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A TECHNIQUE FOR THE DETECTION OF OSCILLATION
OF SECOND ORDER ORDINARY

DIFFERENTIAL EQUATIONS

V. KOMKOV

An iterative procedure is used to determine the oscillatory-
properties of second order linear differential equations, using
a repeated application of the Kummer-Liouville transforma-
tion.

l The Kummer-Liouville transformation. We shall consider
the oscillatory properties of the equation

(a(t)x'Y + c(t)x = 0 (' = £)
dV

(1) a{t) e Cι[ta, oo), a(t) > 0 ,

c(t) e C[t0, oo) .

Let ψ{t) e Cι[t0, oo), Ψ'(t) > 0, lim(^.9>(ί) = » ,

ψ{t) e C2[t0, oo), ψ(t) Φ 0 , tt g. t < oo .

It was shown by Kummer ([5], 1834) that the transformation τ =
<p(ί), a (ί) = ψ(t)y(τ) transforms the equation (1) into an equation of
the same form:

Q{)v{) = 0 .

The formulas for R(τ), Q(τ) are:

R(τ{t)) = a{t)φ'{t)ψ\t)

Q{τ{t)) = \{a(t)ψ'(t))' + c(t)ψ(t)[φ'{t)Γ]f{t) ,

(see [5], or the expository article [7]) Moreover, if φ{t) is chosen to
be

φ{t) = Γ [α(f)f 2 (f)]^ί ,

then the equation (lα) assumes the form

(2) iT(τ) + *(τ)i/(τ) = 0 .

S oo

[αί ί ) ]" 1 ^ = oo, the choice ψ(t) = 1
results in the formula
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(3) σ(τ) = a(t)c(t) (This was known to Liouville) .

For the case when I [a($)]~^ < °°, it is convenient to choose
ho

( 4 )

(5)

With the above choices the equation (2) is oscillatory if and only
if the equation (1) is oscillatory.

2* An iteration of the Kummer-Liouville transformation* We
introduce a transformation

(6) ^ ) = ^ ) e x p ( ^ ( T ) ) ,

where Φ^τ) is a real valued function of the class C2 on [t0, oo)#

Obviously the zeros of y(τ) and of η{τ) will coincide on [t0, co). We
compute

( 7) y" = {[C + (Φ02fr + 2Φy + ψ\ exp

and we have

exp (<Z\(

(exp (20^)))/)' + exp 2Φ1(τ)[σ(σ) + ΦJ' + (ΦO2]^) = 0

The equation (8) is again of the same type as the equation (1) and
we can again apply the Kummer-Liouville transformation. There are
two possibilities.

(**) Γexp(-2Φ(f))rff< - .

We shall only consider in detail the case (*), that is, we choose Φ^ξ)
so that the condition (*) is satisfied. It suffices if Φ(ξ) is bounded
above on some ray [ζ09 +©o).

The transformation

*) Tι - φfr) = Γexp

then changes the equation (8) again into the equation of the form (2)
(We shall refer to this specific form of Kummer transformation as the
Kummer-Liouville transformation).
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(2α) j/ί'ίτO + σfrMτd = 0 > where

( 9 ) ^ ( τ ) ) - exp ( ^ ( r ) ) ^ ) + Φ['{τ) + (Φ'(r))2] .

We observe that the inverse function φz1: τ1—*τ is defined on
[0, oo), since φ1 was monotone increasing, mapping [t0, oo) onto [0, oo),
and Oyiτ^) can be written in explicit form if the variable τ is replaced
by φ~\τύ on the right hand side of the equality (9).

Since the equation (2α) has the same oscillatory properties as (2),
this can be used to derive new criteria of oscillation, or non-oscilla-
tion from a known oscillatory criterion.

As an example we shall derive the Leighton criterion that equa-
tion (2) is oscillatory if

from the Leighton-Wintner criterion

(A) [~σ(t)dt = + oo .

EXAMPLE 1. We choose Φ^t) = A logί, t > 1, A <; 1/2.

^<i,

The transformation of variable

-2/1 + 1 2
Γ =

log ί A = -L ,

gives in the particular case Λ = 1/2

feΓΐ -
4

- e2ΐσ(eτ) - — .

