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TWISTED COHOMOLOGY THEORIES AND THE
SINGLE OBSTRUCTION TO LIFTING

LAWRENCE L. LARMORE

Consider any fibration p: £ — B, any finite C. W. — pair
(K, L), and any maps f: K— B and h: L > E such that
poh=f|L A map g: K— E such that po g=f and
g|L=~h we call a lifting of f rel h.

In this paper single obstruction I"(f)e H' (K, L, f; &) is
defined. & is a so-called B-spectrum, and H* ( ; &) is
cohomology in that spectrum. If a lifting of f rel & exists,
I’'(f)=0; this condition is also sufficient if the fiber of p is
k-connected and dim (K/L) < 2k + 1.

If go and g, are liftings of f rel 2, a single obstruction
(g, g3 h)eH(K, L, f: &) is alse defined; if g, and g; are
connected by a homotopy of liftings of f rel & d(g,, 913 #)=0;
this condition is, also sufficient if p is k-connected and
dim (K/L) < 2k.

In §4, a spectral sequence is constructed for cohomology
in a B-spectrum, based on the Postnikov tower of that spec-
trum, and the relationship between the single obstruction and
the classical obstructions is defined.

For similar treatments, see Becker [1], [2], and Meyer [5].

Throughout this paper, let (K, L) be a finite C. W. pair, B any
space, and f: K — B any map. All spaces and maps shall be in the
category CG of compactly generated spaces and maps, as described
by Steenrod [7], and all constructions (i.e., function spaces, quotient
space, Cartesian products) shall be as defined in that paper. When
possible without confusion, we shall allow f|L and f| KU L to be
denoted simply as F. A map 7: X — Y we call a fibration if it has
a local product structure; the polyhedral covering homotopy extension
property [4] is then satisfied.

2. Basic concepts. We define a B-bundle to be an ordered pair
(E, e) such that e: E— B is a fibration. A B-bundle map from a B-
bundle ¢ = (E, e) to another B-bundle a = (4, a) is defined to be a
commutative diagram:

E—2% A
AN /
N
B
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We denote this map a:e—a. A pointed B-bundle is an ordered
triple (E, e, ¢’) such that e¢: E— B is a fibration and ¢: B—E is a
pointing, i.e., eoe =1, the identity on B. We call ¢ a pointing
because it chooses a base-point for each fiber of e. A bi-pointed B-
bundle is an ordered quadruple (E, e, ¢, ¢’) such that (E,e) is a B-
bundle and ¢ and ¢” are both pointings. If ¢ = (E, e, ¢) and a =
(4, a, &) are pointed B-bundles, a B-bundle map a: e —a is a pointed
map if aoe = a’. Similarly, we can define bi-pointed maps between
bi-pointed bundles. Two bundle maps (or pointed bundle maps, or
bi-pointed bundle maps) are said to be homotopic if there exists a
homotopy of bundle maps (or pointed bundle maps, or bi-pointed
bundle maps) connecting them.

If e = (F, e) is a B-bundle, e'b is called the fiber of ¢ over b,
for any beB. If e¢= (KE,e ¢) is a pointed B-bundle, each fiber,
(e7'b, ¢’b) is a pointed space. If ¢ = (E, e, ¢, ¢’) is bi-pointed, we
say that e'b is the South pole of e™' b, while ¢”b is the North pole.

Let 25 be the category of B-bundles and B-bundle maps. Let 25*
and 2%3** be the categories of pointed and bi-pointed B-bundles and
maps, respectively. We obviously have forgetful functors a: 25** —
23 and B: 25* — 25 where a(E, e, ¢/, ¢") = (E, e, ¢') and B(E, e, €') =
(E, e). We shall, whenever convenient, identify any object with its
image under a, B, or Boa. We also define functors as follows:

S: Z#,— 25** two-point suspension

3 25 — 25" one-point suspension

Q. 25* — 25" looping

P: #** — 25 paths from the South pole to the North pole
S(E, e) = (SyE, s, ', s"") where SyE is the quotient space of E x [
obtained by identifying (x, 0) with (y, 0) and (x, 1) with (y, 1) for any
z,yece'b for any beB. For all [z, t]eSzE, sz, t] = ex, while
§’b =[x, 0] and s”b = [=, 1] for all be B, where z is any element in
the fiber of e¢ over b. X (E,e ¢) = (2 E,s,s’) where Y,E is the
quotient space of E x I obtained by identifying (z, 0) with ((¢’ - e)z, ?)
(x, 1) for any v ¢ F and any teI. Then s[z, t] = ex for all [z, t]e J;F
and s'b = [¢'b, 0] for any be B.

