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GENERALIZED RAMSEY THEORY FOR GRAPHS, III.
SMALL OFF-DIAGONAL NUMBERS

VACLAV CHVATAL AND FRANK HARARY

The classical Ramsey theory for graphs studies the Ramsey
numbers r(m, n). This is the smallest p such that every 2-
coloring of the lines of the complete graph Kp contains a
green Km or a red Kn In the preceding papers in this series,
we developed the theory and calculation of the diagonal num-
bers r{F) for a graph F with no isolated points, as the
smallest p for which every 2-coloring of Kp contains a mono-
chromatic F Here we introduce the off-diagonal numbers:
r(Fu F2) with JFΊ Φ F2 is the minimum p such that every 2-
coloring of Kv contains a green F\ or a red F2. With the
help of a general lower bound, the exact values of r(Flf F2)
are determined for all graphs Fi with less than five points
having no isolates.

1* Introduction* The small (p ίg 4 points) graphs Ft having no

isolated points are shown in Figure 1, together with their symbolic
names, following the notation for operations on graphs in the book
[3, p. 21]. In fact, we follow the terminology and notation of this
book throughout.

— x κΛ

FIGURE 1

In [l, 2], we defined the number r(F) as the minimum p for
which every 2-coloring (of the lines) of Kv contains a monochromatic
subgraph F. The number r(Fl9 F2) is the corresponding smallest p
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such that every 2-eoloring of Kp contains a green Fι or a red F2.
Obviously r(F) = r(Ff F), so that the numbers r(F) are diagonal
within the r(Fl9 F2).

There is an equivalent formulation of the definition of r(Fl9 F2)
in terms of graphical complementation rather than 2-colorings of a
complete graph. Namely, r(Flf F2) is the minimum p such that
whenever a p-point graph G does not have Fx as a subgraph, then
its complement G contains F2. It is convenient to assign numbers
to the following immediate consequences of the definition: symmetry,
monotonicity, and a crude lower bound,

r(Fl9 F2) = r(F2, FJ

FICLF, and F[ c F2 imply r(F[9 F2') £ (Fίf F2)

r(Fl9 F2) ^ max (p(Fd, p(F2)) .

(1)

( 2 )

( 3 )

When Ft and F2 are both complete graphs, we have specialized to
r{Km, Kn) — r(m, n), the classical Ramsey numbers for graphs. As all
the numbers r(m, n) are known for m, n = 2, 3, 4, we begin with
some information about off-diagonal Ramsey numbers for small F± and
F2. The existence of the diagonal numbers r(n, n) was established
by Ramsey [4] himself; that of all the other numbers r(Fl9 F2) follows
from (2).

From [3, p 17], we have the following values of r{m, n):

m \ ^
2

3

4

2

2

3

3

6

4

4

9

18

In [2], the numbers r(F) are determined for the 10 graphs of
Fig. 1:

F

r(F)

K2 P3 2K2 K3 P4 KU3 C4

2 3 5 6 5 6 6

K4-x K4

10 18 .

It is obvious that r(K2, F) = p(F), the number of points in F.

2. The simplest Ramsey numbers* We now obtain two equa-
tions which give the next two rows in Table 1.1, the first for Ramsey
numbers involving 2K2 and the second for P3.

LEMMA 1. For any graph F with no isolates,
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(p(F) + 2 if F is complete

[p(F) + 1 otherwise.

Proof. First, when F is complete, we have r(2K2, F) > p{F) + 1
because a 2-coloring of Kp+1 in which the green lines form just one
triangle cannot have a red Kp. On the other hand, if a 2-coloring of
Kp+2 has no green 2K2, then the green lines form either a star or a
triangle, so there must be a red Kp.

Secondly when F is not complete, it is a subgraph of Kp — x. In
an arbitrary 2-coloring of Kp+ι which does not contain a green 2K2,
the green lines again form a star or a triangle. When there is a
green star, there must be a red Kp. And when we have a green
triangle, there must appear a green Kp — x. Thus r(2K2, F) ^ p{F) + 1.
The equality follows from the 2-coloring of Kp with red Kp^ and a
green star Kι>p^.

