PACIFIC JOURNAL OF MATHEMATICS
Vol. 42, No 1, 1972

A CHARACTERIZATION OF GENERAL Z.P.I.-RINGS 1I

KATHLEEN B. LEVITZ

A commutative ring R is a general Z.P.l.-ring if each
ideal of R can be represented as a finite product of prime
ideals. If R is not a general Z.P.I.-ring, it is still possible
that each principal ideal of R can be represented as a finite
product of prime ideals. In this paper, it is shown that if
R is a commutative ring in which each ideal generated by
two elements can be written as a finite product of prime
ideals, then R must be a general Z.P.l.-ring.

Let R be a commutative ring. R is a general Z.P.I.-ring if each
ideal of R can be represented as a finite product of prime ideals. In
a previous paper, we proved that R is a general Z.P.l.-ring if each
finitely-generated ideal of R can be represented as a finite product
of prime ideals [4; Theorem 2.3]. If each ideal of R generated by
n or fewer elements can be represented as a finite product of prime
ideals, then we define R to be a 7(n)-ring. Mori completely charac-
terized the structure of =(1)-rings in a series of four papers [5, 6,
7, 8]. Using his characterization, it is not difficult to construct a
m(1)-ring that is not a z(n)-ring for any » > 1. For this reason it
is surprising that the main result of this paper is the following
theorem.

THEOREM. Let R be a commutative ring. Then the following
conditions are equivalent:

(a) R is a general Z.P.I.-ring;

(b) for n=2,R is a n(n)-ring;

(¢) R is a w(2)-ring.

Throughout this paper, R denotes a commutative ring and =
denotes an arbitrary positive integer.

2. m(n)-rings without zero-divisors. If D is an integral domain,
we call a prime ideal P of D minimal if P is of height one. An
integral domain D with identity is a Krull domain if there is a set
of rank one discrete valuation rings {V,} such that D = N, V, and
such that each nonzero element of D is a non-unit in only finitely
many of the V,.

ExaMPLE 2.1. An integral domain D with identity is a «(1)-ring
if and only if D is a Krull domain in which each minimal prime ideal
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is invertible [4; Theorem 1.2]. If Z denotes the rational integers,
then the polynomial ring in one indeterminate Z[x] is a w(1)-ring and
Z[x] is not a m(n)-ring for any n > 1.

Henceforth we refer to m(n)-rings without zero-divisors as m(n)-
domains.

LEMMA 2.2. Let R be a w(2)-domain with identity. Then R is a
Krull domain in which each prime ideal of height one is tnvertible.
Moreover, the prime ideals of height one are pairwise comaximal.

Proof. If R is a m(2)-domain, R is a w(1)-domain. It follows
from [4; Theorem 1.2] that R is a Krull domain in which each
minimal prime ideal is invertible. Let P, and @ be distinct minimal
prime ideals of R. Let a € P\Q. Then

8

(@) = g P,
where, for each 4,¢; =1, P, = @, and P, is a minimal prime ideal.
Let b € Q\Ui, P.. Then

@@:ﬁ@@@:ﬁ&,

where for each j and %k, R; and S, are prime ideals of R.

If bt € (a) for some t € R, then (bt) C I, Ps. If for each 4,
1<7<s we let v; denote the valuation on R with respect to the
minimal prime ideal P;, then v,(bt) = e; while v,(b) = 0. Hence t € P{?,
the e;th symbolic power of P,. Since for each 1, P; is invertible, it
follows that P{¥ = P¢ [9; Lemma 21], and so t € P§. Because each
P; is invertible, we can use an induction argument on s to conclude
that ¢ e T[i., P& = (a).

If R = R/(a), and b is the image of b in R, the above argument
shows that b is a regular element of B. In R,
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By [1; Theorem 1], the factorization of the ideal (3 is unique up to
factors of R. It follows that p = 2m, and that we can index the
ideals S;,1 < k£ < p, so that

Ra‘ = SZJ'—-]. = Ogzj
Hence (a, b)) = [17-. S, = [I™, (R,)* = (a, b)>. Thus
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(a) < (a, b°) = (a, b)* C (a%, D) -

If 2 € (a), then & = ra® + sb, where r,s ¢ R. This implies that sb ¢
(@), and, consequently, s € (a). We conclude that

(@) & (a)(a, b) -

Since the reverse conclusion is always wvalid,

(@) = (a)(a, d) .
Because a = 0, it follows that
R=(bs(P,QcR.

Hence the minimal prime ideals of R are comaximal. This completes
the proof of the lemma.

An integral domain with identity that is a general Z.P.I.-ring
is called a Dedekind domain.

