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WATTS COHOMOLOGY AND SEPARABILITY

ANDREW T. KITCHEN

A cohomology theory, HχA9 for commutative K-algebras,
A, is discussed for the case where K is a field. This was
originally introduced by C. E. Watts in connection with rings
of continuous functions. N. Greenleaf computed H£A in the
case where A is an extension field of K. In this paper it is
shown that, for any iΓ-algebra A, the separable closure of K
in A can be identified with Ή°κA. Furthermore Greenleaf's
result is extended to a substantial class of local algebras.

I* Let if be a field and A a commutative if-algebra with unit
element 1. In [4] Watts described a cochain complex CKA, based on the
additive Amitsur complex FKA [3]. He showed that in the case where
K = R and A = C(X), the ring of continuous real valued functions
on the compact Hausdorff space X, the cohomology of this complex
is naturally isomorphic to the real Cech cohomology of X. At the
other extreme Greenleaf in [2] proved the following result. If L is
an arbitrary extension field of K then CKL is naturally isomorphic
to FL$L, where Ls is the separable closure of K in L. Thus the
homology of CKL is trivial, except in dimension zero where H°(CKL) ^ Ls.

In this paper we investigate further the part separability plays
in this theory. Letting As be the separable closure of K in A (see
§2) and writing H&A for HP(CKA), we prove the following results.

THEOREM 1. If A is an arbitrary K-algebra then Ή&A = As.

THEOREM 2. Let A be a (not necessarily Noetherian) local K-
algebra with unique maximal ideal, m. Suppose the image of A8, under
the canonical map of A onto A/m, is separably closed in A/m; then
CKA is naturally isomorphic to FAsA.

From Theorem 2 it follows that, for such an algebra, Hi A = 0
for p > 0.

At the end of the paper we mention some interesting classes of
local algebras which satisfy the hypothesis of Theorem 2.

2* The complex FKA is the additive Amitsur complex [3, §4]
with a dimension shift of 1: FlA is the p + 1 — fold tensor product
of A over K, and the coboundary map dp: FlA —• F£+1A is given by
W o ® <g> Λ) = Σfi 1 ( - l)\fo <g> (x) /Vi (x) 1 (X) fi (X) (g) f9.
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PROPOSITION 1. The complex FKA has zero homology, except in
dimension zero where H°(FKA) = K.

Proof. See [3, Lemma 4.1]

Let μ p: FiA —> A by μp(fQ (x) (x) fp) = f0 Λ The subcomplex
NKA is defined as follows

N£A = {/ G FM13# G J P | A with μ ^ a unit and fg = 0},

this is easily seen to be equivalent to Watts' definition. The Watts
cohomology is then the homology of the complex CKA — FKA/NKA.

An element / G A is said to be separable over K if there exists,
a polynomial p e K[X], such that p(f) = 0 and £>'(/) is a unit in A.
The separable closure, A8, of if in A is the set of elements of A
which are separable over if, it is a subalgebra of A (see §3, Corollary
to Theorem 1).

3* From the definition of CKA it is clear that we can consider
Hi A to be embedded in A.

PROPOSITION 2. If A is an arbitrary K-algebra then As c H^A.

Proof. If / G A8, let p = αwX% + + α0 G if [X] be such that-
p(f) = 0 and pr(f) is a unit. Define

Then /«1^_1 = kp-\ Ji g = ajιn^ + + a A, then (1<8>/—/<8)l)flr = 0»
and ^ ^ = p'{f). Thus d1/ G Nι

κA, so f e HQ

KA.

LEMMA. If R is the Jacobson radical of A then R Π H°KA — 0.

Proof. If / G HiA, then there exists g e Fι

κA such that μtg is a
unit and (1 (x) / — /(x) 1) βr = O. Suppose / is also in R. It then follows
that, for each maximal ideal m, the image of / under the natural
map φ: A —> A/m(= L) is zero. Thus (1 (x) /)#' = 0 in L (x)̂  A, where
βr' is the image of g under the map ψ (g) 1: A 0 X A —> L (x)x A. Now
g' can be written gr' = Σ ^ ® ̂ <> where the elements λf G L are linearly
independent over K. It then follows that fg{ — 0 for all i. As //^
is a unit a simple argument shows that, for some i, ̂ ^ ̂  0. So, for
each maximal ideal m, there exists gm such that gm$m and /# w = 0.
Therefore Ann (/) = A and / = 0.

Proof of Theorem 1. If / e i?£A then there exists g = Σ?=i



WATTS COHOMOLOGY AND SEPARABILITY 101

e FY

KA such that Σ Q% ® hf — Σ 9if ® h and μγg is a unit. In
fact

Σ; = Σ 9ifk

for k — 0, 1, 2, . We can assume that gu , gn are linearly inde-
pendent over K, in which case hjk is in the ίΓ-module spanned by
hl9 "*,K It follows that there exists a polynomial qi^K[X] such
that h&iif) = 0. Hence, because μ^ is a unit, q(f) = q,(f) qn(f) =
0. Thus / is algebraic over K.

