{\nu}$$

is extremal.

References

1. Q. I. Rahman and Q. G. Mohammad, *Remarks on Schwarz's lemma*, Pacific J. Math. 23 (1967), 139-142.

Received January 19, 1971.

UNIVERSITY OF MONTREAL

378