QE, e ) = (2;E, 0, 0’) where Q,E is the space of all loops in £
based on ¢'(B) which lie in a single fiber of ¢; oa = (e - a)(0) for all
aec Q,E, and (0'b)t = ¢'b for all be B, and all tel. P(E,e ¢,¢") =
(PyE, p) where P,E is the space of all paths from e(B) to ¢’ (B)
which lie in a single fiber, and pa = (e - «) (0) for all @ e P;F.

We give two adjoint constructions. First, let e = (F, ¢, ¢’) and
a = (A, a, a’) be two pointed B-bundles. If a:e—Qa and gB; JYe—a
are pointed B-bundle maps, we say that a and g are adjoints of each
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other if, for any xe E and any tel, B[z, t] = (ax)t. Second, let e=
(E, e) be a B-bundle and a = (4, a, @/, a”) a bi-pointed B-bundles. We
say that maps a: e — Pa and B: Se —a (where B is bi-pointed) are
adjoints of each other if B[z, ] = (ax)t for all xe £ and all tel.

Let [K, L, h; e¢]; denote the set of rel L fiber-homotopy classes
of liftings of f to E rel h, where e = (E, e) is a B-bundle and
h: L — E is a lifting of f| L. If L is empty, write [K:e],. If e =
(E, e, ¢') is pointed, write [K, L; e]; for [K, L, ¢ | L; e];. If a: e—a
is a B-bundle map, let a,: [K, L, h; e], —[K, L, @ o h; a], be the
function where «, [¢g] = [a o g], where [g] is the fiber-homotopy rel L
class of any lifting g of f rel h. If »: (K’, L’y — (K, L) is a map of
C.W. vpairs, let »*: [K, L, h; e];, —[K', L, h o r; €];., be the function
where r*[g] = [go7]. We omit the proof (based in part on the
PCHEP of e) of the following lemma:

LEemma 2.1. If r: (K', L') — (K, L) is a homotopy equivalence of
pairs, then v*: [K, L, h; e], = [K', L', h o r; €] ...

Let ¢ = (E, e) be a B-bundle. If each fiber of ¢ is connected,
we say that e is connected. Similarly, if each fiber of e is #-
connected, or n-simple, for some integer n > 1, we say that e is n-
connected, or n-simple. If e is m-simple, define 7, to be the local
system of Abelian groups over B such that, for every be B, (7,e)b =
(e 'b). We call 7,e the n'® homotopy group system of e. Similarly,
if e is pointed, we can define w,e whether ¢ is n-simple or not, since
every fiber has a base-point. Note that e is n-connected if and only
if e is connected and me =0 for all t <n. If a:e—a is any B-
bundle map, where ¢ and a are both nm-simple or both pointed (and
« is pointed) or e is pointed and @ is nm-simple, @ induces a homo-
morphism «,: 7,e— m,a in the obvious way.

Let a:e—a be any B-bundle map, where ¢ = (E, e) and a =
(4, a,a’). We define the fiber of @ to be the B-bundle ¢ = (C, ¢)
where C is the space of all ordered pairs (v, o) such that e E and
o is a path in A such that ¢(0) ea’(B), 0(1) = ax, and (e 0)t = ex
for all teI; and where ¢(x, 0) = ex for all (»,0)eC. If e = (E, e, ¢)
is pointed, then ¢'b = (¢'b, 6) gives a pointing of ¢, where ot = a'b
for all te I. The reader will note that for any be B, ¢™'b is precisely
the fiber of «: e'b — a™'b. The following sequence is thus exact, if
«: e — a is pointed:

2 ) %
. ——>nn(9e)(—i)#>7rn(9a) 7 T, ——> e 2, ra

where i(x, 6) = o(1) for all (», 0) € C, and j(z) = (¢'b, 7) for all e 2,4,
where b = (a, 7) (1).
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Now if a: e—a is a B-bundle map, we say that « is n-connected
for any n > 0 if, for all be B and y e a™'b, the space

{(z, 0) e e7'bx (a™'b)": 0(0) = vy, 0(1) = o}

is n-connected. If a is a connected pointed B-bundle, « is connected
if and only if the fiber of & is n-connected.

