TWISTED COHOMOLOGY THEORIES AND THE SINGLE OBSTRUCTION TO LIFTING

Lawrence L. Larmore

Abstract

Consider any fibration $p: E \rightarrow B$, any finite C.W.- pair (K, L), and any maps $f: K \rightarrow B$ and $h: L \rightarrow E$ such that $p \circ h=f \mid L . \quad$ A map $g: K \rightarrow E$ such that $p \circ g=f$ and $g \mid L=h$ we call a lifting of f rel h.

In this paper single obstruction $\Gamma(f) \in H^{\prime}(K, L, f ; \mathscr{E})$ is defined. \mathscr{E} is a so-called B-spectrum, and $H^{*}(; \mathscr{E})$ is cohomology in that spectrum. If a lifting of f rel h exists, $\Gamma(f)=0$; this condition is also sufficient if the fiber of p is k-connected and $\operatorname{dim}(K / L) \leqq 2 k+1$.

If g_{0} and g_{1} are liftings of f rel h, a single obstruction $\delta\left(g_{0}, g_{1} ; h\right) \in H(K, L, f: \mathscr{E})$ is also defined; if g_{0} and g_{1} are connected by a homotopy of liftings of f rel $h \delta\left(g_{0}, g_{1} ; h\right)=0$; this condition is, also sufficient if p is k-connected and $\operatorname{dim}(K / L) \leqq 2 k$.

In $\S 4$, a spectral sequence is constructed for cohomology in a B-spectrum, based on the Postnikov tower of that spectrum, and the relationship between the single obstruction and the classical obstructions is defined.

For similar treatments, see Becker [1], [2], and Meyer [5].
Throughout this paper, let (K, L) be a finite C. W. pair, B any space, and $f: K \rightarrow B$ any map. All spaces and maps shall be in the category $C G$ of compactly generated spaces and maps, as described by Steenrod [7], and all constructions (i.e., function spaces, quotient space, Cartesian products) shall be as defined in that paper. When possible without confusion, we shall allow $f \mid L$ and $f \mid K \cup L$ to be denoted simply as F. A map $\pi: X \rightarrow Y$ we call a fibration if it has a local product structure; the polyhedral covering homotopy extension property [4] is then satisfied.
2. Basic concepts. We define a B-bundle to be an ordered pair (E, e) such that $e: E \rightarrow B$ is a fibration. A B-bundle map from a B bundle $e=(E, \boldsymbol{e})$ to another B-bundle $a=(A, \boldsymbol{a})$ is defined to be a commutative diagram:

We denote this map $\alpha: e \rightarrow a$. A pointed B-bundle is an ordered triple (E, e, e^{\prime}) such that $e: E \rightarrow B$ is a fibration and $e^{\prime}: B \rightarrow E$ is a pointing, i.e., $e \circ e^{\prime}=1$, the identity on B. We call e^{\prime} a pointing because it chooses a base-point for each fiber of e. A bi-pointed B bundle is an ordered quadruple ($E, e, e^{\prime}, e^{\prime \prime}$) such that (E, e) is a B bundle and e^{\prime} and $e^{\prime \prime}$ are both pointings. If $e=\left(E, e, e^{\prime}\right)$ and $a=$ $\left(A, \boldsymbol{a}, a^{\prime}\right)$ are pointed B-bundles, a B-bundle map $\alpha: e \rightarrow a$ is a pointed map if $\alpha \circ e^{\prime}=a^{\prime}$. Similarly, we can define bi-pointed maps between bi-pointed bundles. Two bundle maps (or pointed bundle maps, or bi-pointed bundle maps) are said to be homotopic if there exists a homotopy of bundle maps (or pointed bundle maps, or bi-pointed bundle maps) connecting them.

If $e=(E, e)$ is a B-bundle, $e^{-1} b$ is called the fiber of e over b, for any $b \in B$. If $e=\left(E, e, e^{\prime}\right)$ is a pointed B-bundle, each fiber, $\left(e^{-1} b, e^{\prime} b\right)$ is a pointed space. If $e=\left(E, e, e^{\prime}, e^{\prime \prime}\right)$ is bi-pointed, we say that $e^{\prime} b$ is the South pole of $e^{-1} b$, while $e^{\prime \prime} b$ is the North pole.

Let \mathscr{X}_{B} be the category of B-bundles and B-bundle maps. Let $\mathscr{X}_{B}{ }^{*}$ and $\mathscr{X}_{B}^{* *}$ be the categories of pointed and bi-pointed B-bundles and maps, respectively. We obviously have forgetful functors α : $\mathscr{X}_{B}^{* *} \rightarrow$ \mathscr{X}_{B}^{*} and $\beta: \mathscr{X}_{B}^{*} \rightarrow \mathscr{X}_{B}$ where $\alpha\left(E, e, e^{\prime}, e^{\prime \prime}\right)=\left(E, \boldsymbol{e}, e^{\prime}\right)$ and $\beta\left(E, \boldsymbol{e}, e^{\prime}\right)=$ (E, e). We shall, whenever convenient, identify any object with its image under α, β, or $\beta \circ \alpha$. We also define functors as follows:
$S: \mathscr{X}_{B} \rightarrow \mathscr{X}_{B}^{* *}$ two-point suspension
$\Sigma: \mathscr{X}_{B}{ }^{*} \rightarrow \mathscr{X}_{B}{ }^{*}$ one-point suspension
$\Omega: \mathscr{X}_{B}{ }^{*} \rightarrow \mathscr{X}_{B}{ }^{*}$ looping
$P: \mathscr{X}_{B}{ }^{* *} \rightarrow \mathscr{X}_{B}$ paths from the South pole to the North pole $S(E, \boldsymbol{e})=\left(S_{B} E, s, s^{\prime}, s^{\prime \prime}\right)$ where $S_{B} E$ is the quotient space of $E \times I$ obtained by identifying ($x, 0$) with ($y, 0$) and ($x, 1$) with ($y, 1$) for any $x, y \in \boldsymbol{e}^{-1} b$ for any $b \in B$. For all $[x, t] \in S_{B} E, \boldsymbol{s}[x, t]=\boldsymbol{e} x$, while $s^{\prime} b=[x, 0]$ and $s^{\prime \prime} b=[x, 1]$ for all $b \in B$, where x is any element in the fiber of e over $b . \quad \Sigma(E, e, e)=\left(\Sigma_{B} E, s, s^{\prime}\right)$ where $\Sigma_{B} E$ is the quotient space of $E \times I$ obtained by identifying $(x, 0)$ with $\left(\left(e^{\prime} \circ \boldsymbol{e}\right) x, t\right)$ $(x, 1)$ for any $x \in E$ and any $t \in I$. Then $s[x, t]=\boldsymbol{e x}$ for all $[x, t] \in \Sigma_{B} E$ and $s^{\prime} b=\left[e^{\prime} b, 0\right]$ for any $b \in B$.
$\Omega\left(E, e, e^{\prime}\right)=\left(\Omega_{B} E, \sigma, \sigma^{\prime}\right)$ where $\Omega_{B} E$ is the space of all loops in E based on $e^{\prime}(B)$ which lie in a single fiber of $e ; \sigma \alpha=(e \circ \alpha)(0)$ for all $\alpha \in \Omega_{B} E$, and $\left(\sigma^{\prime} b\right) t=e^{\prime} b$ for all $b \in B$, and all $t \in I . \quad P\left(E, e, e^{\prime}, e^{\prime \prime}\right)=$ $\left(P_{B} E, \boldsymbol{p}\right)$ where $P_{B} E$ is the space of all paths from $e^{\prime}(B)$ to $e^{\prime \prime}(B)$ which lie in a single fiber, and $p \alpha=(e \circ \alpha)(0)$ for all $\alpha \in P_{B} E$.