The Leighton-Wintner condition becomes

(B) \~[ξσ(ξ) - ±]dξ = + - ,

which is Leighton's condition.
If on the other hand we choose A = 1/4, we obtain the following

sufficient condition for oscillation of (2):

(C) [°(tll2σ(t) ~
16
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Obviously one can experiment with other choices of the function Φx(t)
and with other necessary, or sufficient conditions for oscillation of (2).

With the same choice of Φ^t) = A log t, 0 < A ^ 1/2, we have for
example the following generalization of Wintner's criterion:

(10)

If for any A < 1/2,

Jim ί^f ' j fTr 8 V(r) - Λ(l - Λ)τ2Λ-*]dτ\d7} - + oo ,

then the solutions of (2) are oscillatory.

EXAMPLE 2. (An alternate form of Wong's theorem). In [9]
Wong has shown that a necessary and sufficient condition for the
existence of a bounded oscillatory solution of (2) is:

1 tσ(t)dt = + °° (see also [16], and [6] for generalization to

higher order equations).

Since boundedness is not necessarily preserved by the Kummer trans-
formation, we shall only use the sufficiency condition for non-oscilla-
tion known to Bδcher [2].

S CO

tσ(t)dt < oo (also known as Kondrat'ev's lemma) .

Substituting as before

Φ^t) = A log t , A = — , we obtain

*) - -L)dr = j°°log ξ

f n

- log t(tσ(t) - ±Λdt < oo , ί0 ^ 1 ,
J *0 4ί /

as a sufficient condition for non-oscillation of (2), which is of interest
on its own merits.

Clearly a great variety of new necessary, or sufficient conditions
could be generated from known conditions for oscillatory behavior of
solutions. We shall not pursue this much farther, but will conclude
this section by offering one more example.

We consider the equations:
(a) y" + sin t y = 0 ,
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(b) y" + [sin21 cos (cos t) — cos t sin (cos t)]y = 0 .

The equation (a) is known to be oscillatory. A proof of the oscil-
latory behavior of (a) was originally given by in 1946 (using a Fourier
series expansion of the solution); see [11], however it is easily settled
by a result of Hartman of 1952, [4]. A proof of oscillation of (b) is
not immediately obvious. Both are easily given if one chooses Φx{t) =
sin t for (a) and Φ^t) — cos (cos t) for (b).

We have in the case of (a)

S
oo pco J -

σγ{t)dτ = [exp (4 sin *)] cos2 t—dt
J dt

S oo

[exp (2 sin t)] cos21 dt — + °o ,

S d+2rr
σt(t)dτ is a positive number independent of d on any interval

d

[d, d + 2τr]. This proves the oscillatory behavior of (a).
In this case of equation (b), we have chosen:

φ(t) — cos (cos t)

(φ'γ + φ» + σ(t) = sin21 sin2 (cos t)

and it is clear that:

S oo

[exp (2 cos (cos £))][sin21 sin2 (cos t)]dt — + oo
JΓ/2

for exactly the same reasons as in the case (a).

2* An iterative procedure. Since equation (lα) and (1) are
identical in form, the Kummer transformation can be iterated any
number of times. Using at each step the additional transformation
(6), i.e. y(τt) = η(Ti) exp (Φί+1(Ti)), we obtain a sequence of equations
of the form:

y'l(τ%) + σάτύyfa) = 0

where

^fafo-0) - exp

If the condition (*) is obeyed by each choice of Φi(r), ΐ = 1, 2, •••, fc,
we arrive at a sequence of transformations, with new variables τ {

defined by

τ{ = [Γ<"exp (-2^(ί))(if - ^ ( r ^ ) ,

where c is a suitably chosen constant. It would appear at a first
glance that litte could be gained by such iterative methods, since a
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product of two Kummer-Liouville transformations is again a Kummer-
Liouville transformation, and in fact

can be replaced by a single transformation of the same kind. This
does not mean that such a procedure is not of practical use for
"improving" in some sense the oscillatory properties of a given second
order equation. A meaning of the term "improving" will be given
later in § 3 of this paper, when we define the "speeding up" of oscil-
lation. At this point we shall only show that new formulas are
obtained by iterating twice, even if the same function Φ^ζ) = Φ2(ζ) is
used in consecutive steps, and that indeed there are equations for
which the second iterative formula gives an easily applicable sufficient
condition for oscillation, while the formula obtained in the first itera-
tion, and the original criterion were inconclusive. Moreover, the choice
of the function (^(r^) at each step was routine, while the choice of
a function ψiiz^ is very complex.