Suppose now that a: e —a is a B-bundle map. Consider

a;: [K, L, h; e], — [K, L, @ o h; a], .

LEMMA 2.2. Suppose a is m-connmected for some m > 0. Then:
(1) a. is onto if dim (K/L) < n. (il) a is one-to-one if dim(K/L)<
n — 1.

Proof. The connectivity of « equals the connectivity of the fiber
of a: E— A, considered as a map of spaces. Simple application of
ordinary obstruction theory enables us to complete the proof in a
routine manner; we omit the details.

Suppose now that g, ¢g.: K — E are both liftings of f rel h.

LemMa 2.8. If « is m-conmected for some m > 1, then g, and g,
are homotopic rel h if and only if aeog, and ao g, are homotopic,
rel L; provided dim (K/L) < n — 1.

Proof. We have a bi-pointed K-bundle map f~'a: f'e— f'a,
where f~'e = (fT'E, f™'e, f™'g,, f7'9,) and

f’-la/ = (f~1A7 f~lay f—l(a ° 90), f~l(a © gl)) ’

and Pf~'a; Pf~¢ — Pf™'a is (n—1)-connected. A section of Pf e is
equivalent to a fiber homotopy, rel L, of g, with g,, while a section
of Pf! a is equivalent to a fiber homotopy, rel L, of a0 g, with a0 g¢..
Apply Lemma 2.2, and we are done.

3. B-Spectra. Suppose ¢ = (E, e, ¢') is a pointed B-bundle. We
define an operation “+” on [K, L, Q¢], as follows: for any two lift-
ings of frele’|L, g and ¢’, let g + ¢': K— 2,F be the map where
((g+gH)a)t = (gr)(2t) if 0 <t < 1/2, g(@)(2t—1) if 1/2<t <1, for all
xecK. Then g+ ¢ is also a lifting of f rele’|L. We define

[g] + [¢'] = [9+9]; it is trivial to verify that the operation is well-
defined.

THEOREM 3.1. [K, L; Q¢]; is a group wunder the operation “+”
with identity [e'].
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Proof. Let [g]™ = [g7'] for any lifting g of f rel ¢ | L, where
(g7'x)t = (gx)(1—1t) for all xe K and all tel; it is routine to check
that the group axioms are satisfied.

THEOREM 3.2. [K, L; Q%]; is an Abelian group.

Proof. We omit the details; if g and ¢’ are both liftings of f
rel ¢’ | L, a fiber homotopy rel L of g + ¢’ with ¢ + g can easily be
constructed in the same manner as the proof that [X; 2°Y] is Abelian
for pointed spaces X and Y, but the construction is done fiberwise
over B.

DEFINITION 3.1. A B-spectrum is an ordered pair
g = ({ei}izmy {ei}i;m)

for some integer m such that:

(i) For each ¢ = m, e¢; is a pointed B-bundle.

(ii) For each © = m, ¢;: ¢; — ¢;+, is a pointed B-bundle map.

Furthermore, we say that & is a Q,-spectrum if ¢; is a homotopy
equivalence (in the category 23*) for each 4, and we say that ¢ is
a weak Q,-spectrum if ¢; is infinitely connected for all 7 = m. We
say that e is stabilizing if, for each integer n, there exists an integer
N = m such that ¢; is (n+7)-connected for all ¢ = N. The e; are
called the elements of the spectrum, the ¢; are called the connection
maps, and m is called the starting value. If the first finitely many
elements of a spectrum are altered, no change occurs in cohomology
with coefficients in that spectrum; in that sense, the starting value
is arbitrary. We define the homotopy of a spectrum =x,(&) for any
integer m, to be the direect limit Lim,..7,.;e;, under the system of
homomorphisms

)izt Tpuils — Topi€iyy = Topir iy

thus 7,(%) is a local system of Abelian groups on B. Note that 7,(%)
need not be zero for negative values of n.