We give two adjoint constructions. First, let $e=\left(E, e, e^{\prime}\right)$ and $a=\left(A, \boldsymbol{a}, a^{\prime}\right)$ be two pointed B-bundles. If $\alpha: e \rightarrow \Omega a$ and $\beta ; \Sigma e \rightarrow a$ are pointed B-bundle maps, we say that α and β are adjoints of each
other if, for any $x \in E$ and any $t \in I, \beta[x, t]=(\alpha x) t$. Second, let $e=$ (E, \boldsymbol{e}) be a B-bundle and $a=\left(A, \boldsymbol{a}, a^{\prime}, a^{\prime \prime}\right)$ a bi-pointed B-bundles. We say that maps $\alpha: e \rightarrow P a$ and $\beta: S e \rightarrow a$ (where β is bi-pointed) are adjoints of each other if $\beta[x, t]=(\alpha x) t$ for all $x \in E$ and all $\mathrm{t} \in I$.

Let $[K, L, h ; e]_{f}$ denote the set of rel L fiber-homotopy classes of liftings of f to E rel h, where $e=(E, \boldsymbol{e})$ is a B-bundle, and $h: L \rightarrow E$ is a lifting of $f \mid L$. If L is empty, write $[K: \mathrm{e}]_{f}$. If $e=$ $\left(E, e, e^{\prime}\right)$ is pointed, write $[K, L ; e]_{f}$ for $\left[K, L, e^{\prime} \mid L ; e\right]_{f}$. If $\alpha: e \rightarrow a$ is a B-bundle map, let $\alpha_{\sharp}:[K, L, h ; e]_{f} \rightarrow[K, L, \alpha \circ h ; a]_{f}$ be the function where $\alpha_{\#}[g]=[\alpha \circ g]$, where [g] is the fiber-homotopy rel L class of any lifting g of f rel h. If $r:\left(K^{\prime}, L^{\prime}\right) \rightarrow(K, L)$ is a map of $C . W$. pairs, let $r^{*}:[K, L, h ; e]_{f} \rightarrow\left[K^{\prime}, L, h \circ r ; e\right]_{f \circ r}$ be the function where $r^{*}[g]=[g \circ r]$. We omit the proof (based in part on the PCHEP of e) of the following lemma:

Lemma 2.1. If $r:\left(K^{\prime}, L^{\prime}\right) \rightarrow(K, L)$ is a homotopy equivalence of pairs, then $r^{*}:[K, L, h ; e]_{f} \cong\left[K^{\prime}, L^{\prime}, h \circ r ; e\right]_{f \circ r}$.

Let $e=(E, e)$ be a B-bundle. If each fiber of e is connected, we say that e is connected. Similarly, if each fiber of e is n connected, or n-simple, for some integer $n \geqslant 1$, we say that e is n connected, or n-simple. If e is n-simple, define $\pi_{n} e$ to be the local system of Abelian groups over B such that, for every $b \in B,\left(\pi_{n} e\right) b=$ $\pi_{n}\left(e^{-1} b\right)$. We call $\pi_{n} e$ the $n^{\text {th }}$ homotopy group system of e. Similarly, if e is pointed, we can define $\pi_{n} e$ whether e is n-simple or not, since every fiber has a base-point. Note that e is n-connected if and only if e is connected and $\pi_{k} e=0$ for all $k \leqslant n$. If $\alpha: e \rightarrow a$ is any B bundle map, where e and a are both n-simple or both pointed (and α is pointed) or e is pointed and a is n-simple, α induces a homomorphism $\alpha_{\sharp}: \pi_{n} e \rightarrow \pi_{n} \alpha$ in the obvious way.

Let $\alpha: e \rightarrow a$ be any B-bundle map, where $e=(E, \boldsymbol{e})$ and $a=$ ($A, \boldsymbol{a}, a^{\prime}$). We define the fiber of α to be the B-bundle $c=(C, \boldsymbol{c})$ where C is the space of all ordered pairs (x, σ) such that $x \in E$ and σ is a path in A such that $\sigma(0) \in a^{\prime}(B), \sigma(1)=\alpha x$, and $(\alpha \circ \sigma) t=\boldsymbol{e x}$ for all $t \in I$; and where $c(x, \sigma)=e x$ for all $(x, \sigma) \in C$. If $e=\left(E, e, e^{\prime}\right)$ is pointed, then $c^{\prime} b=\left(e^{\prime} b, \sigma\right)$ gives a pointing of c, where $\sigma t=a^{\prime} b$ for all $t \in I$. The reader will note that for any $b \in B, \boldsymbol{c}^{-1} b$ is precisely the fiber of $\alpha: \boldsymbol{e}^{-1} b \rightarrow a^{-1} b$. The following sequence is thus exact, if $\alpha: e \rightarrow a$ is pointed:

$$
\cdots \longrightarrow \pi_{n}(\Omega e) \xrightarrow{(\Omega \alpha)_{\#}} \pi_{n}(\Omega a) \xrightarrow{j_{\#}} \pi_{n} c \xrightarrow{i_{\#}} \pi_{n} e \xrightarrow{\alpha_{\#}} \pi_{n} a
$$

where $i(x, \sigma)=\sigma(1)$ for all $(x, \sigma) \in C$, and $j(\tau)=\left(c^{\prime} b, \tau\right)$ for all $\tau \in \Omega_{B} A$, where $b=(a, \tau)(1)$.

Now if $\alpha: e \rightarrow a$ is a B-bundle map, we say that α is n-connected for any $n \geqslant 0$ if, for all $b \in B$ and $y \in \boldsymbol{a}^{-1} b$, the space

$$
\left\{(x, \sigma) \in \boldsymbol{e}^{-1} b \times\left(a^{-1} b\right)^{I}: \sigma(0)=y, \sigma(1)=\sigma x\right\}
$$

is n-connected. If a is a connected pointed B-bundle, α is connected if and only if the fiber of α is n-connected.

Suppose now that $\alpha: e \rightarrow a$ is a B-bundle map. Consider

$$
\alpha_{\ddagger}:[K, L, h ; e]_{f} \longrightarrow[K, L, \alpha \circ h ; a]_{f} .
$$

Lemma 2.2. Suppose α is n-connected for some $n \geqslant 0$. Then: (i) $\quad \alpha_{\sharp}$ is onto if $\operatorname{dim}(K / L) \leqslant n$. (ii) α_{\sharp} is one-to-one if $\operatorname{dim}(K / L) \leqslant$ $n-1$.

Proof. The connectivity of α equals the connectivity of the fiber of $\alpha: E \rightarrow A$, considered as a map of spaces. Simple application of ordinary obstruction theory enables us to complete the proof in a routine manner; we omit the details.