Let us as an example iterate once more the Leighton-Wintner
criterion, using the same choice of function Φx{t) = (1/2) log ί, Φ2(τ1) =
(1/2) log rx. After the first iteration we had:

σx{t) = exp(4Φ1(ί))[σ0(ί) + (Φ\t)f + Φ"(ί)]

with τλ = j'exp ( - 2 0 ^ ) ) ^ , (σQ(t) = σ(t)) .

In this case with the choice Φ^t) = (1/2) log t, and τ1 = log ί, we have

Using again the same choice Φ2(̂ i) = (1/2) log τ19 we obtain a second
iterative function

The Leighton-Wintner criterion can be rewritten in the following
form:

= + oo .

A substitution ξ = eTί results in the following sufficient condition for
oscillation:
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As an example of application we consider the equation

= 0 , a>0.tf+ Ml +
4ίa \ log2

Application of condition (F) confirms that solutions of this equation
are oscillatory if a > 1. (It is known that this equation is non-oscil-
latory if a < 1/4.)

Further interesting criteria are easily developed by other itera-
tion of formulas (10) and (11) with other choices of functions Φ^τ^.
This technique is summarized in theorems 1 and 2.

THEOREM 1. Let {Φi{ξ)} be a sequence of functions such that each
function Φi{ξ) is of the class C2 on some infinite ray [ξi0, + <*>], and
has the property

then the equation

(2α) α>"(«) + σo(t)x(t) = 0

is oscillatory if and only if the equation

(2s) »ί'(rι) + σfrύvfa) = 0

is oscillatory, where σi9 r4 are determined recursively by the transfor-
mations (12) and (13) given below.

(Note: In the case where 1 exp ( — 2Φi)eZ£ < ©o, the alternative

formulas (14), (15) are available.)

(12) σfa^ = exp {4Φ<(r<.1)}[σί_ι(r^1) + (Φ^τ^Y + ΦJ'fa)] ,

(13) τ, - φfa^ = Γ'"1 exp (-2Φ4(

We use here the notation:

ί'ί̂ -O = -βr-Φ^i-d , etc .

It is clear that any oscillation, or non-oscillation tests applied to (2δ)
will be valid tests for solutions of (2α).
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As an example of application of this theorem we prove that the
solutions of Mathieu equation

(a) x"{t) + {a + β sin t)x = 0

are oscillatory if a > — (β2/2).
We introduce Φ^t) = β sin t.
Hence

σ^t) = exp (4/9 sin t)[a + β sin t + β2 cos2 ί - /9 sin t]

= exp (4/9 sin ί)[α + /92 cos2t]

σi(t)^Iλdt = exp (2/9 sin ί)[α + β2 cos2

dt J

However if α > -(/92/2), then

\d+π(a + /92 cos2 t)dt > 0 , and

"{exp (2/9 sin ί)[α + β2 cos2 ί]}dί = C ,
d

where C is a constant independent of d. Hence the transformed equa-
tion

( b ) y"(τ) + σ^yiτ) - 0

is oscillatory.
(See the 1963 article of Zubova [12] for a discussion of more detailed
results concerning the Mathieu equation.)

There are many ways of interpreting Theorem 1. For example,
we can restate Theorem 1 in the following way.

THEOREM 1\ If there exists a C2 function f(t) > 0, te[t0, oo),

such that I f~~ι(t)dt — oo and if

[~Lf - ill + Illdt -
J I 4f 2 /4/

then the solutions of (2) are oscillatory.

