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ON RIGHT ZERO UNIONS OF COMMUTATIVE
SEMIGROUPS

ROBERT P. DICKINSON, J R .

Let F — {Sr: r e R) be a disjoint family of semigroups. One
says that F has a right zero union (RZU) if there exists a
semigroup S which is a disjoint union of the Sr where each
Sr is a left ideal of S. This paper gives some theorems on
RZU of commutative semigroups with special emphasis placed
on commutative cancellative semigroups.

Suppose S is an RZU of commutative cancellative semigroups. It
is proven that S has a quotient right abelian group; thus S is left
commutative and left cancellative. Conversely, it is proven that if
a semigroup S is left commutative and left cancellative, then S is an
RZU of commutative cancellative semigroups. Suppose F is a family
of commutative semigroups having an RZU; it is proven that a cer-
tain family of cancellative homomorphic images of F also has an RZU.
Finally, necessary and sufficient conditions are given for a family of
commutative cancellative semigroups to have an RZU.

The study of RZU is a special case of the study of "bands of
semigroups." R. Yoshida has studied the dual problem of left zero
unions.

II* Some necessary conditions for RZU and an embedding
result* A semigroup S is left commutative if xyz — yxz for all x, y,
and z in S.

LEMMA 2.1. The RZU of two commutative semigroups is left
commutative.

Proof. The symmetric conditions AB gΞ B, BA Q A, A and B are
commutative, are given. Let ae A, and let 6, bx e B. Now abb1 —
α(δδ1) = a(bjb) = (ab^b = b(άb^ = babt. Other cases are proven similarly.

DEFINITION 2.2. Let C be a commutative cancellative semigroup.
The quotient group, G, of C is the smallest group into which C may
be injected. If C S T, a group, then G ~ {sr1: s, teC}. Note G is
abelian. (For more on quotient groups see [1].)

A right abelian group is the direct product of a right zero semi-
group and an abelian group. A quotient right abelian group will
have the same meaning as quotient group; namely, the smallest right
abelian group into which a semigroup S can be injected.

The next lemma is proven using the following result of Petrich
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[2]: A semigroup S is a semilattice of semigroups each of which is
the Cartesian product of rectangular band and a group iff S is a union
of groups and its idempotents form a semigroup.

LEMMA 2.3. Let F = {Ga\ ae A} be a disjoint family of groups.
Then F has an RZU iff all the Ga are isomorphic. If the RZU exists
then it is isomorphic to the right group G x A, where Ga = G, and
where A is considered as a right zero semigroup.

Proof. Let S be an RZU of F. Certainly S is union of groups.
The idempotents of S are exactly the eay where ea is the identity of
Ga Since ea is an identity and since GaGβ £ Gβ, we have (eaeβ)(eaeβ) =
ea(eβ(eaeβ)) = ea(eaeβ) = (eaea)eβ = eaeβ = ^ , for eaeβ is the idempotent of

Gβ. Thus the idempotents of S form a right zero semigroup. This
semigroup is isomorphic to A, but also, by Petrich, to a semilattice
union \Jγ&Γ Lr x Rγ, and this implies that \Γ\ = 1, (L r | = 1, and i?r =
A.

THEOREM 2.4. Let S be an RZU of F = {Ca: ae A}, w/κ?re F is
a disjoint family of commutative cancellative semigroups. Let Ga be
the quotient group of Ca. We consider the G to be disjoint. Then all
the Ga are isomorphic, and they have an RZU, T.

T is isomorphic to G x A, where Ga = G, and where A is con-
sidered as a right zero semigroup.

Furthermore, T is the quotient right abelian group of S in the
following sense. There exists an injection (isomorphism into) h from
S into T. If H x R is any right abelian group into which S can be
injected (by f, say), then there exists an injection k: T-+H x R such
that the following diagram commutes:

T=

HxR

Proof. Let F' = {Ga:aeA}, where Ga is the quotient group of
Ca, and where Ga Π Gβ — φ if a Φ β. Each Ca may be injected as a
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set of generators into Ga* Let ha be such an injection: Ga = {ha{s)ha{t)~ιι
β, teCa}.