Suppose now that $g_{0}, g_{1}: K \rightarrow E$ are both liftings of f rel h.
Lemma 2.3. If α is n-connected for some $n \geqslant 1$, then g_{0} and g_{1} are homotopic rel h if and only if $\alpha \circ g_{0}$ and $\alpha \circ g_{1}$ are homotopic, rel L; provided $\operatorname{dim}(K / L) \leqslant n-1$.

Proof. We have a bi-pointed K-bundle map $f^{-1} \alpha: f^{-1} e \rightarrow f^{-1} a$, where $f^{-1} e=\left(f^{-1} E, f^{-1} e, f^{-1} g_{0}, f^{-1} g_{1}\right)$ and

$$
f^{-1} a=\left(f^{-1} A, f^{-1} a, f^{-1}\left(\alpha \circ g^{0}\right), f^{-1}\left(\alpha \circ g_{1}\right)\right) ;
$$

and $P f^{-1} \alpha ; P f^{-1} e \rightarrow P f^{-1} a$ is ($n-1$)-connected. A section of $P f^{-1} e$ is equivalent to a fiber homotopy, rel L, of g_{0} with g_{1}, while a section of $P f^{-1} \alpha$ is equivalent to a fiber homotopy, rel L, of $\alpha \circ g_{0}$ with $\alpha \circ g_{1}$. Apply Lemma 2.2, and we are done.
3. B-Spectra. Suppose $e=\left(E, e, e^{\prime}\right)$ is a pointed B-bundle. We define an operation " + " on $[K, L, \Omega e]_{f}$ as follows: for any two liftings of f rel $e^{\prime} \mid L, g$ and g^{\prime}, let $g+g^{\prime}: K \rightarrow \Omega_{B} E$ be the map where $\left(\left(g+g^{\prime}\right) x\right) t=(g x)(2 t)$ if $0 \leqq t \leqq 1 / 2, g^{\prime}(x)(2 t-1)$ if $1 / 2 \leqq t \leqq 1$, for all $x \in K$. Then $g+g^{\prime}$ is also a lifting of f rel $e^{\prime} \mid L$. We define $[g]+\left[g^{\prime}\right]=[g+g]^{\prime}$; it is trivial to verify that the operation is welldefined.

Theorem 3.1. [$K, L ; \Omega e]_{f}$ is a group under the operation "+" with identity [e^{\prime}].

Proof. Let $[g]^{-1}=\left[g^{-1}\right]$ for any lifting g of f rel $e^{\prime} \mid L$, where $\left(g^{-1} x\right) t=(g x)(1-t)$ for all $x \in K$ and all $t \in I$; it is routine to check that the group axioms are satisfied.

Theorem 3.2. $\left[K, L ; \Omega^{2} e\right]_{f}$ is an Abelian group.
Proof. We omit the details; if g and g^{\prime} are both liftings of f rel $e^{\prime} \mid L$, a fiber homotopy rel L of $g+g^{\prime}$ with $g^{\prime}+g$ can easily be constructed in the same manner as the proof that $\left[X ; \Omega^{2} Y\right.$] is Abelian for pointed spaces X and Y, but the construction is done fiberwise over B.

Definition 3.1. A B-spectrum is an ordered pair

$$
\mathscr{E}=\left(\left\{e_{i}\right\}_{i \geqq m},\left\{\varepsilon_{i}\right\}_{i \geqq m}\right)
$$

for some integer m such that:
(i) For each $i \geqq m, e_{i}$ is a pointed B-bundle.
(ii) For each $i \geqq m, \varepsilon_{i}: e_{i} \rightarrow e_{i+1}$ is a pointed B-bundle map.

Furthermore, we say that \mathscr{E} is a Ω_{B}-spectrum if ε_{i} is a homotopy equivalence (in the category \mathscr{E}_{B}^{*}) for each i, and we say that ε is a weak Ω_{B}-spectrum if ε_{i} is infinitely connected for all $i \geqq m$. We say that ε is stabilizing if, for each integer n, there exists an integer $N \geqq m$ such that ε_{i} is $(n+i)$-connected for all $i \geqq N$. The e_{i} are called the elements of the spectrum, the ε_{i} are called the connection maps, and m is called the starting value. If the first finitely many elements of a spectrum are altered, no change occurs in cohomology with coefficients in that spectrum; in that sense, the starting value is arbitrary. We define the homotopy of a spectrum $\pi_{n}(\mathscr{E})$ for any integer n, to be the direct limit $\operatorname{Lim}_{i \rightarrow \infty} \pi_{n+i} e_{i}$, under the system of homomorphisms

$$
(\varepsilon)_{i \ddagger}: \pi_{n+i} e_{i} \longrightarrow \pi_{n+i} \Omega e_{i+1} \cong \pi_{n+i+1} e_{i+1}
$$

thus $\pi_{n}(\mathscr{E})$ is a local system of Abelian groups on B. Note that $\pi_{n}(\mathscr{E})$ need not be zero for negative values of n.

Henceforth, we shall assume that $\mathscr{E}=\left(\left\{e_{i}\right\}_{i \geqq m},\left\{\varepsilon_{i}\right\}_{i \geqq m}\right)$ is a B spectrum.

Definition 3.2. For any integer n, let $H^{n}(K, L, f ; \mathscr{E})$ be the direct limit of the system of groups $\left\{\left[K, L ; \Omega^{i-n} e_{i}\right]_{f}\right\}$ and homomorphisms $\left\{\left(\Omega^{i-n} \varepsilon_{i}\right)_{\}}\right\}$. (If L is empty, we write $H^{n}(K, f ; \mathscr{E})$.) For any $i \geqq \min (n, m)$, let

$$
\left[K, L ; \Omega^{i-n} e_{i}\right]_{f} \longrightarrow H^{n}(K, L, f ; \mathscr{E})
$$

be called the representation. If \mathscr{E} is stabilizing, the direct limit is achieved eventually, i.e., beyond some point, all representations are bijective; if \mathscr{E} is a weak Ω_{B}-spectrum, the direct limit is achieved immediately, i.e., all representations are bijective. We call $H^{*}(K, L, f ; \mathscr{E})$ the cohomology of the triple (K, L, f) with coefficients in the spectrum \mathscr{E}. If $\left(K^{\prime}, L^{\prime}\right)$ is another $C . W$. pair, and

$$
r:\left(K^{\prime}, L^{\prime}\right) \longrightarrow(K, L)
$$

is a map, an induced homomorphism

$$
r^{*}: H^{*}(K, L, f ; \mathscr{E}) \longrightarrow H^{*}\left(K^{\prime}, L^{\prime}, f \circ r ; \mathscr{E}\right)
$$

can be defined in the obvious way.
Henceforth, let ($K^{\prime \prime}, L^{\prime \prime}$) be the pair ($K \times\{1\} \cup L \times I, L \times\{0\}$), and let $p ;\left(K^{\prime \prime}, L^{\prime \prime}\right) \rightarrow(K, L)$ be projection onto the first factor. The reader can easily verify that p is a relative homotopy equivalence, and hence by the direct limit version of Lemma 2.1,

$$
p^{*}: H^{*}(K, L, f ; \mathscr{E}) \longrightarrow H^{*}\left(K^{\prime \prime}, L^{\prime \prime}, f \circ p ; \mathscr{E}\right)
$$

is an isomorphism.
For any integer n, we define a connecting homomorphism

$$
\delta: H^{n}(L, f ; \mathscr{E}) \longrightarrow H^{n+1}(K, L, f ; \mathscr{E})
$$

as follows. For any $a \in H^{n}(L, f ; \mathscr{E})$, pick $i \geqq m$ and $[g] \in\left[L ; \Omega^{i-n} e_{i}\right]_{f}$ representing a. Consider $\Omega^{i-n} e_{i}=\Omega \Omega^{i-n-1} e_{i}$. Let $p^{*} \delta \alpha$ be the image, in the direct limit, of $[G] \in\left[K^{\prime \prime}, L^{\prime \prime} ; \Omega^{i-n-1} e_{i}\right]_{f \circ p}$, where $G(x, t)=(g x) t$ for all $x \in L$ and $t \in I$, and where $G(x, 1)=a^{\prime}(f x)$ for all $x \in K$, where α^{\prime} is the pointing of $\Omega^{i-n-1} e_{i} ; \delta \alpha$ is well-defined since p^{*} is an isomorphisms.

