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ON / K Γ H E Ί Ί C GROUPS

D. L. ARMACOST AND W. L. ARMACOST

The subject of this paper is a class of locally compact
abelian (LCA) groups. Let p be a prime and let Z(p°°) denote
the group of complex pnth roots of unity equipped with the
discrete topology. An LCA group G is called p-thetic if it
contains a dense subgroup algebraically isomorphic to Z(p°°).
It is shown that a p-thetic LCA group is either compact or
is topologically isomorphic to Z{p°°). This fact leads to the
formulation of a property which characterizes the p-thetic, the
monothetic, and the solenoidal groups. Applications to some
purely algebraic questions are presented.

Let us take a paragraph to settle notation. Throughout, all
groups are assumed to be LCA Hausdorff topological groups. Some
LCA groups which we shall mention frequently are the integers Z
taken discrete, the additive group Q of the rationals taken discrete,
the additive group R of the real numbers with the usual topology,
the circle T, the cyclic groups Z(n) of order n, and the quasicyclic
groups Z(p°°), where p is a prime. Probably the most important group
which we shall use is the group of p-adic integers, where p is a prime
(see [2, §1] or [7, §10] for the definition and notation). The group of
p-adic integers with its usual compact topology is written Jp; we use
Ip to stand for the p-adic integers with the discrete topology. If G is
an LCA group, then G stands for the character (or dual) group of G.
In [7, 25.2] it is shown that the dual of Jp is Z(p°°). If G is a group,
we let B(G) denote the torsion subgroup of (?, while BP(G) denotes
the set of elements of G whose order is a power of a fixed prime p.
Topological isomorphism is denoted by = .

THEOREM 1. Let G be a p-thetic LCA group. Then either G is
compact or else G is topologically isomorphic to Z(p°°).

Proof. Since G is p-thetic, there is a continuous homomorphism
/: Z(p°°) —+G having dense image. Hence the transpose map /*: G —*
Jp is one-one [7, 24.41]. We wish to show that either G is discrete
or G = Jp. We first note that G must be totally disconnected, since
/* is one-one and Jp is totally disconnected. Thus G contains a compact
open subgroup U. If U is trivial, then G is discrete. Otherwise,
f*(U) is a nontrivial compact subgroup of Jp and is hence open in
Jp [7, lθ.lβ(a)]. Now the restriction of /* to the compact subgroup
U is a topological isomorphism from U onto the open subgroup f*(U)
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of Jp. Hence /* is an open mapping, so that G is topologically iso-
morphic to f*(G). Since every closed subgroup of Jp is topologically
isomorphic to Jp itself, we conclude that G ~ Jp. This completes the
proof.

Now let G and H be LCA groups. We say that G is H-dense if
there exists a continuous homomorphism f: H—+G such that f(H) is
a dense subgroup of G. Thus the monothetic groups are the Z-dense
groups, the solenoidal groups are the i?-dense groups, and the p-thetic
groups are just the Z(p°°)-dense groups. As is well known, the LCA
monothetic and solenoidal groups are either compact, or else topologically
isomorphic to Z and R, respectively [7, 9.1]. As we have just proved,
a p-thetic LCA group is either compact or is topologically isomorphic
with Z{$r). These facts lead us to the very natural question: For
which LCA groups H is it the case that every U-dense LCA group G
is either compact or is topologically isomorphic to HI Since every
iϊ-dense group G is automatically compact for compact H, the question
is of interest only for noncompact H. It is not difficult to determine
the answer to this question, and our answer will show that, in a sense,
the study of the p-thetic groups complements the study of the mono-
thetic and solenoidal groups.

THEOREM 2. Let H he a non-compact LCA group. The following
are equivalent:

(1) Every H-dense LCA group G is either compact or is topolog-
ically isomorphic to H.

(2) H is topologically isomorphic with either Z, R, or Z(p°°),
where p is a prime.

