INEQUALITIES FOR POLYNOMIALS WITH A PRESCRIBED ZERO

$$
\begin{aligned}
& \text { J. D. Donaldson and Q. I. Rahman } \\
& \text { Let } \mathscr{P}_{n} \text { denote the linear space of polynomials } p(z)= \\
& \sum_{k=0}^{n} a_{k} z^{c} \text { of degree at most } n \text {. There are various ways in } \\
& \text { which we can introduce norm (\| \|) in } \mathscr{P}_{n} \text {. Given } \beta \text { let } \mathscr{P}_{n, \beta} \\
& \text { denote the subspace consisting of those polynomials which } \\
& \text { vanish at } \beta \text {. Then how large can }\|p(z) /(z-\beta)\| \text { be if } \\
& p(z) \in \mathscr{P}_{n, \beta} \text { and }\|p(z)\|=1 \text { ? This general question does not } \\
& \text { seem to have received much attention. Here the problem is } \\
& \text { investigated when (i) }\|p(z)\|=\text { max } x_{|z| \leqslant 1}|p(z)| \text {, (ii) }\|p(z)\|= \\
& \left(1 / 2 \pi \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{2} d \theta\right)^{1 / 2} \text {. }
\end{aligned}
$$

It was shown by Rahman and Mohammad [1] that if $p(z) \in \mathscr{P}_{n, 1}$ and $\max _{|z| \leqslant 1}|p(z)| \leqq 1$ then

$$
\begin{equation*}
\max _{|z| \leqslant 1}|p(z) /(z-1)| \leqq n / 2 . \tag{1}
\end{equation*}
$$

We observe that if $p(z) \in \mathscr{P}_{n, \beta}$ and $\max _{|z|<1}|p(z)|=1$ then $\max _{|z| \leqslant 1}|p(z) /(z-\beta)|$ can be greater than $n / 2$ if β is arbitrary. For $n=1$ we may simply take $p(z)=z$. When $n>1$ we consider the polynomial

$$
p(z)=(n / 2)\left(n^{2}-1\right)^{-1 / 2}\left(1+z+z^{2}+\cdots+z^{n-1}\right)\left(z-1+2 n^{-2}\right) .
$$

If $z=e^{i \theta}$ then for $\cos \theta \leqq 1-2 n^{-2}$

$$
|p(z)| \leqq(1 / 2)\left|\left(1+z+z^{2}+\cdots+z^{n-1}\right)(z-1)\right| \leqq 1,
$$

and also for $\cos \theta \geqq 1-2 n^{-2}$

$$
\mid p(z))\left|\leqq n\left(n^{2}-1\right)^{-1 / 2}(n / 2)\right| z-1+2 n^{-2} \mid \leqq 1
$$

while

$$
\max _{|z|=1}\left|p(z) /\left(z-1+2 n^{-2}\right)\right|=\left(n^{2} / 2\right)\left(n^{2}-1\right)^{-1 / 2}>\frac{n}{2} .
$$

We note howevever that if $p(z) \in \mathscr{P}_{n, \beta}$ and $\max _{|z| \leqslant \beta}|p(z)| \leqslant 1$, then

$$
\begin{equation*}
\max _{|z|=1}|p(z) /(z-\beta)| \leqq(n+1) / 2 . \tag{2}
\end{equation*}
$$

Proof of inequality (2). Without loss of generality we may assume β to be real and nonnegative. Put $p(z)=(z-\beta) q(z)$ and write
$p^{*}(z)=(z-1) q(z)$. Then

$$
\begin{equation*}
\left|p^{*}\left(e^{i \theta}\right) / p\left(e^{i \theta}\right)\right|=\left|\left(e^{i \theta}-1\right) /\left(e^{i \theta}-\beta\right)\right| \leqq 2 /(1+\beta) \tag{3}
\end{equation*}
$$

which gives us

$$
\begin{equation*}
\max _{|z|=1}\left|p^{*}(z)\right| \leqq 2(1+\beta)^{-1} \max _{|z|=1}|p(z)| \tag{4}
\end{equation*}
$$