The following remarks (analogous to some of the Eilenberg Steenrod axioms for a cohomology theory [3]) we state without proof:

Remark 3.3. The following long sequence is exact, where i and j are inclusions:

$$
\begin{aligned}
\cdots \longrightarrow H^{n-1}(L, f ; \mathscr{E}) & \xrightarrow{\delta} H^{n}(K, L, f ; \mathscr{E}) \xrightarrow{j^{*}} H^{n}(K, f ; \mathscr{E}) \\
& \xrightarrow{i^{*}} H^{n}(L, f ; \mathscr{E}) \xrightarrow{\delta} H^{n+1}(K, L, ; \mathscr{E}) \longrightarrow \cdots .
\end{aligned}
$$

Remark 3.5. If $r_{t}:\left(K^{\prime}, L^{\prime}\right) \rightarrow(K, L), 0 \leqq t \leqq 1$, is a homotopy of maps, where $\left(K^{\prime}, L^{\prime}\right)$ is another $C . W$. pair, such that $f \circ r_{t}=f \circ r_{0}$ for all t, then $r_{1}^{*}=r_{0}^{*}$.

Suppose now that $f_{t}: K \rightarrow B, 0 \leqq t \leqq 1$, is a homotopy such that $f_{0}=f$. Let $F: K \times I \rightarrow B$ be the map where $F(x, t)=f_{t} x$ for all
$(x, t) \in K \times I$. Let $i_{0}, i_{1}:(K, L) \rightarrow(K \times I, L \times I)$ be the inclusions along 0 and 1 , respectively. According to Lemma 2.1., $\left(i_{j}\right)_{\#}$ is an isomorphism for $j=0$ or 1 . Let

$$
F_{\ddagger}=\left(i_{1}\right)_{\#} \circ\left(i_{0}\right)_{\ddagger}^{-1}: H^{*}(K, L, f ; \mathscr{E}) \longrightarrow H^{*}(K, L, f ; \mathscr{E}),
$$

clearly an isomorphism. Again without proof, we state:
Remark 3.6. $F_{\#}$ depends only on the homotopy class of F, rel $K \times\{0,1\}$.

Remark 3.7. If G is a homotopy of f_{1} with f_{2}, then

$$
G_{\#} \circ F_{\#}=(F+G)_{\ddagger}: H^{*}(K, L, f ; \mathscr{E}) \longrightarrow H^{*}\left(K, L, f_{2} ; \mathscr{E}\right)
$$

where $(F+G)(x, t)=F(x, 2 t)$ if $0 \leqq t \leqq 1 / 2 ; G(x, 2 t)$ if $1 / 2 \leqq t \leqq 1$, for all $x \in K$.

An immediate question one may ask is: if $f_{1}=f$, is $F_{\#}$ the identity? The answer is generally no.
4. The associated spectrum and the single obstruction. Let $e=(E, e)$ be a B-bundle and $h: L \rightarrow E$ a lifting of $f \mid L$. Let

$$
\mathscr{E}=\mathscr{E}(e)=\left(\left\{e_{i}\right\}_{i \geqq 1},\left\{\varepsilon_{i}\right\}_{i \geqq 1}\right)
$$

be the B-spectrum where $e_{i}=\sum^{i-1} S e$ for all $i \geqq 1$, and $\varepsilon_{i}: e_{i} \rightarrow \Omega e_{i+1}$ is adjoint to the identity on $e_{i+1}=\sum e_{i}$. We call \mathscr{E} the B-spectrum associated to e. We shall write $e_{1}=S e=\left(S_{B} E, s, s^{\prime}, s^{\prime \prime}\right)$.

Recall $\left(K^{\prime \prime}, L^{\prime \prime}\right)=(K \times\{1\} \cup L \times I, L \cup\{0\})$. We define $\Gamma(f ; h) \in$ $H^{1}(K, L, f ; \mathscr{E})$ (or simply $\Gamma(f)$ when L is empty, or when h is understood), the single obstruction to lifting f rel h, to be $\left(p^{*}\right)^{-1}$ of the representation of $[H] \in\left[K^{\prime \prime}, L^{\prime \prime} ; S e\right]_{f \circ p}$, where $H: K^{\prime \prime} \rightarrow S_{B} E$ is the map such that $H(x, t)=[h x, t]$ for all $(x, t) \in L \times I$, and $H(x, 1)=$ $\left(e^{\prime \prime} \circ f\right) x$, the North pole of $e^{-1} f x$, for all $x \in K$. We leave it to the reader to verify that if $f_{t}: K \rightarrow B$, for $0 \leqq t \leqq 1$, is a homotopy, and if $h_{t}: L \rightarrow E$ is a homotopy such that $e \circ h_{t}=f_{t} \mid L$ for all t, and if $F(x, t)=f_{t} x$ for all $(x, t) \in K \times I$, then $F_{\sharp} \Gamma\left(f_{0} ; h_{0}\right)=\Gamma\left(f_{1} ; h_{1}\right)$; i.e., $\Gamma(f ; h)$ is a homotopy invariant.

Theorem 4.2. If f has a lifting to E rel $h, \Gamma(f ; h)=0$.
Proof. Let $g: K \rightarrow E$ be such a lifting. Let $H_{u}: K^{\prime \prime} \rightarrow S_{B} E$, for $0 \leqq u \leqq 1$, be the rel $L^{\prime \prime}$ lifting of $f \circ p$ where $H_{u}(x, t)=[g x, t u]$ for all $0 \leqq t, u \leqq 1$. Then $H_{1}=H$, while $H_{0}=s^{\prime} \circ f \circ p$, and we are done.

Theorem 4.3. If e is ($n-1$)-connected for some $n \geqq 1$, and if
$\operatorname{dim}(K / L) \leqq 2 n-1$, then f has a lifting to E rel h if and only if $\Gamma(f ; h)=0$.