Henceforth, we shall assume that & = ({e;}ism, {€i}isn) is a B-
spectrum.

DEFINITION 3.2. For any integer =, let H"(K, L, f; &) be the
direct limit of the system of groups {[K, L; 2" "¢],;} and homo-
morphisms {(@"¢,),}. (If L is empty, we write HK, f;%).) For
any 7 = min (n, m), let

(K, L; 9", — H"K, L, f; &)
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be called the representation. If & is stabilizing, the direct limit is
achieved eventually, i.e., beyond some point, all representations are
bijective; if & is a weak @ -spectrum, the direct limit is achieved
immediately, i.e., all representations are bijective. We call
H*(K, L, f; &) the cohomology of the triple (K, L, f) with coefficients
in the spectrum &. If (K’, L') is another C.W. pair, and

r: (K', ') — (K, L)
is a map, an induced homomorphism
v*: H*(K, L, f; &) — H*(K', L/, for; &)

can be defined in the obvious way.

Henceforth, let (K", L”) be the pair (K x {1} UL x I, Lx{0}), and
let p; (K", L") — (K, L) be projection onto the first factor. The
reader can easily verify that p is a relative homotopy equivalence,
and hence by the direct limit version of Lemma 2.1,

p*: H*K, L, f; &) — H*(K", L", f o p; &)

is an isomorphism.
For any integer =, we define a connecting homomorphism

6: HYL, f; &) —> H""N(K, L, f; &)

as follows. For any ac HYL, f; &), pick ¢ = m and [g] e [L; Q" ¢],
representing a. Consider Q7 "¢, = QQ" " 'e,, Let p*oa be the image,
in the direct limit, of [G]e[K”, L”;Q" " ¢],.,, where G(z, t) = (ga)t
for all xe L and ¢ I, and where G(x, 1) = o'(fx) for all xe K, where
o' is the pointing of Qi '¢; da is well-defined since p* is an
isomorphisms.

The following remarks (analogous to some of the Eilenberg
Steenrod axioms for a cohomology theory [3]) we state without proof:

REMARK 3.3. The following long sequence is exact, where 7 and
7 are inclusions:

oo = HOL, 3 ) = BN (K, L, 3 %) < HY(K, f &)
JLH”(L, f3 ) —5—>H"+1(K, L, ; g/‘)__, ces

REmark 38.5. If r: (K, L')— (K, L), 0 <t <1, is a homotopy of
maps, where (K’, L') is another C.W. pair, such that for, = f o,
for all ¢, then » = r}.

Suppose now that f,: K— B, 0 <t <1, is a homotopy such that
fo=/f. Let F: K x I— B be the map where F (x,t) = f,o for all
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(x,t)e K x I. Let 4, 1%: (K, L) — (K x I,L xI) be the inclusions
along 0 and 1, respectively. According to Lemma 2.1., (¢;), is an
isomorphism for 5 = 0 or 1. Let

Fy= (i), (W) HYK, L, f; &) — H*(K, L, ; &) ,

clearly an isomorphism. Again without proof, we state:

REMARK 3.6. F, depends only on the homotopy class of F,
rel K x {0, 1}.

REMARK 3.7. If G is a homotopy of f, with f,, then
Gyo Fy = (F+G).: H¥K, L, f; &) — H*(K, L, fy; &)

where (F+G)(x,t) = F(x, 2t) if 0<t<1/2; Gz, 2t) if 125t <1,
for all ze K.

An immediate question one may ask is: if f, =f, is F, the
identity? The answer is generally no.

4. The associated spectrum and the single obstruction. Let

e = (E, ¢) be a B-bundle and h: L — E a lifting of f| L. Let
& = &(e) = ({eihizy {€ihiz)

be the B-spectrum where ¢; = >}""*Se for all + = 1, and ¢;: ¢; — Qe¢;,
is adjoint to the identity on e;., = >.,e¢;. We call & the B-spectrum
associated to e. We shall write ¢, = Se = (S;E, s, ¢, ).