The next question is a bit more subtle.

LEMMA 2. For any graph F with no isolates,

= \P{F) if F has a l-f actor
n 3' J ~ ( 2 ( F ) - 2β,{F) - 1 otherwise.

Proof. In each 2-coloring of Km without a green P3, all the green
lines are independent. In other words, the green graph is a subgraph
of [m/2]K2 or, equivalently, the red graph contains Km — [m/2]K2.
(For m even, this graph has been called a "party graph" by A. J.
Hoffman because everyone talks to everyone else with the exception
that nobody talks to his own spouse.) Thus, r(Pz, F) is the smallest
m such that F is a subgraph of Km — [m/2]K2.

For any graph F with p points, we have the maximum number
of independent lines in the complement of F, βx{F) — n if and only
if FdKp- nK2. Thus, if F has a l-f actor, i.e., βx{F) = p/2, then
we have FaKp - (p/2)K2 or r(P^ F) ^ p. The equality follows
trivially from (2).

Now, let F have no 1-factor, so that βι{F) = n < p/2. If m =
2p — 2n — 1, then any 2-coloring of Km having no green P 3 has a red
Km — [m/2]K2 = Km — (p — n — 1)K2. We will show that such a color-
ing has a red F. Starting with the simple inclusion (p — n — 1)K2 U K1 c
tιJT2 U (p — 2n)Klf and taking complements by merely removing the
indicated number of independent lines from a complete graph of the
proper size, we obtain Kp — nK2 a Km — (p — n — 1)K2. Thus, we
have r(P3, F) ^ 2p — 2n — 1. On the other hand, the 2-eoloring of
iΓw_! which has just (m — l)/2 = #> — n — 1 green independent lines
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and leaves as the remaining red graph Km^ — ((m — ΐ)/2)K2 already has
no green P3. It contains no red F either, for otherwise ((m — 1)/2)K2 c
F or equivalently n — βι(F) > (m — l)/2 — p — n — 1, contradicting
n < p/2 and proving Lemma 2,

3* A useful lower bound* For our last lemma, we easily derive
a simple lower bound which is not at all sharp in general, but luckily
happens to be rather useful in establishing the values of r(Fly F2) for
the 10 small graphs of Fig 1.

LEMMA 4. Let Fx and F2 be two graphs (not necessarily different)
with no isolated points. Let c be the number of points in a largest
connected component of F19 and let χ be the chromatic number of F2.
Then the following lower bound holds:

r(Fu F2) ^ (c - l)(χ - 1) + 1 .

Proof. Consider the graph G = (χ — 1) Kc^. Since G has no
component with at least c points, it cannot possibly contain i*\. On
the other hand, the complement G is (χ — l)-chromatic and hence
cannot contain the χ-chromatic graph F2. The inequality follows at
once, as G has (c — l)(χ — 1) points.

Remarkably, we shall find that in all but the two instances
r(Ki 3, Q ^ 4 and r(K4 — x, K4) ^ 10, this lower bound turns out to
yield the exact number for r(Fu F2).

FIGURE 2
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Referring to Table 2 below, we next show that better lower
bounds than 4 and 10 respectively are given by

(4) r(iΓ1)3, Q ^ 6

(5) r(K4-x,K4) ^11.

Later we will see that (4) and (5) give the correct values of these
two Ramsey numbers.

To prove (4) we need only exhibit a graph G with 5 points such
that G has no K1>3 (i.e., no point of degree exceeding 2) and G has
no 4-cycle. Clearly G = Cδ works.

Similarly (5) can be verified by producing G with 10 points not
containing K4 — x such that βo(G) < 4. This example is a bit trickier,
but we finally found it.

The graph G of Fig. 2 has just four triangles, no two having a
common line. Hence G does not contain K4 — x. It is also easily
seen that G has no set of 4 independent points.