Proof. We have already shown that (2) —> (1). For the converse,
assume that (1) holds for H. We show that any strictly stronger
topology on H which makes H into a locally compact group must be
the discrete topology. To this end, let D denote H with a strictly
stronger locally compact topology. Then the identity map i: D —> H
is continuous and one-one, so that the transpose map i*: H—+D has
dense image [7, 24.41]. Since (1) holds, either D = H or else D is
compact. Since the first alternative has been ruled out, we conclude
that D is discrete, as we wished to show. We now invoke [9, Theorem
2] or [10, Theorem 2.1] to conclude that i ϊ contains an open subgroup
U which is topologically isomorphic with either T, R or Jp for some
prime p. Hence U is a quotient H by a closed subgroup. If π: iϊ—•
U is the projection of H onto U, we conclude from (1) that either
H ~ U or else U is compact. Since U is not compact, we conclude
that H ~ U, so that H ~ Z, H ~ R, or H ~ Z{p~). Thus (1) => (2),
which completes the proof.
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Since a compact group is p-thetic if and only if its discrete dual
is isomorphic to a subgroup of the discrete group Ip of p-adic integers,
we will do well, before mentioning some examples and simple properties
of p-thetic groups, to recall a few basic properties of the group Ip,
all of which may be found in [4] and [5]. The group Ip is a reduced,
torsion-free group of cardinality (and hence rank) of the power of the
continuum. It contains an isomorphic copy of the group Qp consisting
of all rational numbers with denominators prime to p. The group Ip

contains no elements of infinite p-height, but every element has infinite
^-height if q is a prime different from p (we say that an element x
in an additively written group G has infinite p-height if the equation
pny = x can be solved for y in G for an arbitrary positive integer ri).

We now mention a few examples of p-thetic groups. The circle
T is p-thetic for all primes p. In fact, since Ip has rank the power
of the continuum, it contains isomorphic copies of the free abelian
group of rank M if M does not exceed the power of the continuum.
Thus the torus TM is p-thetic for all p if and only if M does not
exceed the power of the continuum. Other examples of p-thetic groups
are Qp and Ip. These groups are p-thetic for only the one prime p.
The group ϊp (which is the Bohr compactification of Z(p°°)) is the
"largest compact p-thetic group" in the sense that every compact p-
thetic group (where p is a fixed prime) is a quotient of Ip by a closed
subgroup.

Every compact p-thetic group is a connected monothetic group
[7, 25.13] and is hence solenoidal [7, 25.14]. Obviously, the torsion
subgroup of a p-thetic group is dense in the group, but it is easy to
give examples of compact solenoidal groups with dense torsion subgroup
which are not p-thetic for any prime p. For example, let G be the
dual of the direct sum (taken discrete) of the groups Qp and Qg, where
p and q are distinct primes. It is easy to see that G could not be
isomorphic to a subgroup of a p-adic integer group (see the remarks
above about p-height), and the fact that G has dense torsion subgroup
follows from [8, Theorem 2] or [1, Proposition 7].

Professor L. Fuchs has kindly informed one of the authors that,
to the best of his knowledge, necessary and sufficient conditions for
a group to be embeddable in Ip are unknown. Therefore we are unable
to give intrinsic characterizations of the p-thetic groups, as we can
for the monothetic and solenoidal groups (in terms of weight, rank,
etc.). The remainder of this paper will be concerned with certain
special p-thetic groups and their application to the theory of infinite
abelian groups.