From inequalities (1) and (4) we obtain

$$
\begin{align*}
\max _{|z|=1}|q(z)| & \leqq(n / 2) \max _{|z|=1}\left|p^{*}(z)\right| \leqq n(1+\beta)^{-1} \max _{|z|=1}|p(z)| \tag{5}\\
& \leqq \frac{n+1}{2} \max _{|z|=1}|p(z)|
\end{align*}
$$

provided $\beta \geqq(n-1) /(n+1)$.
For $\beta \leqq(n-1) /(n+1)$ we have

$$
\begin{equation*}
\left|q\left(e^{i \theta}\right)\right|=\left|p\left(e^{i \theta}\right) /\left(e^{i \theta}-\beta\right)\right| \leqq(1-\beta)^{-1}\left|p\left(e^{i \theta}\right)\right| \leqq \frac{n+1}{2}\left|p\left(e^{i \theta}\right)\right| \tag{6}
\end{equation*}
$$

and hence

$$
\begin{equation*}
\max _{|z|=1}|q(z)| \leqq \frac{n+1}{2} \max _{|z|=1}|p(z)| \tag{7}
\end{equation*}
$$

This completes the proof of inequality (2). Unfortunately, with the exception of $n=1$ the bound $(n+1) / 2$ does not appear to be sharp.

We now examine the L^{2} analogue of the above problem. We prove the following theorem.

Theorem. If $p(z)$ is a polynomial of degree n such that $p(\beta)=0$ where β is an arbitrary nonnegative number then
(8) $\int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right) /\left(e^{i \theta}-\beta\right)\right|^{2} d \theta \leqq\left(1+\beta^{2}-2 \beta \cos \left(\frac{\pi}{n+1}\right)\right)^{-1} \int_{0}^{2 \pi}\left|p\left(e^{i \theta}\right)\right|^{2} d \theta$.

Proof of the theorem. Let us write

$$
\begin{equation*}
p(z) /(z-\beta)=\alpha_{n-1} z^{n-1}+\alpha_{n-2} z^{n-2}+\cdots+\alpha_{1} z+\alpha_{0}, \alpha_{n-1} \neq 0 \tag{9}
\end{equation*}
$$

Then

$$
\begin{equation*}
p(z)=\alpha_{n-1} z^{n}+\left(\alpha_{n-2}-\beta \alpha_{n-1}\right) z^{n-1}+\cdots+\left(\alpha_{0}-\beta \alpha_{1}\right) z-\beta \alpha_{0} \tag{10}
\end{equation*}
$$

We therefore have to consider the ratio

$$
\begin{equation*}
R \equiv\left(\sum_{\nu=0}^{n-1}\left|\alpha_{\nu}\right|^{2}\right) /\left(\left|\alpha_{n-1}\right|^{2}+\sum_{\nu=0}^{n-1}\left|\alpha_{\nu-1}-\beta \alpha_{\nu}\right|^{2}+\beta\left|\alpha_{0}\right|^{2}\right) \tag{11}
\end{equation*}
$$

Now

$$
\begin{aligned}
R & \leqq\left(\sum_{\nu=1}^{n-1}\left|\alpha_{\nu}\right|^{2}\right) /\left(\left(1+\beta^{2}\right) \sum_{\nu=0}^{n-1}\left|\alpha_{\nu}\right|^{2}-2 \beta \sum_{\nu=1}^{n-1}\left|\alpha_{\nu}\right|\left|\alpha_{\nu-1}\right|\right) \\
& =1 /\left(1+\beta^{2}-2 \beta\left(\sum_{\nu=1}^{n-1}\left|\alpha_{\nu}\right|\left|\alpha_{\nu-1}\right|\right) /\left(\sum_{\nu=0}^{n-1}\left|\alpha_{\nu}\right|^{2}\right)\right) .
\end{aligned}
$$

Thus we require the maximum of the function

$$
\begin{equation*}
f\left(\left|\alpha_{0}\right|,\left|\alpha_{1}\right|, \cdots,\left|\alpha_{n-1}\right|\right)=\left(\sum_{\nu=1}^{n-1}\left|\alpha_{\nu}\right|^{2}\right)^{-1}\left(\sum_{\nu=1}^{n-1}\left|\alpha_{\nu}\right|\left|\alpha_{\nu-1}\right|\right) \tag{12}
\end{equation*}
$$

with respect to $\left|\alpha_{0}\right|,\left|\alpha_{1}\right|, \cdots,\left|\alpha_{n-1}\right|$. It is clear that the maximum is less than 1.