4* Forcing forbidden subgraphs. For each pair Fl9 F2 of forbid-
den graphs, we must argue that when the number r of points is right,
every graph G with r points not containing Fί must have F2 in its
complement. In particular, we will prove the next 8 upper bounds
which establish the remaining off-diagonal Ramsey numbers.

(6) r(P4y K1)3) ^ 5

(7) r(P4, Q ^ 5

(8) r(Kll9, Q ^ 6

(9) r{KU3 + x,K4-x)^Ί

(10) r(C4, K4-x)^Ί

(11) r(KU3 + x, K4) ^ 10

(12) r(C<, K4) £ 10

(13) r(K, - x, K4) ^ 11 .

Proof of (6) and (7). By coincidence, both (6) and (7) may be
shown at one fell swoop. Let G have no 4-point path P4 on its 5
points. There are only two possibilities for such a graph: either G c
K2{JK3 or GaK14. Taking complements, K2)3czG or K4aG, so that
necessarily both Kly3 and C4 are subgraphs of G.

Proof of (8). Taking G as a 6-point graph with all degrees ^ 2
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forces G to have each degree ^ 3. Thus, in G, the neighborhoods
of any two nonadjacent points have at least two common points, so
that G must contain C4.

The next assertion (9) will automatically have several consequences
by the monotonicity condition (2).

Proof of (9). Let G be an arbitrary graph of 7 points not con-
taining Kl3 + x. We assume G does not contain K4 — x and proceed
to derive a contradiction. There are two possibilities, depending on
whether GZDK3. If G does have a triangle u^u^ with the remaining
points labeled v3-, then there can be no line utvj in G. Now each
pair of the points v$ is forced to be adjacent in G, for otherwise G
would contain K4 — x. Hence the points vό induce K4 in G, a con-
tradiction.

Next, if G has no triangle, then it has 3 independent points ul9

u2, u3 since r(K3, K3) — r(K3) = 6. Again, we denote the remaining
four points by v3-. Each v3- must be adjacent in G to at least two of
the points ui9 for otherwise G ZD K4 — x. If there is even one line
ViVj, then G contains Kh3 + x9 contrary to the hypothesis. Thus G
is forced to contain K4, and a fortiori K4 — x.

We now apply (2) and the inclusions

to (9) to obtain at once the lower bounds

(14) r(K3, K4-x)^Ί

(15) r(P4, K4 - x) ^ 7

(16) r(Klί3j K4 - x) £ 7

Similarly iΓ4 - α; =) ίΓ1>3 + a?, C4, Ku3, P 4 and (2) applied to (14) give

(17) r(K3, P4) ^ 7

(18) r(ίΓ8, KU3) ^ 7

(19) r(£s, Q ^ 7

(20) r(ϋΓ3, Ku3 + a?) ̂  7 .

Similarly by (15),

(21) r(P4, KU3 + a?) ̂  7 ,

and by (16),
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r(Ku3, Klt3 + x) ^ 7 .
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Proof of (10). Let G be an arbitrary graph with 7 points and no
C4. We will assume G ~$> K4 — x and deduce a contradiction.

In the proof, we distinguish two cases according to whether there
is or is not a point u of degree smaller than three. In the first case,
we delete the point u together with its neighbors and are left with
a subgraph H of G having at least four points. Clearly, H has no
C4 because G has none. Thus, as r(P3, C4) = 4 by Lemma 2, H is
forced to contain P3. By definition of H, u is adjacent to no point
in H. Therefore, G contains KA — x, contradicting the assumption.