THEOREM 3. Let G be a compact connected group of dimension
one. Then either G = Q or else G is p-thetic for some prime p.
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Proof. ̂  If G is torsion-free it follows from [7, 24.28 and 25.8]
that G = Q. Otherwise G contains an isomorphic copy H of Z(p°°) for
some prime p, by the structure theorem for divisible groups [7, A. 14]
and the fact that a connected LCA group is divisible [7, 24. 24]. We
shall show that the closure £fof H is dense in G. Since H is divisible,
it follows that every non-trivial continuous character of 3 has infinite

range, so that (3) is torsion-free. But (B) ~ G/A(G, H), where A(G,
H) is the annihilator of H in G (see [7, 24. 5]). Since every proper
quotient of a subgroup of Q is a torsion group, and since every group
of rank one is isomorphic to a subgroup of Q [7, A. 16], it follows that
A{G, H) — {1}, so that 3 — G, and therefore G is p-thetic.

REMARK 1. The group G in Theorem 3 may be p-thetic for all
p, e.g. G = T. However, the circle is not the only one-dimensional
compact group which is p-thetic for all p. For example, let us define
a subgroup H of Q in the following way. Let pn denote the nth prime
and let Hn denote the set of rational numbers of the form &/(PiP2

pn), where k is an integer. The sets Hn define an ascending sequence
of subgroups of Q. If we let H be the union of the Hn, then we can
show that H is isomorphic to a subgroup of Qp for each p, but that
H is not isomorphic to Z. Thus if we set G = H, we have an example
of a one-dimensional compact group which is p-thetic for all p but
is not isomorphic to T.

Before proceeding to our next results, we review briefly the
concepts of purity and p-purity. If 6 is a group and n a positive
integer, we write nG for the set of elements of G of the form nx,
where x is in G. A subgroup H of a group G is called pure if and only
if nH — H (Ί nG for each positive integer n and p-pure if and only if
pnH — Hf] pnG for each positive integer n, where p is a prime. It
is easy to see that if G is torsion-free, a subgroup H is pure (respec-
tively, p-pure) if and only if G/H is torsion-free (respectively, BP(G/
H) = {0}).

DEFINITION 1. Let G be a compact p-thetic group. We say that
G is pure p-thetic if and only if B(G) ~ Z(p°°) and that G is p-pure
p-thetic if and only if BP(G) = Z{p~).

Before proceeding to justify the use of the terminology of this
definition, we need to state a lemma.

LEMMA 1. Let H be a p-pure subgroup of Iv. Then the index of
pH in H is p.

Proof. First note that since H has no elements of infinite p-
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height, pH^ H. Let x = (x0, xλ •) be an element in H but not in pH.
Note that x0 Φ 0, since otherwise x would be in plp and hence in pH,
since H is p-pure. We claim that the coset # + pH is a generator
of the quotient group H/pH, so that H/pH = i?(p) To see this, let
w + p i ϊ be an element of H/pH, where w — (wQ, wx, •) is in H. Let
Ίti denote the first coordinate of ix, for 0 ^ i ^ p — 1. Then w0 = ^
for some i between 0 and p — 1. Hence w — ix has 0 in its first
coordinate, so that w — ix is in piί . That is, w + pH — i(.τ + pi ϊ ) ,
which completes the proof.

THEOREM 4. Let G be compact and let p be a fixed prime. The
following are equivalent:

( 1 ) G is pure p-thetic,
( 2 ) G is isomorphic to a pure subgroup of Ip.

Proof. Assume (1). Since G is p-thetic, there is a subgroup H
of Ip such that G — H. Let Gn denote the subgroup of elements of
G having order n. By (1) it follows that Gp ~ Z{p) and that Gq is
trivial for all primes q Φ p. We conclude from [7, 24. 22] that H/pH =
Z{p) and that qH = H for all primes q Φ p. Let us assume, for the
moment, that there is an element x — (x0, xly •••) in H with xQ Φ 0.
In this case, we show that H is pure in Ip. Clearly, it suffices to
show that H Π pnlp — pnH. First, suppose that py e H for some y in
Ip. Since H/pH — Z(p), we have that the coset x + pHis a generator
of H/pH. Thus pi/ + pH = ΐa; + p i ί for some i between 0 and p — 1.
Hence there exists 2 in H such that py — ix + pz, so that iτ = p(τ/ —
z). This means that ix has 0 in its first coordinate. This can occur
only if i — 0, so that y — z, and hence y is in H. This proves that
Hf] plp = pH. That ϋ Π pwi? = pnH for all positive n follows by a
simple induction argument. Thus, in this case, H is pure in Ip.