If for some $\nu, \alpha_{\nu}=0$ and j is the smallest positive integer such that $\alpha_{\nu-j}, \alpha_{\nu+j}$ are not both zero (α_{-1}, α_{-2}, etc... are to be interpreted as zero) then

$$
\begin{align*}
& f\left(\left|\alpha_{0}\right|,\left|\alpha_{1}\right|, \cdots,\left|\alpha_{\nu-1}\right|, 0,\left|\alpha_{\nu+1}\right|, \cdots,\left|\alpha_{n-1}\right|\right) \\
\leqq & f\left(\left|\alpha_{0}\right|,\left|\alpha_{1}\right|, \cdots,\left|\alpha_{\nu-1}\right|,\left|\alpha_{\nu}^{\prime}\right|,\left|\alpha_{\nu+1}\right|, \cdots,\left|\alpha_{n-1}\right|\right) \tag{13}
\end{align*}
$$

provided

$$
\left|\alpha_{\nu}^{\prime}\right| \leqq\left(\left|\alpha_{\nu-j}\right|+\left|\alpha_{\nu+j}\right|\right) / f\left(\left|\alpha_{0}\right|,\left|\alpha_{1}\right|, \cdots,\left|\alpha_{\nu-1}\right|, 0,\left|\alpha_{\nu+1}\right|, \cdots,\left|\alpha_{n-1}\right|\right) .
$$

This implies that the maximum is not attained when one or more of the numbers $\left|\alpha_{\nu}\right|$ are zero.

On the other hand if one or more of the numbers $\left|\alpha_{\nu}\right|$ are allowed to be arbitrarily large the function $f\left(\left|\alpha_{0}\right|,\left|\alpha_{1}\right|, \cdots,\left|\alpha_{n-1}\right|\right)$ is bounded above by $(n-1) / n$.

Consider now the partial derivatives of f with respect to the variables $\left|\alpha_{\nu}\right|$. For a local maximum we have to find $\left|\alpha_{0}\right|,\left|\alpha_{1}\right|, \cdots$, $\left|\alpha_{n-1}\right|$ such that

$$
\left\{\begin{array}{l}
\left(\sum_{\nu=0}^{n-1}\left|\alpha_{\nu}\right|^{2}\right) \frac{\partial f}{\partial\left|\alpha_{0}\right|}=\left|\alpha_{1}\right|-2 f\left|\alpha_{0}\right|=0, \tag{14}\\
\left(\sum_{\nu=0}^{n-1}\left|\alpha_{\nu}\right|^{2}\right) \frac{\partial f}{\partial\left|\alpha_{\mu}\right|}=\left|\alpha_{\mu+1}\right|+\left|\alpha_{\mu-1}\right|-2 f\left|\alpha_{\mu}\right|=0, \\
\left(\sum_{\nu=0}^{n-1}\left|\alpha_{\nu}\right|^{2}\right) \frac{\partial f}{\partial\left|\alpha_{n-1}\right|}=\left|\alpha_{n-2}\right|-2 f\left|\alpha_{n-1}\right|=0
\end{array}\right.
$$

Let us suppose that the required local maximum is λ. Since $\lambda<1$ we write $\lambda=\cos \gamma(\gamma \neq 0)$. Then from the first $n-1$ equations of the system (14) we obtain

$$
\begin{equation*}
\left|\alpha_{\mu}\right|=U_{\mu}(\lambda)\left|\alpha_{0}\right|, \quad \mu=1,2, \cdots, n-1 \tag{15}
\end{equation*}
$$

where $U_{\mu}(\lambda)=(\sin (\mu+1) \gamma) /(\sin \gamma)$ is the Chebyshev polynomial of the second kind of degree μ in λ. Using equations (15) the last equation of the system (14) gives us

$$
\begin{equation*}
\sin (n+1) \gamma=0 \tag{16}
\end{equation*}
$$

The only solution of (16) which is consistent with all the numbers $\left|\alpha_{\nu}\right|$ being nonnegative is $\gamma=\pi /(n+1)$. Hence

$$
\lambda=\cos \left(\frac{\pi}{n+1}\right)
$$

Since $\cos (\pi /(n+1)) \geqq(n-1) / n$ the required maximum of the function $f\left(\left|\alpha_{0}\right|,\left|\alpha_{1}\right|, \cdots,\left|\alpha_{n-1}\right|\right)$ is $\cos (\pi /(n+1))$. This immediately leads to the inequality (8).

We note that the polynomial

$$
p(z)=(z-\beta) \sum_{\nu=0}^{n-1} U_{\nu}\left(\cos \left(\frac{\pi}{n+1}\right)\right) z^{\nu}
$$

is extremal.

References

1. Q. I. Rahman and Q. G. Mohammad, Remarks on Schwarz's lemma, Pacific J. Math. 23 (1967), 139-142.

Received January 19, 1971.
University of Montreal