Next, we consider the second case where each point in G has
degree at least three. Now the inequality (9), r(K13 + x, K4 — x) fί 7,
proved above, implies iΓ1;3 + xaG. A fortiori, G contains a triangle
6̂1̂ 62̂ 63. Now, since each point of G has degree at least three and G

contains no C4, we conclude that there are three other points vly v2j vs

such that u^ is a line of G for each i = 1, 2, 3. In other words, G
contains the subgraph shown in Figure 3. Actually, it is easy to check
that the graph in Fig. 3 is the subgraph of G induced by ul9 u2, uz,
vu v2, v3, for the addition of any line to this graph produces C4. But
then G contains K4 — x with points uL, vL, v2j v3 again contradicting the
assumption.

FIGURE 3

Proof of (11). Assume there is a graph G with 10 points such that
G contains no K, 3 + x and βo(G) < 4. As r{K,, K4) = r(3, 4) = 9, G
contains a triangle uLu2u3a Let the other points in G be v3 (j = 1, 2,
•••,7). There cannot be any line u{v0 for otherwise G would contain
a K13 + x. Now, let us consider the subgraph H of G spanned by the
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Vj's. H has 7 points and no K1)S + x because G has none. Thus, the
inequality (20) written in the form r(Kuz + x, K3) ^ 7 implies the
existence of three independent v/s. Since ux is adjacent to none of
these, we then have βo(G) ^ 4, contrary to the initial assumptions,
completing the proof of (11).

Now we can apply (2) and the inclusions KltZ + x z> K1>z, P4 to (11)
to obtain two more upper bounds,

(23) r(K^ K4) ^ 10

(24) R(P4, K4) S 10 .

It is quite convenient to have another lemma for the proof of (12).

LEMMA 3. // a graph G with p points has minimum degree d
and d(d — 1) > p — 1, then G contains C4.

Proof. Let n be the total number of paths P3 contained in G.

There are exactly p choices for the midpoint of P3, and for each fixed

midpoint at least( o ) choices of the endpoints. Therefore n ^ pi g ) >

\2)so there must be two distinct paths P3 in G with the same pair

of endpoints, and hence a cycle C4.

Proof of (12). Let G be a graph with 10 points such that the
point independence number βo(G) < 4. Then necessarily the chromatic
number χ(G) ^ 4. Hence by Brooks' Theorem, see [3, p. 128], either
K4 (and hence C4) is contained in G, or the degree of each point of
G is at least four in which case the conclusion follows from Lemma 3.

Proof of (13). We have to show that there is no graph G with
11 points such that K4 — x ςt G and βQ(G) < 4, so again we assume
the contrary. Our first aim is to show that G must be regular of
degree 4. This will be done by degrees, considered as possible separate
cases.

Case 1. G has a point u of degree ^ 7. Then the neighborhood
subgraph H of u (induced by the neighborhood of u) has at least 7
points and clearly contains no set of four independent points. By
Lemma 2, r(Pz, K4) = 7, so H must contain P3, which on joining u
implies K4 — x c G. This contradiction proves the impossibility of
Case 1.

Case 2. G has a point u of degree 6. Then the neighborhood
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subgraph H of u has exactly six points, no four of them being
independent. As G contains no K4 — x, H cannot contain P3. It is
easy to see that these conditions imply H = 3iΓ2; let the three inde-
pendent lines of H be vxwl9 v2w2 and vsws. There are four other points
in G; call one of, them uQ. This point cannot be adjacent to both v{

and Wi for some i e {1, 2, 3} since otherwise G would contain K4 — x.
Thus, we may assume u0 not adjacent to vl9 v2, vz. But then the
points u09 vl9 v2, vz are independent contradicting βo(G) < 4. Hence
the asumption of Case 2 is false.

Case 3. G has a point u of degree 5. Similarly as above, we can
prove that the neighborhood graph H of u must be 2K2 U Kλ. Let its
two lines be w^o^ and u2v2, and let its fifth point be w. There are
five other points in G. If all of them are adjacent to w, then the
degree of w equals six. As we saw, this assumption led to a con-
tradiction in Case 2. Thus there is a point w0 adjacent neither to u
nor to v. Clearly, w0 cannot be adjacent to both ux and vγ (nor to
both u2 and v2) as otherwise G would contain K4 — x. Thus, we may
assume w0 not adjacent to ul9 u2. But then w0, w, uλ and u2 form a
set of four independent points, contradicting βo(G) < 4.