Recall (K", L") = (K x {1} UL x I, LU {0}). We define I'(f; h)e
HYK, L, f; &) (or simply I'(f) when L is empty, or when h is under-
stood), the single obstruction to lifting f rel h, to be (p*)™* of the
representation of [H]e[K", L”; Sel;.,, where H: K" — S;E 1is the
map such that H(z, t) = [hx, ] for all (x,t)e L x I, and H(x, 1) =
(¢” o f)x, the North pole of e~ 'fx, for all xe K. We leave it to the
reader to verify that if f,: K— B, for 0 < ¢t < 1, is a homotopy, and
if h: L — E is a homotopy such that ek, = f,| L for all ¢, and if
F(x,t) = fix for all (v, t)e K x I, then F,[(f,; hy) = I'(f; h); i.e.,
I'{(f; h) is a homotopy invariant.

THEOREM 4.2. If f has a lifting to E relh, I'(f; h) = 0.

Proof. Let g: K— E be such a lifting. Let H,: K” — S,FE, for
0 u <1, be the rel L” lifting of f o p where H,(x, t) = [gx, tu] for
all0 <t u < 1. Then H, = H, while H, = s' o f o p, and we are done.

THEOREM 4.3. If e is (n—1)-connected for some n =1, and if
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dim (K/L) £ 2n — 1, then f has a lifting to E relh if and only if
I'(f; k) = 0.

Proof. “Only if” is the previous theorem. Suppose then that
I'(f; h) = 0. Without loss of generality, we may assume that L has
empty interior, whence dim K” < 2n — 1. By a Serre spectral sequence
argument, (Q''¢;): Q" 'e; — Q%,,, is (2n+1—1)-connected for all ¢ = 1,
whence, by Lemma 2.2, the representation

(K", L"; el sy — H(K", L", f > p; &)

is one-to-one and onto. Thus [H] = [s' o f o p]. Let H,: K” — S;E be
a fiber-homotopy rel L” such that H, = H and H, = s o f o p; define
G: K" — P,S,E to be the map where (Gy)u = H,y for all ye K".
Let 7: e — PSe be adjoint to the identity on Se = ¢,. Again, by a
Serre spectral sequence argument, 7 is (2n—2)-connected. Since
[K”, L"”, i o h: PSe];., is nonempty, [K, L, h;e]; is nonempty by
Lemmas 2.1 and 2.2, and we are done.

Suppose now that f,, g;: K— E are liftings of f relh. We
define 4(g,, g;; h)e H'(K, L, f; &), the single obstruction to fiber
homotopy, rel L, of g, with g, to be (p*)~* of the representation in
HK",L",fop; &) of [Gle[K"”, L"; 2Se];.,, where for all (x, t) K"
and all 0 S < 1:

[gx,2u] if t=0and 0 S u < 1/2
[g92,2—2u] if t=0and 12 u =<1

[hz, 2u(1—1)] if e L and 0 £ uw < 1/2

[hz, (2—2u)(1—)] if ve L and 12 u < 1.

Gz, hu =

We leave it to the reader to check that (g, g,; &) is a homotopy
invariant in the same sense that I'(f; h) is.
Hence forth, we shall write 2Se = (2,S;E, ¢, ¢).

THEOREM 4.4. If g, and g, are fiber-homotopic rel h, then
4(go, 915 h) = 0.

Proof. Let g, be a fiber homotopy rel L. Let G,: K"— Q,S,E,
0<v =1, be the rel L” fiber homotopy, where for all 0 < u, v < 1:
[, 2u] if £t =1, 0=u<1/2, and 11250 < 1.
[gw,2—2u] if t =1, 1/2<u <1, and 1/2Z0v < 1.
[k, 2u(1—1¢)] if xe L, 0=u<1/2, and 1)2<v <1,
[he, (2—2u)(1—¢)] if xe L, 1/2=<u <1, and 1/2<0v<1.
[g.2, duv(1l—t)] if 0= uw<1/2and 0 v <1/2.

[g.2, 41—w)v(l—¢t)] if 1/2<u<land 0Zv<1/2.

G.(z, hu =
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Note that G, = G and G, = ¢’ - f o p, and we are done.

THEOREM 4.5. If e is (n—1)-connected for some n > 1, and if
dim (K/L) £ 2n—2, then g, and g, are fiber homotopic if and only if
(g, 953 k) = 0.