Proof. "Only if" is the previous theorem. Suppose then that $\Gamma(f ; h)=0$. Without loss of generality, we may assume that L has empty interior, whence $\operatorname{dim} K^{\prime \prime} \leqq 2 n-1$. By a Serre spectral sequence argument, $\left(\Omega^{i-1} \varepsilon_{i}\right): \Omega^{i-1} e_{i} \rightarrow \Omega^{i} e_{i+1}$ is $(2 n+i-1)$-connected for all $i \geqq 1$, whence, by Lemma 2.2, the representation

$$
\left[K^{\prime \prime}, L^{\prime \prime} ; e_{1}\right]_{f \circ p} \longrightarrow H^{1}\left(K^{\prime \prime}, L^{\prime \prime}, f \circ p ; \mathscr{E}\right)
$$

is one-to-one and onto. Thus $[H]=\left[s^{\prime} \circ f \circ p\right]$. Let $H_{t}: K^{\prime \prime} \rightarrow S_{B} E$ be a fiber-homotopy rel $L^{\prime \prime}$ such that $H_{1}=H$ and $H_{0}=s^{\prime} \circ f \circ p$; define $G: K^{\prime \prime} \rightarrow P_{B} S_{B} E$ to be the map where $(G y) u=H_{u} y$ for all $y \in K^{\prime \prime}$. Let $i: e \rightarrow P S e$ be adjoint to the identity on $S e=e_{1}$. Again, by a Serre spectral sequence argument, i is (2n-2)-connected. Since $\left[K^{\prime \prime}, L^{\prime \prime}, i \circ h: P S e\right]_{f \circ p}$ is nonempty, $[K, L, h ; e]_{f}$ is nonempty by Lemmas 2.1 and 2.2, and we are done.

Suppose now that $f_{0}, g_{1}: K \rightarrow E$ are liftings of f rel h. We define $\Delta\left(g_{0}, g_{1} ; h\right) \in H^{0}(K, L, f ; \mathscr{E})$, the single obstruction to fiber homotopy, rel L, of g_{0} with g_{1}, to be $\left(p^{*}\right)^{-1}$ of the representation in $H^{\circ}\left(K^{\prime \prime}, L^{\prime \prime}, f \circ p ; \mathscr{E}\right)$ of $[G] \in\left[K^{\prime \prime}, L^{\prime \prime} ; \Omega S e\right]_{f \cdot p}$, where for all $(x, t) K^{\prime \prime}$ and all $0 \leqq u \leqq 1$:

$$
G(x, t) u=\left\{\begin{array}{l}
{\left[g_{1} x, 2 u\right] \text { if } t=0 \text { and } 0 \leqq u \leqq 1 / 2} \\
{\left[g_{0} x, 2-2 u\right] \text { if } t=0 \text { and } 1 / 2 \leqq u \leqq 1} \\
{[h x, 2 u(1-t)] \text { if } x \in L \text { and } 0 \leqq u \leqq 1 / 2} \\
{[h x,(2-2 u)(1-)] \text { if } x \in L \text { and } 1 / 2 \leqq u \leqq 1}
\end{array}\right.
$$

We leave it to the reader to check that $J\left(g_{0}, g_{1} ; h\right)$ is a homotopy invariant in the same sense that $\Gamma(f ; h)$ is.

Hence forth, we shall write $\Omega S e=\left(\Omega_{B} S_{B} E, \boldsymbol{c}, c^{\prime}\right)$.
THEOREM 4.4. If g_{0} and g_{1} are fiber-homotopic rel h, then $\Delta\left(g_{0}, g_{1} ; h\right)=0$.

Proof. Let g_{t} be a fiber homotopy rel L. Let $G_{v}: K^{\prime \prime} \rightarrow \Omega_{B} S_{B} E$, $0 \leqq v \leqq 1$, be the rel $L^{\prime \prime}$ fiber homotopy, where for all $0 \leqq u, v \leqq 1$:

$$
G_{v}(x, t) u=\left\{\begin{array}{l}
{\left[g_{2 v-1} x, 2 u\right] \text { if } t=1,0 \leqq u \leqq 1 / 2, \text { and } 1 / 2 \leqq v \leqq 1} \\
{\left[g_{0} x, 2-2 u\right] \text { if } t=1,1 / 2 \leqq u \leqq 1, \text { and } 1 / 2 \leqq v \leqq 1} \\
{[h x, 2 u(1-t)] \text { if } x \in L, 0 \leqq u \leqq 1 / 2, \text { and } 1 / 2 \leqq v \leqq 1} \\
{[h x,(2-2 u)(1-t)] \text { if } x \in L, 1 / 2 \leqq u \leqq 1, \text { and } 1 / 2 \leqq v \leqq 1} \\
{\left[g_{0} x, 4 u v(1-t)\right] \text { if } 0 \leqq u \leqq 1 / 2 \text { and } 0 \leqq v \leqq 1 / 2} \\
{\left[g_{0} x, 4(1-u) v(1-t)\right] \text { if } 1 / 2 \leqq u \leqq 1 \text { and } 0 \leqq v \leqq 1 / 2}
\end{array}\right.
$$

Note that $G_{1}=G$ and $G_{0}=c^{\prime} \circ f \circ p$, and we are done.
Theorem 4.5. If e is ($n-1$)-connected for some $n \geqslant 1$, and if $\operatorname{dim}(K / L) \leqq 2 n-2$, then g_{0} and g_{1} are fiber homotopic if and only if $\Delta\left(g_{0}, g_{1} ; h\right)=0$.

Proof. "Only if" is the previous theorem. Suppose, then, that $\Delta\left(g_{0}, g_{1} ; h\right)=0$. Then G is fiber homotopic, rel $L^{\prime \prime}$, to c^{\prime}, since by Lemma 2.2, $\left[K^{\prime \prime}, L^{\prime \prime} ; \Omega S e\right]_{f \circ p} \rightarrow H^{0}\left(K^{\prime \prime}, L^{\prime \prime}, f \circ p ; \mathscr{E}\right)$ is onto. A routine argument using Lemma 2.1 then shows that $i \circ g_{0}$ is fiber homotopic, rel $i \circ h$, to $i \circ g_{1}$, where $i: e \rightarrow P S e$ is adjoint to the identity on $S e$. Our result follows immediately from Lemma 2.3.

Theorem 4.6. If g is any lifting of f rel h, and if $d \in H^{0}(K, L, f ; \mathscr{E})$, then there exists some lifting g^{\prime} of f rel h, such that $J\left(g, g^{\prime} ; h\right)=d$, provided e is $(n-1)$-connected for some $n \geqslant 1$ and $\operatorname{dim}(K / L) \leqq 2 n-1$.

Proof. The representation $[K, L ; \Omega S e]_{f} \rightarrow H^{0}(K, L, f ; \mathscr{E})$ is onto by Lemma 2.2; pick a lifting, H, of f rel $c^{0} \circ f \mid L$ which represents d. Let s be the lifting of f to $P_{B} S_{B} E$:

$$
(s x) t=\left\{\begin{array}{l}
(H x)(2 t) \quad \text { if } 0 \leqq t \leqq 1 / 2 \\
((i \circ g) x)(2 t-1) \quad \text { if } 1 / 2 \leqq t \leqq 1
\end{array}\right.
$$

where $i: e \rightarrow P S e$ is adjoint to the identity map of $S e$. Now by the $P C H E P$ of $P S e, s$ is fiber homotopic to a lifting s^{\prime} where $s \mid L^{\prime}=i \circ h$. Now $i_{\sharp}:[K, L, h ; e]_{f} \rightarrow[K, L, i \circ h ; P S e]_{f}$ is onto by Lemma 2.2. Choose g^{\prime} to be any rel h lifting of f such that $i_{\ddagger}\left[g^{\prime}\right]=\left[s^{\prime}\right]$. We leave it to the reader to verify that $\Delta\left(g, g^{\prime} ; h\right)=d$.