This result is obtained immediately by identifying

An application of this result to detect oscillation in the case when
j oo

σ(t) > 0 for sufficiently large values of t, and 1 σ(t)dt < oo, is obtained
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by putting f(t) = 1/σ and observing that for sufficiently large values
of t, log 1/(7, and (logl/σ)"1 is defined. Hence on some ray [t, oo) we
have the condition:

f Ύ i - ΞL -
J V σ3 2σ3

as the sufficient condition for oscillation. Since there seems to be no
immediate application of such criteria, we shall not pursue this line
of reasoning any further.

3* The "speeding up" and "slowing down" of oscillations* We
consider the transformation T: a{ —» σi+1 as defined by formulas (12)
and (13), and the representation σί+1(τi+1) = σi+ι(τi+ι(τi)).

It is clear that in the cases when we suspect oscillatory behavior
we are interested in such transformations with the property

dτ.

for all (almost all) τ< on some ray r< on some ray r^e [?, oo). On the
other hand if we wish to demonstrate that the equation is disconju-
gate beyond some point τ, we are interested in transformations which
reverse the above inequality, i.e. we want the transformation to have
the property

Ti+ίσi+ι(τί+1(τi)) < OiiZi) on some infinite ray [?, °°) .

This is equivalent to the statement, that we choose Φ such that

exp (2Φ)[σ + {Φ'f + Φ"] - σ > 0 in the first case, and

exp (2Φ)[σ + {Φ'f + Φ"] - σ < 0 in the second case

on some ray [t0, oo). We shall say that these transformations "speed
up" or "slow down" respectively the oscillation of (2).

Looking at the second inequality, and rewriting it in the form

(φγ + φ" + σ - σ exp (-2Φ) < 0

we can regard it as Ricatti's inequality in the variable Φ' — u:

u2 + v! + p(t) < 0 , where p(t) = σ[l - exp (-2Φ(t))] .

This inequality can be satisfied on [t0, oo) by some u — Φf only if the
equation y" + σ(l — exp { — 2Φ))y = 0 is disconjugate on [t0, oo).

EXAMPLE. The choice of Φ(t) = (l/2)α log t can result in slowing
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down of oscillation only if the equation y" + σ(l — t^)y = 0 is dis-
conjugate on some ray [t0, oo).

The following theorem is an immediate consequence of our dis-
cussion.

THEOREM 2. Let us assume that the equation (2), i.e. y" + σ(t)y =
0 is disconjugate on some ray [tQ, oo), on which σ(t) is positive. Then
there exists a function Φ(t) e C2[t0, oo) such that a transformation deter-
mined by Φ(t) and defined by formulas (12), (13), or alternatively by
formulas (14), (15) below, slows down the oscillation of (2)

Proof. Let us assume that the equation (2) is disconjugate on
[tQ, °°), and σ(t) > 0 on [t0, oo). Then there exists a function ue
C'tfoy °°)> such that uf + u2 + σ(t) ^ 0 for all ίe [t0, oo). Hence it is
possible to find a function Φ(t) e C2[t0, oo) such that {ΦJ + Φ" + σ(t) g
0, te [t0, oo). Let us assume that

ί~ exp {-2Φ)dt = + oo .

Then the transformation determined by Φ(t) as defined by (12) and
(13) will "slow down" the oscillation of equation (2). If this statement
was false, then on some subinterval of [ί0, °°) we would have

(φγ + φ» + σ(l - exp (2Φ)) ̂  0 ,

implying that on this subinterval — σ(t) exp( — 2Φ(t)) ̂  0, which is
impossible.

In the case \ exp ( — 2Φ)dt < oo (which is the only remaining case),

the Kummer transformation is determined by the formulas

(14) τi+1 = Γexp (~2Φ(ξ))dξ - ψ{τ<)

(15) an+l{?i) = exp (4Φ(τi))[σ%(rί) + Φ" + (ΦJW{τ%) .

Again the denial of the condition of "slowing down" of the oscillation
involves the inequality

(φγ + φ" + σ(l - ψ~* exp (-2Φ)) ^ 0

which by a repetition of previous arguments would imply

-σψ*exv(-2Φ) ^ 0

on some subinterval on which σ(t) > 0, which again is impossible.
This concludes the proof.

NOTE. The referee has pointed out that the idea of iterating the
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Kummer-Liouville transformation is not new, and is in fact proposed
in the book of R. Bellman [1], pp. 120-122.
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