Finally, to show that the assumption about x may always be
made, we need only consider an appropriate subgroup Lk of Ip,
where Lk consists of all sequences x — (x0, xl9 •) in Ip with xn = 0
for n less than k, and use the fact that Lk ~ Ip. This completes the
proof that (1) => (2).

Conversely, assume (2). Let Hhe a pure subgroup of Ip such that
G = H. Then G is p-thetic, and it remains only to show that B{G) ~
Zip00). By Lemma 1, H/pH^ Zip), since a pure subgroup is automa-
tically p-pure. Hence Gp = Zip), by [7, 24. 22]. Similarly, since qH =
i ί for all primes q Φ p (since if is pure in Ip), it follows that (?9 is
trivial for q Φ p. Hence B{G) = Z{p°°), so that G is pure p-thetic,
i.e. (2) - (1).

REMARK 2. The authors of [6] (see [4, Exercise 24 on p. 202])
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show, without use of duality, that a reduced torsion-free group H has
a unique maximal subgroup if and only if H is isomorphic to a pure
subgroup of some group Ip. This can be deduced from Theorem 4
above in the following way. Let H be as indicated. It follows from
[8, Theorem 2] or [1, Proposition 7] that B(G) is dense in G, where
G = H. Since G must have unique minimal closed subgroup, and since
B(G) is divisible, it follows that B{G) = Z(p°°) for some prime p, so
that G is pure p-thetic. Hence H is isomorphic to a pure subgroup
of Ip by Theorem 4. The converse is straightforward. Of course, it
should be pointed out, going in the contrary direction, that our Theorem
4 can be deduced, via duality, from the result mentioned in [6].

THEOREM 5. Let G be compact and let p be a fixed prime. The
following are equivalent:

(1) G is p-pure p-thetic,
(2) G is isomorphic to a p-pure subgroup of Ip.

Proof. The proof of the implication (1) => (2) follows along the
same lines as the corresponding proof in Theorem 4, so that we omit
it. Next, assume (2). Thus G is p-thetic, and it only remains to show
that BP(G) = Zip00). But this follows from Lemma 1, as in the proof
of Theorem 4. Hence (2) => (1), completing the proof.

REMARK 3. In [2] Armstrong has shown, by a study of the
extensibility of endomorphisms of p-pure subgroups of IP1 that a
p-pure subgroup of Ip must be indecomposable. We can provide
an altogether different proof of this fact by using Theorem 5 above.
We need only observe that a p-pure p-thetic group G cannot be
written as the the topological direct sum of two of its proper closed
subgroups, since each summand would be p-thetic, whereas BP(G) =

In closing, we mention a criterion for a compact connected group
to be p-pure p-thetic. This criterion is a direct translation, via duality,
of a theorem due to Armstrong (see [3, Proposition 2]).

PROPOSITION 1. Let G be compact and connected, and let p be a
fixed prime. Then G is p-pure p-thetic if and only if

(1) BP(G) is dense in G, and
(2) G is topologically indecomposable and G/H is topologically

indecomposable for every closed subgroup H of G such that pH = H.

Proof. This follows by duality from Armstrong's result mentioned
above and the fact that if H is a torsion-free abelian group, then a
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subgroup U of H is p-pure if and only if its annihilator in ίϊ is in-
divisible.

REMARK 4. It follows from the above proposition that the p-thetic
group G defined in Remark 1 is p-pure p-thetic for each prime p,
since condition (1) holds, as shown in Remark 1, and condition (2)
follows from the fact that G is of dimension one, so that it and all
its quotients are topologically indecomposable.
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