Proof. “Only if” is the previous theorem. Suppose, then, that
A4(go, 93 ) = 0. Then G is fiber homotopic, rel L”, to ¢, since by
Lemma 2.2, [K", L"; 28Se];., — H' (K", L", f o p; &) is onto. A routine
argument using Lemma 2.1 then shows that <og, is fiber homotopie,
relio h, to 109, where 7: e — PSe is adjoint to the identity on Se.
Our result follows immediately from Lemma 2.3.

THEOREM 4.6. If g s any lifting of f rel h, and if
de H'K, L, f; &), then there exists some lifting ¢ of f relh, such
that 4(g, ¢'; h) = d, provided ¢ is (n—1)-connected for some n > 1 and
dim (K/L) < 2n — 1.

Proof. The representation [K, L; 2Se]; — H(K, L, f; &) is onto
by Lemma 2.2; pick a lifting, H, of f relc¢®o f| L which represents
d. Let s be the lifting of f to P,S,E:

(w2 if0=<t=<1/2

GO =1 o pa)@i—1) if12<t<1

where i: e — PSe is adjoint to the identity map of Se. Now by the
PCHEP of PSe, s is fiber homotopic to a lifting s’ where s|L' = 70 h.
Now 4, [K, L, h; e]; —[K, L, © o h; PSe]; is onto by Lemma 2.2. Choose
g to be any rel 2 lifting of f such that 4,[]¢’'] = [¢]. We leave it to
the reader to verify that 4(g, ¢’; k) = d.

The proof of the next theorem we omit; it is a routine homotopy
argument of the type the reader should by now be familiar with.

THEOREM 4.7. If ¢, 9, and g, are liftings of f rel h, then

A(goy g5 ) = A(go, 95 h) + A(gy, 925 R) -

COROLLARY 4.8. (Becker) If e is (n—1)-connected for some n>1,
and if dim(K/L) < 2n — 2, then [K, L, h; e]; has the structure of an
affine group, and, if monempty, is isomorphic to H'(K, L, f; & ).

Proof. See Becker [1] for the definition of an affine group. Pick
any [g]€lK, L, h; e];. Let ¢:[K, L, h; e];,— H(K, L, f; &) be given
by ¢lg] = 4(9,, 9; k). This function is well-defined, one-to-one, and
onto, and induces an affine group structure on [K, L, k; ¢], which is
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independent of the choice of g,, by Theorems 4.4, 4.5, 4.6, and 4.7.
We leave the details to the reader.

5. B-spectrum maps and a spectral sequence for H*(K, L, f; &).

Let & = ({ei}ism {&}) and &7 = ({a;};isn, {@;}) be B-spectra. We define a

B-spectrum map /& — .7 of degree d to be an indexed collection

{fi};sp, of pointed B-bundle maps, where » > max (m, n—d), such that

for any % > p, fi: ¢;— a;.4 and the following diagram is commutative:
&g

€; —

J

Ait+d

We can define ,,: H¥K, L, f; &) — H** K, L, f; .%7) for any integer
k to be the direct limit of the (f;),; similarly we can define

//s (&) — T_a( )

— €1

fi Sit1

Ai+d J'

T it .

for any integer k.

Let & = ({di}i=y, {0:}) be the fiber of /°, defined as follows. For
any 1 > p, d; = (D, d;, di) where

D; = {(w, 0) € E;x Al ;: 0(0) = (airqoe), 0(1)
= fiv, & a;..(0t) = e;x for all tel},

d;(x, 0) = e for all (v, 0)e D; and dib = (eib, <b)) for all be B, where
bt = aisb for all tel. Let §;: d*— Q2d;,, be defined as follows:
For any (x, 0)e D; and any tel, (6,(z, 0))t = ((ex)t, T), where tu =
(a;rq(ou))t for all we I. Consider the sequence of B-spectra and B-
spectrum maps (called the fibration sequence of ,):

£
(5-1) o a2 g‘/ e

where » = {¢;};», has degree 0 and « = {h;};2prs—, has degree —d+1;
defined as follows: For any (x,0)eD,;, hi(x, 6) = x; and for any
ye A, 9y = ((€i_gsr © @)y, @y). The sequence (5-1) is analogous to the
fibration sequence for any map of pointed spaces (where F' is the
fiber of f):

S

Y F X Y.