Let T — \}aeA G«- We define a semigroup operation * on T. With
this operation T will be an RZU of Fr. Let g = ha(s)ha(t)~\ and let
I = hβ(u)hβ(v)~~\

Let g*l — hβ(sou)hβ(tov)~'1, where o is the semigroup operation on
S.

Since s, te Ca and %, t? e C ,̂ (s© )̂ and (t<>v) are in C .̂ Thus these
quantities are in the domain of hβ. We now verify * is well defined.

Suppose g = ha{s)ha(t)~ι = ha(a)ha(b)"\ a, be Ca, and I = hβ{u)hβ{v)-1 =
hβ(c)hβ(d)~\ c, deCβ. We would like to prove that: hβ(sou)hβ(tov)~'1 =
hβ(aoc)hβ(bod)~ι. Equivalently: hβ(sou)hβ(bod) — hβ(aoc)hβ(tov), or
hβ{{sou)o(bod)) — hβ((aoc)o(tov)). We now verify that (sou)o(bod) =
(aoc)o(tov).

We are given ha{s)ha{t)~ι = K{a)ha{b)~~\ Equivalently: ha(s)ha(b) =
K(a)ha(t)y or ha(sob) — ha(aot). Since Λα is 1 — 1: soδ = α©ί. Similarly
^oώ = cot;. Multiply left and right hand sides together: (soδ)o(̂ ocZ) =

(αoί)o(cov). These products are taken in the subsemigroup Ca (J C^ of
S. By Lemma 2.1, Ca U Cp is left commutative. Thus (so6)o(^orf) =
(so )̂o(6ocZ), and (a°t)°(c°v) = (aoc)o(tov) Thus (so^)o(6od) = (a°c)o(tov).

It is easily proven that * is associative, and that * restricted to
any Ga is just the given group operation.

Since T is an RZU of groups, it follows from Lemma 2.3 that
T=Gx A.

The h of the diagram is to be an injection of S = \JaeACa into
\JaeA Ga. Recall that if a Φ β then Ga Π Gβ = φ and CaΠCβ = φ.
Define h by: h restricted to Ca is ha. Since ha is 1 — 1 h is 1 — 1.
Let xeCa, y£ Cβ. We now prove that h(χoy) = h(x)*h(y)> or hβ(χoy) —
ha(x)*hβ(y). Now Λβ(a?) = ^(α oα;)^^)"1 and hβ(y) = hβ{yoy)hβ{y)~\ Thus
ha(x)*hβ(y) = hβ((χoχ)o(yoy))hβ(χoy)~1. By Lemma 2.1, (χoχ)o(yoy) =
(α;o7/)o(a;o )̂# Thus

ha{x)*hβ{y)=hβ{{χoy)o(χoy))hβ{χoy)-ι = hβ&^ .

Let / be an injection of S into another right abelian group i ϊ x
i?. If /(α;) = (g, r) define /(a;)-1 = (g~\ r). One proves that f{χoy)-^ =

We now define k of the diagram. Let x e (?α. There exists s, teCa

such that a = ha{s)K{t)~ι. Define fc(«) = f(s)f(t)~\
We now verify that & is well defined. Suppose a? = hjjήhjf)"1 =

ha{u)ha{v)~\ Then ha(s)ha(v) = ha(u)ha(t), or ha(sov) — ha(uot). Since Λα

is 1 — 1, SOT; = Moί. Now /(s°v) = f(u°t), or f(s)f(v) = f(u)f(t). We
now show that f{s)f{t)-1 = f(v)f(v)"\

Let 7Γ be the projection of H x R onto iϋ, the right zero semi-
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group. Since Ca is commutative, πf(Ca) is commutative, but then
I πf(Ca) I = 1. Thus f(Ca) g f f x {<*'} = Ta, for some a! in R.