The proof of the next theorem we omit; it is a routine homotopy argument of the type the reader should by now be familiar with.

Theorem 4.7. If g_{0}, g_{1}, and g_{2} are liftings of f rel h, then

$$
\Delta\left(g_{0}, g_{2} ; h\right)=\Delta\left(g_{0}, g_{1} ; h\right)+\Delta\left(g_{1}, g_{2} ; h\right) .
$$

Corollary 4.8. (Becker) If e is $(n-1)$-connected for some $n \geqslant 1$, and if $\operatorname{dim}(K / L) \leqq 2 n-2$, then $[K, L, h ; e]_{f}$ has the structure of an affine group, and, if nonempty, is isomorphic to $H^{\circ}(K, L, f ; \mathscr{E})$.

Proof. See Becker [1] for the definition of an affine group. Pick any $\left[g_{0}\right] \in[K, L, h ; e]_{f}$. Let $c:[K, L, h ; e]_{f} \rightarrow H^{0}(K, L, f ; \mathscr{E})$ be given by $c[g]=\Delta\left(g_{0}, g ; h\right)$. This function is well-defined, one-to-one, and onto, and induces an affine group structure on $[K, L, h ; e]_{f}$ which is
independent of the choice of g_{0}, by Theorems 4.4, 4.5, 4.6, and 4.7. We leave the details to the reader.
5. B-spectrum maps and a spectral sequence for $H^{*}(K, L, f ; \mathscr{E})$. Let $\mathscr{E}=\left(\left\{e_{i}\right\}_{i>m},\left\{\varepsilon_{i}\right\}\right)$ and $\mathscr{A}=\left(\left\{a_{i}\right\}_{i \geqslant n},\left\{\alpha_{i}\right\}\right)$ be B-spectra. We define a B-spectrum $\operatorname{map} f: \mathscr{E} \rightarrow \mathscr{A}$ of degree d to be an indexed collection $\left\{f_{i}\right\}_{i \geqslant p}$ of pointed B-bundle maps, where $p \geqslant \max (m, n-d)$, such that for any $i \geqslant p, f_{i}: e_{i} \rightarrow a_{i+d}$ and the following diagram is commutative:

We can define $\bigwedge_{\ddagger}: H^{k}(K, L, f ; \mathscr{E}) \rightarrow H^{k+d}(K, L, f ; \mathscr{A})$ for any integer k to be the direct limit of the $\left(f_{i}\right)_{\ddagger}$; similarly we can define

$$
f_{t}: \pi_{k}(\mathscr{C}) \longrightarrow \pi_{k-d}(\mathscr{A})
$$

for any integer k.
Let $\mathscr{D}=\left(\left\{d_{i}\right\}_{i \geqslant p},\left\{\delta_{i}\right\}\right)$ be the fiber of $\not \subset$, defined as follows. For any $i \geqslant p, d_{i}=\left(D_{i}, \boldsymbol{d}_{i}, d_{i}^{\prime}\right)$ where

$$
\begin{aligned}
D_{i} & =\left\{(x, \sigma) \in E_{i} \times A_{i+d}^{\prime}: \sigma(0)=\left(a_{i+d}^{\prime} \circ e_{i}\right) x, \sigma(1)\right. \\
& \left.=f_{i} x, \& a_{i+d}(\sigma t)=e_{i} x \text { for all } t \in I\right\}
\end{aligned}
$$

$d_{i}(x, \sigma)=e_{i} x$ for all $(x, \sigma) \in D_{i}$ and $d_{i}^{\prime} b=\left(e_{i}^{\prime} b,\langle b\rangle\right)$ for all $b \in B$, where $\langle b\rangle t=a_{i+d}^{\prime} b$ for all $t \in I$. Let $\delta_{i}: d^{i} \rightarrow \Omega d_{i+1}$ be defined as follows: For any $(x, \sigma) \in D_{i}$ and any $t \in I,\left(\delta_{i}(x, \sigma)\right) t=\left(\left(\varepsilon_{i} x\right) t, \tau\right)$, where $\tau u=$ $\left(\alpha_{i+d}(\sigma u)\right) t$ for all $u \in I$. Consider the sequence of B-spectra and B spectrum maps (called the fibration sequence of \nearrow):

where $y^{\prime}=\left\{g_{i}\right\}_{i \geqq p}$ has degree 0 and $\hbar=\left\{h_{i}\right\}_{i \geqq p+d-1}$ has degree $-d+1$; defined as follows: For any $(x, \sigma) \in D_{i}, h_{i}(x, \sigma)=x$; and for any $y \in A_{i}, g_{i} y=\left(\left(e_{i-d+1}^{\prime} \circ a_{i}\right) y, \alpha_{i} y\right)$. The sequence (5-1) is analogous to the fibration sequence for any map of pointed spaces (where F is the fiber of f):

$$
Y \longrightarrow F \longrightarrow X \xrightarrow{f} Y .
$$

As in that case, we may, in a straightforward manner, verify the exactness of the long sequences:

$$
\begin{gathered}
\cdots \longrightarrow \pi_{k-d+1}(\mathscr{A}) \xrightarrow{h_{\#}} \pi_{k}(\mathscr{D}) \xrightarrow{\mathscr{J} \neq} \pi_{k}(\mathscr{E}) \xrightarrow{\mathscr{H}} \pi_{k-d}(\mathscr{A}) \longrightarrow H^{k+d-1}(K, L, f ; \mathscr{A}) \xrightarrow{h_{\sharp}} H^{k}(K, L, f ; \mathscr{D}) \xrightarrow{\mathscr{Z} \#} H^{k}(K, L, f ; \mathscr{E}) \\
\cdots \xrightarrow{\nrightarrow} H^{k+d}(K, L, f ; \mathscr{A}) \longrightarrow \longrightarrow
\end{gathered}
$$

We say that $\mathcal{C}: \mathscr{E} \rightarrow \mathscr{A}$ is k-connected if \mathscr{D} is k-connected, and we say that ρ is k-coconnected if \mathscr{D} is k-coconnected, i.e., $\pi_{r}(\mathscr{D})=0$ for all $r \geqq k$.

Henceforth in this section, let $\mathscr{E}=\left(\left\{e_{i}\right\}_{i \geqq m},\left\{\varepsilon_{i}\right\}\right)$ be a B-spectrum. We define a resolution of \mathscr{E} to be a commutative diagram of B-spectra, where each map has degree 0 :

such that for any integer r, there exists an integer N such that $/_{k}$ is r-connected for all $k \geqq N$, and an integer M such that \mathscr{E}_{k} is r coconnected for all $k \leqq M$. We are thus assured that $H^{*}(K, L, f: \mathscr{E})$ is isomorphic to the inverse limit $\operatorname{Lim}_{k \rightarrow \infty} H\left(K, L, f ; \mathscr{E}_{k}\right)$ under the homomorphisms $\left(\mathscr{\mathscr { F }}_{k}\right)_{\Downarrow}$. An important special case of a resolution of \mathscr{E} is a Postnikov resolution: that is where $\left(/_{k}\right)_{\#}: \pi_{r}(\mathscr{E}) \rightarrow \pi_{r}\left(\mathscr{E}_{k}\right)$ is an isomorphism for all $r \leqq k$, and where each \mathscr{E}_{k} is $(k+1)$-coconnected. In $\S \mathfrak{6}$, we shall show that every B-spectrum has a Postnikov resolution.