As in that case, we may, in a straightforward manner, verify the
exactness of the long sequences:
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#Zy 74 o St
o Ty ( ) —— (D) —— T (&) = Tpeg () —— - -+

4 z
> H*K, L, f; ) — HYK, L, f; 2) — HYK, L, f; &)

Loy B, L £ ) s e

We say that ' : & — o7 is k-connected if & is k-connected,
and we say that , is k-coconnected if < is k-coconnected, i.e.,
7. (=2) =0 for all »r = k.

Henceforth in this section, let & = ({¢;}i=n, {¢:}) be a B-spectrum.
We define a resolution of & to be a commutative diagram of B-spectra,
where each map has degree 0:

T k+1 7k

<
¢ T Gkt

N
\\/'k+1
AN

AN
SN

such that for any integer #, there exists an integer N such that ~,
is r-connected for all £ = N, and an integer M such that &, is -
coconnected for all £ < M. We are thus assured that H*(K, L, f: &)
is isomorphic to the inverse limit Lim,.. H(K, L, f; &) under the
homomorphisms ( ~,).. An important special case of a resolution of
« 1s a Postnikov resolution: that is where (4,).: 7,(&) - 7.(%)) is
an isomorphism for all » < k, and where each &, is (k+1)-coconnected.
In §6, we shall show that every B-spectrum has a Postnikov resolu-
tion.

Using a resolution of &, (5-2), we construct a spectral sequence
for H*(K, L, f; ). For any integer », we have a filtration of
H (K, L, f; &):

0Oc...cGtricG+rric...H(K, L, f; &)
where G? is the kernel of
(/o H(K, L, f3 &) —— H" (K, L, f: &,) .

(The conditions that ,, is highly connected for large k& and &, is
highly coconnected for small k& insures that the filtration has only
finitely many distinct terms.) For any k&, consider the fibration
sequence of ,,:
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2 “k 7k

Bt T S St -

Recall that -, and », have degree 0, and ., has degree 1. For any
integers p and ¢, define E/* = H* YK, L, f; 2%,;) and

Dpt=H"K, L, f; &) .
Let (2,); = 0t DP"— DF7"7Y, (eq41)e = Jot DP?— EP>74 ) and
(¢ = kyt EP* = — D7,
Using general spectral sequence arguments, we can verify that
d,. Bt —— Eptrotrt for all » = 2,

and that Ez? = G*~471/G*? for all p and q.

In the special case that (5-2) is a Postnikov resolution, we can
construct an E, term of the spectral sequence as follows. Let K" be
the r-skeleton of K, for any : K" = @ if < 0. For any p and gq,
let D = H»(K* U L, f; &) and E* = C*(K, L, f~'n (<)), the group
of cochains with coefficients in the local system f~'7,(%) over K. Let
1. Dt — Dbt and k. EP?— D?? be the homomorphisms induced
by the appropriate inclusions, and let j,: D»?— EP*"? be the connect-
ing homomorphism of the pair (K**'y L, K? U:L). The differential
d: C"(K, L; f'n(&)) — C** (K, L; f7'n,(%¢)) is then the usual co-
boundary on cochains with local coefficients, hence

Ert = HY K, L; f7'7(%)) .

We leave the rather routine verification that the above E, D, 1, 7.,
and k%, yield the correct E,, D, etc., to the reader. (Hint: If & is
k-connected, H*(K, L, f; &) =0 for all p=n—k, where n =
dim(K/L).)

We now explore the relation between the single obstruction and
the classical obstructions. Let us suppose that e = (E,e) is a k-
connected B-bundle, for some %k =1, and that diagram (5-2) is a
Postnikov system for & = & (¢). For any integer r, let ¢,: m.e — 7,.(¥)
be the composition

T, — 1, PSe = 1,.0Se = 7,6, —> 7.(&) ,

an isomorphism if » < 2k. Now suppose that f| K» N L has a rel &
lifting, g™, for some integer m. Then

¢I(f, ) = I(FK"UL; h) =0

by Theorem 4.2. Consider the commutative diagram of groups and
homomorphisms:
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H'(K, L, f; 20) —" L (K, L, f; =) -L L B(K, L, f; %)
| s
— /(/m—l)}

- ( 7m)#l

/
H"\(K, L, f~'7.(&)) H'K, L, f; &)

(Cmds

H"'(K, L; f~'m,e) .