Since s, ί, u, v are in Cα, /(s), /(£), /(w), /(t>), /(ί)"S and f{v)~ι are
all in Tα,. Since Ta, is commutative, f(s)f(v) = f(u)f(t) implies
/(β)Z(ί)-1 = f(u)f(v)-\

We now verify that the diagram is commutative. Let s e Ca

Then λ(β) = ha(s) = ha(soS)ha(s)-\ k(h(s)) = /(soS)/(s)-1 - f(s)f(s)f(syi =

We now verify that & is a homomorphism. Let x = ha(s)ha(t)~~\
y = hβ(u)hβ(v)~ι. Then k(x*y) = kihβiso^hβitov)"1) = f{sou)f{tov)~ι =
f(s)f(u)f(t)~ίf(v)~1. Since a right abelian group is left commutative,
*(**») - f(8)f(u)f(trV(v)"1 = f(s)f{tΓf(u)f{vΓ = k(x)k(y).

We now prove fe is 1 — 1. We first prove & restricted to Gα is
1 — 1. Let x = ha{s)ha{t)-1, y = ha(u)ha(v)~\ Assume k(x) = k{y).
Then /(s)Z(ί)-1 = f(u)f(v)~ι. Since s, t, w, v, are in Cα, /(s), /(ί), f(u),
f(v), /(t)"1 /(v)-1 are in f(Ca) = Ta, a commutative semigroup. Thus
f(8)f(t)~ι = f(u)f(v)^ implies f(s)f(v) = f(u)f(t), or f(8ov) = /(wot).
Since / is 1 — 1, so ;̂ = u°t. Now Λ(soi ) = h(uot), or ha(s)ha(v) =
ha(u)ha(t). Thus x = y.

Let a? — ha(s)ha(t)~\ y = hβ{v)hβ(v)~\ Assume ft(a?) = &(#). We
prove that a = β. Since Jfc restricted to Gα is 1 — 1, this will prove
x = y. Now /(s)Z(ί)"1 = f{u)f(v)~\ where s, teCa and w, t; e C .̂ We
proved f(Ca) QHx {a'}; similarly, f(Cβ)gϋx {&}. Since f{s)f{t)~' =
f(u)f(v)~\ a! — β\ If a Φ β then / would be an injection of the
noncommutative semigroup Ca U Cβ into the commutative semigroup
H x {a'}. Thus a = β.

COROLLARY 2.5. Let S be an RZU of F = {Cα: α e i } , w/^re ί7 is

α disjoint family of commutative cancellative semigroups. Then S is
left cancellative and left commutative.

Proof. By Theorem 2.4, S can be thought of as a subsemigroup
of a right abelian group. Every subsemigroup of a right abelian group
is left cancellative and left commutative.

THEOREM 2.6. If a semigroup S is left commutative and left can-
cellative, then S has a quotient right abelian group.

Proof. Define a relation p on S by xpy if and only if there exist
c, de S such that ex = dy. We prove that p is an r-congruence on
S(S/p is a right zero semigroup), and each congruence class is com-
mutative cancellative. Thus S is an RZU of commutative cancellative
semigroups and the result follows from the previous theorem.
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Now p is certainly reflexive and symmetric.

Suppose xpy and ypz. There exist a, b, c, d in S such that: ax —
by and cy = dz. Now cax — cby, and bey — bdz. By left commuta-
tivity, cby — bey. Thus cax = bdz, or xpz. Easily, p is right com-
patible. Left compatibility follows from left commutativity.

Now xypy, for let c be arbitrary, and let d = ex; then cxy = dy.
Thus p is an r-congruence.

We now prove that each congruence class is commutative. Since
S is left cancellative, each congruence class will be commutative and
cancellative.

Let xpy. We have ex = dy. Thus cxdy — dycx. By left com-
mutativity edxy = cdyx. By left cancellativity xy = 3/$. Easily any
congruence class of an r-congruence is a semigroup.

REMARK. Since each congruence class of p is commutative, p is
the smallest r-congruence on S.