Finally, to rule out any degree other than 4, we consider

Case 4. G contains a point u of degree ^ 3. Then there is a
set S of seven points in G which are distinct from u and not adjacent
to u. The subgraph <(S> of G induced by S contains no iΓ4 — x. Since
by (14), r(K4 — x, Kd) ^ 7, <(S> necessarily contains three independent
points ul9 n2, uz and hence G contains four independent points, namely
u, ul9 u2j uz contradicting βo(G) < 4.

We have shown that each of the Cases 1-4 leads to a contradic-
tion. Therefore, G must be regular of degree 4. Clearly, every line
of G is contained in at most one triangle, for otherwise G would
contain iΓ4 — x. On the other hand, if every line of G is in exactly
one triangle, then the number of lines of G would be divisible by
three. However, G has 22 edges and so it has a line, say uv9 contained
in no triangle. Let the other three neighbors of u be ul9 u2y us and
let the other three neighbors of v be vl9 v2j vs. As uv is contained in
no triangle, all these are distinct. Now, we show that the subgraph
of G spanned by ul9 u2, us must contain exactly one line. For if it
has none, then the points ul9 u2, u8, v would be independent; if it has
more than one, then G would contain K4 — x with points u, u19 u2, uz.
Similarly, the subgraph of G spanned by vl9 v2, v3 also contains
exactly one line. Let these two lines be uLu2 and v{v2. Next, let w
be one of the remaining three points wl9 w2i w3 in G. This point
cannot be adjacent to both ux and u2 for G would then contain K4 — x.
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Thus, we may assume w not adjacent to uγ. If w is not adjacent
to u3, then uly u3, w, v are four independent points, contradicting
βo(G) < 4. So w must be adjacent to u3. As w is arbitrary, we
conclude that each of the points wl9 w2, w3 is adjacent to u3. By a
symmetry argument, each of wlf w2, w3 is adjacent to v3. Then there
can be no line WiWs in G, for otherwise F would contain K4 — x with
points u3, v3, wif Wj. Thus the points wl9 w2, w3 are independent. But
then the points u, wl9 w2, w3 are independent, contradicting β0 < 4.

5* Conclusions* The following table summarizes the results
obtained (for both diagonal and off-diagonal) generalized Ramsey
numbers.

K2

Ps

2K2

Kz

Pi

Kl,3

C4

Ki,z + X

Kt-x

TABLE

K2 Pz

2 3

3

2. Small generalized Ramsey

2K2

4

4

5

Kz

3

5

5

6

P 4

4

4

5

7

5

Ki,z

4

5

5

7

5

6

C4

4

4

5

7

5

6

6

numbers

Ki,z + a?

4

5

5

7

7

7

7

7

Ki-x

4

5

5

7

7

7

7

7

10

iΓ4

4

7

6

9

10

10

10

10

11

18

Notice the irregularity of the behavior of r(Fl9 F2):

r(Pt, Kz) > r(P<, P4), r(Kdy JQ .

On the other hand,

r(P*, Pa) < r(Ps, K3) < τ{K3, K3)

(inequalities which continue to hold when all subscripts are increased
to 4). These suggest the following

Conjecture. For any graphs Fly F2 with no isolates,

r(Flf F2) ^ min (r(Fx), r(F2)) .

It would be a formidable task indeed to extend this table to all
23 of the 5-point graphs with no isolates. In particular this would
include the determination (exact, of course) of r(5, 5) which appears
not intractable, but extremely complicated. Our experience show that
some of these 5-point graphs will be more delicate to handle than
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others. Unless and until some more analytic, powerful, and automatic
method is found for calculating the numbers r(Fl9 F2), it is highly
unlikely that these will be found for all the 6-point graphs and
larger ones.
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