Using a resolution of \mathscr{E}, (5-2), we construct a spectral sequence for $H^{*}(K, L, f ; \mathscr{E})$. For any integer r, we have a filtration of $H^{r}(K, L, f ; \mathscr{E})$:

$$
0 \subset \cdots \subset G^{r+q, q} \subset G^{r+q-1, q-1} \subset \cdots H^{r}(K, L, f ; \mathscr{E})
$$

where $G^{p, q}$ is the kernel of

$$
\left(/{ }_{q}\right)_{\#}: H^{p-q}(K, L, f ; \mathscr{E}) \longrightarrow H^{p-q}\left(K, L, f: \mathscr{E}_{q}\right) .
$$

(The conditions that $/{ }_{k}$ is highly connected for large k and \mathscr{E}_{k} is highly coconnected for small k insures that the filtration has only finitely many distinct terms.) For any k, consider the fibration sequence of γ_{k} :

$$
\mathscr{E}_{k-1} \xrightarrow{z_{k}} \mathscr{K}_{k} \xrightarrow{{ }_{k}} \mathscr{E}_{k} \xrightarrow{\mathscr{X}_{k}} \mathscr{E}_{k-1} .
$$

Recall that μ_{k} and \mathscr{F}_{k} have degree 0 , and $z_{z_{k}}$ has degree 1. For any integers p and q, define $E_{2}^{p, q}=H^{p-q}\left(K, L, f ; \mathscr{K}_{q}\right)$ and

$$
D_{2}^{p, q}=H^{p-q}\left(K, L, f ; \mathscr{E}_{q}\right)
$$

Let $\left(\boldsymbol{q}_{q}\right)_{\#}=i_{2}: D_{2}^{p, q} \rightarrow D_{2}^{p-1, q-1},\left(z_{q+1}\right)_{\#}=j_{2}: D_{2}^{p, q} \rightarrow E_{2}^{p+2, q+1}$, and

$$
\left({ }_{q}\right)_{\#}=k_{2}: E_{2}^{p, q}=\longrightarrow D_{2}^{p, q} .
$$

Using general spectral sequence arguments, we can verify that

$$
d_{r}: E_{2}^{p, q} \longrightarrow E_{2}^{p+r, q+r-1} \quad \text { for all } r \geqq 2,
$$

and that $E_{\infty}^{p, q}=G^{p-1, q-1} / G^{p, q}$ for all p and q.
In the special case that (5-2) is a Postnikov resolution, we can construct an E_{1} term of the spectral sequence as follows. Let K^{r} be the r-skeleton of K, for any $r: K^{r}=\varnothing$ if $r<0$. For any p and q, let $D_{1}^{p, q}=H^{p, q}\left(K^{p} \cup L, f ; \mathscr{E}\right)$ and $E_{1}^{p, q}=C^{p}\left(K, L, f^{-1} \pi_{q}(\mathscr{E})\right)$, the group of cochains with coefficients in the local system $f^{-1} \pi_{q}(\mathscr{E})$ over K. Let $i_{1}: D_{1}^{p, q} \rightarrow D_{1}^{p-1, q-1}$ and $k_{1}: E_{1}^{p, q} \rightarrow D_{1}^{p, q}$ be the homomorphisms induced by the appropriate inclusions, and let $j_{1}: D_{1}^{p, q} \rightarrow E_{1}^{p+1, q}$ be the connecting homomorphism of the pair ($K^{p+1} \cup L, K^{p} \cup L$). The differential $d_{1}: C^{p}\left(K, L ; f^{-1} \pi_{q}(\mathscr{E})\right) \rightarrow C^{p+1}\left(K, L ; f^{-1} \pi_{q}(\mathscr{E})\right)$ is then the usual coboundary on cochains with local coefficients, hence

$$
E_{2}^{p, q}=H^{p}\left(K, L ; f^{-1} \pi_{q}(\mathscr{E})\right) .
$$

We leave the rather routine verification that the above $E_{1}, D_{1}, i_{1}, j_{1}$, and k_{1} yield the correct E_{2}, D_{2}, etc., to the reader. (Hint: If \mathscr{E} is k-connected, $\quad H^{p}(K, L, f ; \mathscr{E})=0$ for all $p \geqq n-k$, where $n=$ $\operatorname{dim}(K / L)$.)

We now explore the relation between the single obstruction and the classical obstructions. Let us suppose that $e=(E, e)$ is a k connected B-bundle, for some $k \geqq 1$, and that diagram (5-2) is a Postnikov system for $\mathscr{E}=\mathscr{E}(e)$. For any integer r, let $\iota_{r}: \pi_{r} e \rightarrow \pi_{r}(\mathscr{E})$ be the composition

$$
\pi_{r} e \longrightarrow \pi_{r} P S e \cong \pi_{r} \Omega S e \cong \pi_{r+1} e_{1} \longrightarrow \pi_{r}(\mathscr{E})
$$

an isomorphism if $r \leqq 2 k$. Now suppose that $f \mid K^{m} \cap L$ has a rel h lifting, g^{m}, for some integer m. Then

$$
i^{*} \Gamma(f, h)=\Gamma\left(f \mid K^{m} \cup L ; h\right)=0
$$

by Theorem 4.2. Consider the commutative diagram of groups and homomorphisms:

Since \mathscr{E}_{m-1} is m-coconnected,

$$
i^{*}: H^{1}\left(K, L, f ; \mathscr{E}_{m-1}\right) \longrightarrow H^{1}\left(K^{m} \cup L, L, f ; \mathscr{E}_{m-1}\right)
$$

is an isomorphism. Thus $\left(/_{m-1}\right)_{\ddagger} \Gamma(f ; h)=0$. Since \mathscr{K}_{m}^{m} is the fiber of $\mathscr{\nexists}_{m},\left(\mathscr{/}_{m}\right)_{\#} \Gamma(f ; h) \in\left(a_{m}\right)_{\#} H^{1}\left(K, L, \mathscr{\mathscr { A }}_{m}\right)$. The classical obstruction to extending g^{m} over $K^{m+1} \cup L, \gamma\left(g^{m}\right) \in H^{k+1}\left(K, L ; f^{-1} \pi_{m} e\right)$ up to some indeterminacy. It is a routine matter of checking definitions to verify that $\left(\sigma_{m}\right)_{\#}\left(c_{m}\right)_{\#} \gamma\left(g^{m}\right)=\left(/_{m}\right)_{\#} \Gamma(f ; h)$.
6. Construction of the Postnikov resolution of \mathscr{E}. For every integer, n, we define a functor $K_{n}: \mathscr{X}_{B}^{*} \rightarrow \mathscr{X}_{B}^{*}$ as follows. If $n<0$, let K_{n} be the identity. Otherwise, if $e=\left(E, e, e^{\prime}\right)$ is a pointed B bundle, let B^{n+1} be a (topological) ($n+1$)-ball with boundary S^{n} and basepoint $* \in S^{n}$. Let $E_{B}^{S^{n}}$ be the space of all continuous maps $h: S^{n} \rightarrow E$ such that $h(*) \in e^{\prime}(B)$ and $e \circ h$ is constant. Let $\varepsilon: E_{B}^{S^{n}} \rightarrow E$ be the evaluation map, and let $\left(K_{n}\right)_{B} E=E \cup_{\varepsilon}\left(E_{B}^{S^{n}} \times B^{n+1}\right)$. We define $K_{n} e$ to be the pointed B-bundle $\left(\left(K_{n}\right)_{B} E, \boldsymbol{k}, k^{\prime}\right)$, where $k^{\prime}=e^{\prime}$, $\boldsymbol{k} \mid E=\boldsymbol{e}$, and $\boldsymbol{k}(h, b)=(\boldsymbol{e} \circ h)(*)$ for all $(h, b) \in\left(E_{B}^{S^{n}} \times B^{n+1}\right)$. If α : $e \rightarrow a$ is any pointed B-bundle map, we define $K_{n} \alpha: K_{n} e \rightarrow K_{n} a$ in the obvious way: $K_{n} \alpha \mid=\alpha$, and $\left(K_{n} \alpha\right)(h, b)=(\alpha \circ h, b)$ for all $(h, b) \in E_{B}^{S^{n}} \times B^{n+1}$. A very simple homotopy argument shows:

Remark 6.1. (i) For all $k<n, i_{\ddagger}: \pi_{k} e \rightarrow \pi_{k}\left(K_{k} e\right)$ is an isomorphism, where $i: e \rightarrow K_{n} e$ is the inclusion. (ii) $\pi_{n}\left(K_{n} e\right)=0$.

We define functors $K_{n}^{r}: \mathscr{X}_{B}^{*} \rightarrow \mathscr{E}_{B}^{*}$ for all integers $n \leqq r$, inductively, as follows: $K_{n}^{n}=K_{n}$, and $K_{n}^{r+1}=K_{r+1} K_{n}^{r}$ for all $n \leqq r$. It is very simple to see that the "union" $\bigcup_{r=n}^{\infty} K_{n}^{r}$ is also a functor, which we call $K_{n}^{\infty}: \mathscr{X}_{B}^{*} \rightarrow \mathscr{X}_{B}^{*}$. We call K_{n}, K_{n}^{r}, and K_{n}^{∞} homotopy-killing functors. The following remark is an immediate Corollary of 6.1:

REMARK 6.2. (i) $i_{\sharp}: \pi_{k} e \rightarrow \pi_{k}\left(K_{n}^{\infty} e\right)$ is an isomorphism for all $k<n$, where $i: e \rightarrow K_{n} e$ is the inclusion. (ii) $\pi_{k}\left(K_{n} e\right)=0$ for all $k \geqq n$.

Thus K_{n}^{∞} is the analogue of the $(n-1)^{\text {th }}$ stage in the Postnikov tower of a space. In order to pass to spectra, we must examine the relationship between the homotopy-killing functors and the looping functor. We define a pointed B-bundle map $T_{n}: K_{n} \Omega e \rightarrow \Omega K_{n+1} e$ for all integers n as follows: If $n \leqq-2, T_{n}$ is the identity. If $n=-1$, $T_{n}=\Omega i: \Omega e \rightarrow \Omega K_{0} e$, where $i: e \rightarrow K_{0} e$ is the inclusion. Otherwise, let $T_{n}: \Omega_{B} E \cup_{\varepsilon}\left(\left(\Omega_{B} E\right)^{s n} \times B^{n+1}\right) \rightarrow \Omega_{B}\left(E \cup_{\varepsilon}\left(E_{B}^{S^{n+1}} \times B^{n+1}\right)\right)$ be the identity on $\Omega_{B} E$, and for any $(h, b) \in\left(\Omega_{B} E\right)_{B}^{S^{n}} \times B^{n+1}$, and any $t \in I$, let $\left(T_{n}(h, b)\right) t=(h,[b, t]) . \quad$ Note: $\quad B^{n+2}=\sum B^{n+1} \quad$ and $\quad\left(\Omega_{B} E\right)_{B}^{S n}=E_{B}^{S^{n+1}}$. We leave it to the reader to verify that $\left(T_{n}\right)_{\sharp}: \pi_{k}\left(K_{n} \Omega e\right) \rightarrow \pi_{k}\left(\Omega K_{n+1} e\right)$ is an isomorphism for all $k \leqq n$.

Similarly, we define $T_{n}^{r}: K_{n}^{r} \Omega e \rightarrow K_{n+1}^{r+1} e$ inductively for all $n \leqq r$ as follows: $T_{n}^{n}=T_{n}$, and $T_{n}^{r+1}=T_{r+1} \circ\left(K_{r+1} T_{n}^{r}\right)$ for all $r \geqq n$. In an obvious way we can then define $T_{n}: K_{n}^{\infty} \Omega e \rightarrow \Omega K_{n+1}^{\infty} e$. We leave the proof of the following to the reader:

Remark 6.3. The B-bundle map $T_{n}: K_{n}^{\infty} \Omega e \rightarrow \Omega K_{n+1}^{\infty} e$ is a weak homotopy equivalence.

We are now ready to define the Postnikov resolution of B-spectrum $\mathscr{E}=\left(\left\{e_{i}\right\}_{i \geqq m},\left\{\varepsilon_{i}\right\}\right)$. For each integer n, let

$$
\mathscr{E}_{n}=\left(\left\{K_{n+i+1}^{\infty} e_{i}\right\}_{i \geqq m},\left\{T_{n+i+1}^{\infty} \circ\left(K_{n+i+1} \varepsilon_{i}\right)\right\}\right) .
$$

Let $/{ }_{n}: \mathscr{E} \rightarrow \mathscr{E}_{n}=\left\{p_{i}\right\}_{i \geqq m}$, where $p_{i}: e_{i} \rightarrow K_{n+i+1} e_{i}$ is the inclusion, and let $\gamma_{n}: \mathscr{E}_{n} \rightarrow \mathscr{E}_{n-1}=\left\{q_{n, i}\right\}_{i \geqq m}$, where $q_{n, i}=K_{n+i+1}^{\infty} j: K_{n+i+1}^{\infty} e_{i} \rightarrow K_{n-i+1}^{\infty} e_{i}$, where $j: e_{i} \rightarrow K_{n+i} e_{i}$ is the inclusion. The resolution of \mathscr{E} described above (see diagram (5-2)) is a Postnikov resolution, by Remarks 6.2 and 6.3.

I wish to thank the referee for many helpful suggestions.

References

1. J. C. Becker, Cohomology and the classification of liftings, Amer. Math. Soc. Trans., 133 (1968), 447-475.
2. Orientability and extension of cohomology theories, Conference on Algebraic Topology, University of Illinois, Chicago Circle, (1968), 1-8.
3. S. Eilenberg and N. E. Steenrod, Foundations of Algebraic Topology, Princeton University Press, 1952.
4. S. T. Hu, Homotopy Theory, Academic Press, 1959.
5. J.-P. Meyer, Relative Stable Homotopy, Conference on Algebraic Topology, University of Illinois at Chicago Circle, 1968, 206-212.
6. N. E. Steenrod, Topology of Fiber Bundles, Princeton University Press, 1951.
7. —, A convenient category of topological spaces, Mich. Math. J., 14 (1967), 133-152.

Received June 23, 1970 and in revised form April 8, 1971.
California State College, Dominguez Hills