Every subsemigroup of a right abelian group is left commutative
and left cancellative. Thus the last theorem characterizes subsemi-
groups of right abelian groups.

LEMMA 2.7. Let S be a left commutative semigroup. Define η
on S by: xηy if and only if there is an element b in S such that bx =
by. Then rj is the smallest left cancellative congruence on S.

Proof. Using left commutativity one proves ΎJ is a congruence.
It is also easy to prove that Sjη is left cancellative.

Let / be a homomorphism of S onto a left cancellative semigroup
S'. Suppose xηy, or ax — ay for some a in S; then f(ax) = f(ay), or
f(a)f(x) = f(a)f(y). Since S' is left cancellative f(x) = f(y). Let p
be the congruence induced by /. If xrjy then xpy, or n £ p.

We now consider constructing an RZU of a family of homomor-
phic images given that the original family has an RZU.

THEOREM 2.8. Let S be an RZU of {Ca:aeA}, where Ca are
commutative semigroups. Let rja be the smallest left cancellative
congruence defined on Ca. Then the family {CJηa: ae A} has an RZU.

Proof. Let y]a[%] be a congruence class of Ca, and let y]β[y] be a
congruence class of Cβ. Define ηa[%]°yβ[y] = Vβ[%y]. {%V is taken in
S.) If the operation is well defined, then it is associative, and it
defines an RZU of the Ca/ηa.

Suppose r]a[χ] = ηa[a], and ηβ[y] = ηβ[b]. We would like to show



360 R. P. DICKINSON, JR.

that y]β[ab] = ijβ[xy]. Since r]a[x] = r)a[a\ there exists d in Ca such that
dx = da. Similarly, there exists w in Cβ such that wy = wb. Now
dxwy = dαwδ. All elements lie in the RZU of Ca and C .̂ We invoke
Lemma 2.1. By left commutativity, dwxy = dwαfr. Thus %[χ2/l —
^[αδ], because dweCβ as are &# and αδ.

Since {Ca/τ]a: a e A} has an RZU, by Theorem 2.4, the quotient
groups of the CJτ]a are isomorphic. This imposes another necessary
condition for a family of commutative semigroups to have an RZU.
If \A\ = 2, using Lemma 2.1, then for η of Lemma 2.7: η = ηx (j %,

i u c2/% Rzu.

Ill* Necessary and sufficient conditions on commutative can*-
cellative semigroups to have an RZU+ This section begins by
relating the translational semigroup of a commutative cancellative
semigroup A with the quotient group of A.

DEFINITION 3.1. Let A be a commutative semigroup. A func-
tion /, from A into A, is called a translation of A if f(db) — f(a)b
for all a and b in A. T(A) will denote the semigroup of all transla-
tions on A. Let i be the mapping from A into T(A) given by i(a) —
fa, where fa is the inner translation induced by ae A:fa(x) = ax, for
all x in A. i(A) is the semigroup of all inner translations on A.

Let A be a commutative cancellative semigroup. Let G be the
quotient group of A. Recall G is abelian. A may be injected into
G as a set of generators. Using this fact we relate G to T(A).

The following lemmas are easily proven.

LEMMA 3.2. Let A be injected by j as a set of generators into G.
Let fe T(A). Define f* on j(A) by f*(j{a)) = j(f(a)). f* can be ex-
tended to a translation on G as follows: if ge G there exists j(a?) and
j(a2) such that g = j(aL)j(a2)"1. Define f*(g) = f*{j{a^) j(a2)"\

LEMMA 3.3. Let i: A—> T{A) given by: i{a) = fa. Let h: T(A) —>

T(A)

Figure 2
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T(G) given by: h(f) = /*. Let k: T(G) — G given by: k(f*) = /*(1),
where 1 is the identity of G. The above diagram commutes in the
sense that j(a) = k(h(i(a))) for all aβ A. Each map is injective; k
is onto.

COROLLARY 3.4. Let A be a commutative cancellative semigroup.
T(A) is a commutative cancellative semigroup. If f' e T(A) then f is
1 — 1 on A.