Since &,_, is m-coconnected,
7:*: Hl(Ky L, f; g —-1) h— Hl(Km U Ly Ly f; g}m——l)

is an isomorphism. Thus (/,_).l'(f; h) = 0. Since .27, is the fiber
of 7, (Vu)e'(f; h)e(+,).H\K, L, 2,). The classical obstruction to
extending g¢™ over K™+ L, v(g™) e H**"(K, L; f~'w,e) up to some
indeterminacy. It is a routine matter of checking definitions to verify
that (.)y(tn)s7(9™) = (Fu)sl'(f5 R)-

6. Construction of the Postnikov resolution of & . For every
integer, n, we define a functor K,: .25* — 25* as follows. If n <0,
let K, be the identity. Otherwise, if e = (E, e, ¢) is a pointed B-
bundle, let B**' be a (topological) (n-+1)-ball with boundary S* and
basepoint *e S*. Let FEj5" be the space of all continuous maps
h: S™— E such that h(x) e ¢/(B) and e & is constant. Let e: Ef"—E
be the evaluation map, and let (K,);E = E U.(Ef" x B"*"). We
define K,e to be the pointed B-bundle ((K,);E, k, k'), where k' = ¢/,
k|E =e, and k(h, b) = (eo k) (x) for all (h, b)e (ES" x B*). If a:
e—a is any pointed B-bundle map, we define K,a: K,e— K,a in
the obvious way: K,o«| = «a, and (K,a)(h,b) = (@oh,b) for all
(h, b) e E5" x B™*'. A very simple homotopy argument shows:

REMARK 6.1. (i) For all k< m, i: me—m(K,e) is an iso-
morphism, where i: ¢ — K,e is the inclusion. (ii) =,(K,e) = 0.

We define functors K!: 25* — 225* for all integers n < 7, induc-
tively, as follows: K = K,, and K" = K, ., K for all n <r. It is
very simple to see that the “union” J:.K; is also a functor, which
we call K1 25* — 25*. We call K,, K7, and K;° homotopy-killing
functors. The following remark is an immediate Corollary of 6.1:
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REMARK 6.2. (i) 4. me—m(K,e) is an isomorphism for all
k < m, where i: ¢ — K,e is the inclusion. (ii) 7, (K,e) =0 for all
k= n.

Thus K, is the analogue of the (n—1)"" stage in the Postnikov
tower of a space. In order to pass to spectra, we must examine the
relationship between the homotopy-killing functors and the looping
functor. We define a pointed B-bundle map 7T,: K,Q¢ — 2K, ,.e for
all integers n as follows: If n <—2, T, is the identity. If n = —1,
T, = 2i: Qe — QK,e, where i: e — K is the inclusion. Otherwise, let
T.: 2,E U.(2,E)S" x B*) — Q4E U.(E5"" x B"*')) be the identity
on QzFE, and for any (h,b)e (2,F)5" x B**, and any tel, let
(T (h, b))t = (h, [, t]). Note: B"** = 3 B and (Q2,E)}" = E5"".
We leave it to the reader to verify that (7,),: 7, (K,Q¢) — 7, (2K, .e)
is an isomorphism for all £ < =n.

Similarly, we define T;: K;Qe¢ — K;Ile inductively for all n < »
as follows: Tp = T,, and T = T,,, o (K,;,T7) for all » Zn. In an
obvious way we can then define T,: K;°Qe — QK> e. We leave the
proof of the following to the reader:

REMARK 6.3. The B-bundle map T,: K;:Qe¢— QK¢ is a weak
homotopy equivalence.

We are now ready to define the Postnikov resolution of B-spectrum
% = ({e;}szm, {€i}). For each integer n, let

& = ((Kiivi€idizm (Tiv o (Kurisi€)}) -

Let #,: & — &, = {Di}izm, Where p;: ¢, — K,.;.,e; is the inclusion, and
let 7,: &, — &y = {Qui}izm, Where q,; = K7 ;1,50 K7 e — K26,
where j: ¢, — K, ;e; is the inclusion. The resolution of & described
above (see diagram (5-2)) is a Postnikov resolution, by Remarks 6.2
and 6.3.

I wish to thank the referee for many helpful suggestions.
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