THEOREM 2.3. Let R be an integral domain with identity. The
Sollowing conditions are equivalent:

(1) R is a Dedekind domain,

2) for mn =2, R is a n(n)-domain ;

B) R is a n(2)-domain.

Proof. (1 — 2) By definition of Dedekind domain.

(2 — 3) By definition of 7(n)-ring.

(8 —1) By Lemma 2.1, R is a Krull domain in which prime ideals
of height one are invertible. To conclude that R is a Dedekind
domain, it suffices to show that R is of Krull dimension one [3;
Theorem 35.16]. Each non-unit of R is contained in some minimal
prime ideal. Hence, if R has a unique minimal prime ideal P, P is
also the unique maximal ideal of R, and R is of Krull dimension one.
If R has more than one minimal prime ideal, then by Lemma 2.1,
all these prime ideals are comaximal. If @ is any nonzero proper
prime ideal of R, there is a minimal prime ideal P such that P < @
[3; Corollary 35.10]. If P+ @, there exists b € Q\P. (b) = [i-, S;
where for each 4, S; is a minimal prime ideal of R and S; = P. Since
be Q, for some 43,1 <1<t S;C Q. But this implies that R =
(P,S;) = Q. Hence Q = P, and R is of Krull dimension one. This
completes the proof of the theorem.

THEOREM 2.4. Let R be a w(2)-domain without identity. Then
R is a general Z.P.I.-ring.

Proof. Each minimal prime ideal of R is a principal ideal [8;
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Theorem 26]. If R contains a unique minimal prime ideal (p), then
it must be the case that R = (p) [8; Lemma II]. We assume that
R contains two distinct minimal prime ideals, (p) and (¢). Using the
same argument we did in Lemma 2.2, we can show that

(») = (P)(», @ -

Since (p) is a regular ideal, it follows that R must have an identity
[2; Corollary 5.2]. Therefore, since R has no identity, it must be
the case that R is the only nonzero prime ideal of itself.

Let A be a nonzero ideal of R. Then there is a smallest positive
integer » such that R"c A< R**'. Let a ¢ A\R". Since (a¢) = R*
for some k < m, it follows that R"C (a) = R* S A S R™'. Hence
A = R™', Because each ideal of R is a power of R it follows that
R is a general Z.P.I.-ring [10; Theorem 2]. This completes the
proof of this theorem.

3. Main result.

LEMMA 3.1. Let R be a w(2)-ring with identity. If R is the
direct sum of finitely many rings, R = S}t R;, then each direct
summand R; is also a w(2)-ring.

Proof. Let R; be one of the direct summands of R, and let 4; =
(@, ay;) be an ideal of R; generated by two elements of R;. Let ¢;
denote the identity of the direct summand R;,1 <7 < k. Then if 4
is the ideal of R generated by the two elements (3.;e;) + a,; and
(Zis&j ei) + @y, then

A=TIP

where for each r,1<r < t, P, is a prime ideal of R. Then A4; =
AR; = (1=, P)R; = I1i-. (P.R;). Since for each r, P,R; is a prime
ideal of R;, A; can be expressed as a finite product of prime ideals.
Hence R; is a m(2)-ring.

A principal ideal ring R with identity is called a special primary
ring if R contains only one prime ideal M == R and if M* = (0) for
some positive integer k.

THEOREM 3.2. Let R be a commutative ring. Then the following
conditions are equivalent :

(a) R is a general Z.P.I.-ring;

(b) for n=2, R is a w(n)-ring;

(e) R is a w(2)-ring.
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Proof. It is clear that (a) implies (b) and that (b) implies (c).
We now show that (c¢) implies (a). We consider three cases: (1) R
is a commutative ring with identity; (2) R is a commutative ring
without identity, but with zero divisors; (8) R is an integral domain
without identity.

If R is a commutative ring with identity, then R is a direct sum
of 7(1)-domain with identity and special primary rings by [7; Haupt-
satz]. Using [10; Theorem 2], we can conclude that R is a general
Z.P.I.-ring if any summand R; of R that is a domain is Dedekind.
From Lemma 3.1 it follows that each summand of R is a n(2)-ring.
Hence if the summand R; is a domain, R; is Dedekind by Theorem
2.3. Thus a 7(2)-ring with identity is a general Z.P.lL.-ring.

If R is a commutative ring without identity, but with zero-divisors,
then R=M or R= M+ K, where K is a field and M is a ring
without identity such that each ideal of M is a power of M [8;
Hauptsatz 11]. R is a general Z.P.I.-ring by [10; Theorem 2].

The last case is settled by Theorem 2.4.
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