Proof. Since kh injects T(A) into an abelian group, T(A) is com-
mutative and cancellative. Let fe T(A). Suppose that /(αj = f(a2).
Then j(f(ax)) = j(f(a2)), or/*(i(α1)) = /*(i(α2)). j is injective; also every
translation on a group is 1 — 1. Thus j{a^) = j(a2), and αx = α2, or /
is 1 - 1.

LEMMA 3.5. Let A be a commutative cancellative semigroup. Let
G be the quotient group of A. Let j be an injection of A into G as
a set of generators. Define TG(A) = {g£G: gj(A) SJ(A)}. Under the
injection kh of Lemma 3.3, T(A) = TG(A). Also i(A) is equal to

Proof. Let ge TG(A). Define / on A by f(a) = j~\ω(a)), α e i .
Then fe T(A), and kh(f) = g. Thus TG(A) S kh(T(A)). To prove
the reverse inclusion, let f e T(A). Since /* is a translation, and
f*(j(a)) = Q'(f(a))> we have f*(l)j(a) = /*(l i(α)) = f*(j(a)) = j(f(a)).
Thus f*(ΐ)j(A) g j(A), or kh(f) e TG(A). The remaining part of the
lemma is proven by kh(i(A)) = j(A) (Lemma 3.3) and the fact that kh
is injective.

THEOREM 3.6. Let F = {Sa: ae Γ) be a disjoint family of com-
mutative cancellative semigroups. Let a e Γ, and let P(a) be the fol-
lowing statement: there exists Ta — {fβ: β e Γ), a family of injections
(isomorphisms, into), where fβ: Sβ-+ T(Sa) for all β in Γ, and where
fr(Sr)fβ(Sβ) Sfr(Sr) nfβ(Sβ) for all 7 and β in Γ. The following are
equivalent:

(a) F has an RZU.
(b) For any a0 e Γ, P(a0) holds.
(c) For some a0 e Γ, P(a0) holds.
Furthermore, in (b) and (c) we may take faQ to be i, the natural

map of Sa0 onto the inner translations of Sao

Proof. We first prove (a) implies (b). Let S be an RZU of F,
and let a0 be a fixed but arbitrary member of Γ. For each x in S,
let fx be the mapping of SaQ into Sao given by fx(a) = xa for all a in
Sα. The range of fx is contained in Sao because SaQ is a left ideal of
S. The following are true:
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(1) fxeT(Sa).
( 2 ) Let / be the mapping from S into T(Sa) given by f(x) =

fx. f is a homomorphism and / restricted to any Sa is 1 — 1. Note
that / restricted to SaQ is the map i.

( 3 ) /(Sα) is an ideal of f(S) for all a in Γ

(1) is easily checked as is the first part of (2). Let a be an
arbitrary member of Γ. We now prove that / restricted to Sa is
1 — 1. Let a and b be members of Sa Suppose f(ά) = /(&). Then
ax = bx for all x e SaQ. But then axa — bxa for all x e Sao. Let xQ e
SaQ. We have a(xQd) = &(#oa). Now α, δ e Sα, and (xoά) e Sa because Sa

is a left ideal of S. Since Sα is cancellative a = 6. We now prove
(3) by Corollary 3.4, !Γ(Sαo) is commutaive. Thus /(S) is commutative.
Each Sa is a left ideal of S. Since / is a homomorphism, f(Sa) is a
left ideal of f(S). But all left ideals of a commutative semigroup are
ideals.

For each a in Γ, let /α be the restriction of / to Sa. Then fa:
Sa — T(Sa). fa is an injection by (2). By (3) fa(Sa) and fβ(Sβ) are
ideals of f(S). Thus fa(Sa)fβ(Sβ) Sf«(Sa) Πfβ(Sβ). This completes the
proof of (a) implies (b).

Trivially (b) implies (c). We now prove (c) implies (a). Let p(a0)
hold. Define a binary operation on F as follows: Let xe Sa and y e Sβ.

%°y = fϊι(fa(χ)fβ(v))

yoχ - fάι(fβ(y)fa(χ))

where fa, fβ e Tao. The operation is well defined because fa(x)fβ(y) 6
fa(Sa)fβ(Sfi) S Λ(&) ΓΊ Λ ( ^ ) . Thus fa(x)fβ(v) e Λ ( ^ ) , and we may apply
jV Similarly fβ{y)fa{x) e/α(Sα). The operation restricted to any Sα

is the semigroup operation already given on Sa. Let x, y e Sa. Then
α°2/ = f«ι(fa{x)f«{y)) ^faι{fa{%y)) = ^ This is true because /α is an
injection. If the operation is associative, it certainly defines an RZU
of F.

Let xeSa,ye Sβ9 and z e Sr. Then (χoy)oZ = (ff'ifai^fβiy)))0^ =
fF1ifβ(fFι(fa(x)fβ(vWr^)) - fϊ\{fa(x)fβ{v))fA*))* Similarly * o ( ^ ) =
fϊι(f«(v)(fβ(v)M*)))- Now (χoy)oZ = χo(yoZ) since fa{x){fβ{y)fM) -
(fa(χ)fβ(v))fr(z) The above product is taken in the semigroup T(Sa)f

and is in fr(S7).

REMARK. Let (α, β) e Γ x Γ. Because /α(Sα) and /^(S^) are sub-
sets of the commutative semigroup T(SaQ), fa(Sa)fβ(Sβ) £ /α(Sα) Π Λ(S/s)
implies the same condition for the pair (/9, α). Thus we need only
consider one condition.

We restate Theorem 3.6 for two semigroups as follows: F = {A, B)
has an RZU if and only if there exists an injection / from B into
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T(A) such that f(B)i(A) £ f(B) (Ί i(A).

COROLLARY 3.7. Let F — {Sa:aeA} be a disjoint family of com-
mutative cancellative semigroups. If for some aQe A each Sa is iso-
morphic to an ideal of SaQ then F has an RZU.

Proof. To say Sa is isomorphic to an ideal of Sao means there
exists ha: Sa —> SaQ, where ha is an injection, and ha(Sa) is an ideal of
Sao. Let U Sa-+ T(Sa), given by fa = ittQoha, where iaQ: & 0 — T(SaQ),

given by iao(x) — fx. \fa:aeA) satisfies (c) of Theorem 3.6 because
fa(Sa) is an ideal of iaQ(Sa).

COROLLARY 3.8. Let A and B be two disjoint commutative can-
cellative semigroups having an RZU. If A is a group then B is a
group, and A = B.

Proof. Every translation of a group is inner; thus T(A) — i(A).
Now i(A) is the regular representation of A) thus i(A) ~ A. By
Theorem 3.6, there exists an injection / of B into T(A) such that
f(B)i(A) S f(B) Π i(A). f is an injection into i(A). Since T(A) is
commutative, f(B) is an ideal of i(A). But a group has no proper
ideals. Thus f(B) ~ i(A) — A. Since / is an injection B ~ A.

We now give an interpretation of Theorem 3.6 in terms of quo-
tient groups. Let A be a commutative cancellative semigroup. Let
j be an injection of A as a set of generators into G, the quotient
group of A. Let / be the isomorphism from T(A) onto TG(A) (TG(A)
of Lemma 3.5; / — kh of Lemma 3.3). Let B be a commutative
cancellative semigroup having an RZU with A. Let h be an injection
of B into T(A) such that h(B)i(A) S h(B) Π i(A). Compose the maps
h and /. We have (fh)(B)j(A) S (fh)(B) Π j(A). Evidently, B is iso-
morphic to B\ a subsemigroup of TG(A) such that Brj(A) S B' ΓΊ j(A).
Conversely, an isomorphic copy of such a Bf will have an RZU with
A. Thus we have a way of finding all commutative cancellative semi-
groups having an RZU with A.
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