For each maximal ideal m, the image of / under φ:A—* A\m{ — L)
is in HKL. Hence, by Greenleaf's result [2], there exists an irreducible
polynomial pm e K[X] such that pm{φf) = 0 and p'm(φf) Φ 0. Now
ψf satisfies q, so pm divides q and there are, therefore, only a finite
number of distinct pm. Let pu , pr be those distinct polynomials
and let p = j>! p r . Clearly p(/) G Rf]H^A so p(/) = 0. A simple
argument shows that p'(f) is a unit. Thus HκA<z.As.

REMARK. The proof shows that H^A, and thus A8, can be
described as follows: / e H%A if and only if there exist distinct
irreducible separable polynomials pu , pr e K[X] such that pλ{f)

vΛf) - o.

COROLLARY. The separable closure, A8, of K in A is a K-algebra.
Furthermore if A is a local algebra then As is a field extension of K.

Proof. By Theorem 1 we can identify As with H^A. The first
part of the result can then by proved easily once we observe the
identity

/flr®l = ( l ® / - / ®1)(1 ® Q) + (f ® 1)(1 ® 9 - 9 ® 1) .

If A is local and / is a nonzero element of H^A, then the minimal
polynomial of /, constructed in the proof of Theorem 1, is clearly
irreducible over K. Thus the subalgebra K[f] of H^A is a field, and
so f-'e H«KA. Therefore H°KA is a field.

4* The following proposition is proved in [2]*

PROPOSITION 3. If L is a separable {algebraic) extension field of
K then NIL = ker μp.

Using an inductive argument based on Proposition 2, we can in
fact remove the restriction that L be a field.
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PROPOSITION 4. If the field L is separable over K and A is an
L-algebra, then the natural map θ: FKA -—• FLA induces an isomorphism,
CKA s CLA.

Proof. The induced map is certainly a surjection. On the other
hand, by Proposition 3, the sequence

0 > NIL > F£L > L > 0

is exact. Applying the exact functor FlA 0B ( )> where B = F&Lf

we obtain the exact sequence

0 > FlA (x)β NIL > FlA > F£A ®B L > 0 .

However in FlA (x)B L

ao (x) (x) λα̂  (x) (x) ap (x) 1 = α0 (x) (x) at (x) (x) ap (x) λ .

So the map of FlA ®B L onto FlA, induced by taking α0 (g) (x) ap (x) λ
to α0 (x) 0 Xap, is an isomorphism. The composition of this map
with 1 (x) μp is ^p, and the kernel of 6̂^ is thus the image of FlA ®B NIL
in FlA. It follows therefore that ker θp c N£A. Suppose / e FlA
with θpf e N£A; then there exists g e FlA such that μpg is a unit and
/flf e ker θp. So there exists h e FlA, such that μph is a unit and
fgh = 0. Since /̂ fe# = (μph)(μpg) is a unit, f e N£A. This completes
the proof.

A ring in which every zero divisor is nilpotent we will call a ZDN
ring.

PROPOSITION 5. Let A and A! be K-algebras which are ZDN ringsy

and let N be the ideal of nilpotents of A. Suppose K is separably
closed in the field of quotients of A/N, then A (x)̂  Ar is a ZDN ring.

Proof. If B is a subring of A then it is a ZDN ring, with ideal
of nilpotents N Π B. The domain B/(N Π B) embeds in A/N, so K is
separably closed in the quotient field of B/(N Π B). We can therefore
restrict ourselves to a finitely generated subalgebra of A, and so
assume that A is Noetherian. Let L be the quotient field of A/N,
then (A/N)(g)κA'c:L(g)κA'. So by [2, Propositions] (A/N)®κA

r

is a ZDN ring and hence i V ^ i ' is primary. However (0) is a
primary ideal of A with associated prime N. Thus it follows, putting
E = A and F= B = A®κA

r in [1, Chapter IV, §2.6, Theorem 2],
that the associated primes of (0) in A ®κ A' are also the associated
primes of N®KA'. Hence (0) is a primary in A®KA' also, and so
A ®κ A' is a ZDN ring.

Note that if A is a local ring (A has a unique maximal ideal m)
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and n is a positive integer, then A/mn is a ZDN ring.

PROPOSITION 6. Let A be a Noetherian local K-algebra; then the
natural map of FiA into the projective limit (inverse limit) of the
system {F$(A/mn)}n is an injection.

Proof. As A is Noetherian, Π"-im % = 0> a n d s o A —>proj limw (A/mn)
is an injection. The proof can be completed by induction on p>
using the following lemma, the demonstration of which is straight-
forward.

LEMMA. If {Mi9 fSi} and {Nίy gH] are projective systems of K-
modules (K a field) indexed over the same directed set, and if M and
N are the projective limits of these systems, then the natural map of
M ®* N into proj liπi; (Mt ®κ N{) is an injection.

PROPOSITION 7. Let A be a local K-algebra and let K be separably
closed in A/m. If z is a zero divisor in F£A then μpz e m, and hence
N$A = 0.

Proof. Suppose z is a zero divisor in FiA; then there exists
w Φ 0 such that zw = 0. Choose a finitely generated subalgebra, B,
of A such that w and z are in F£B. The ideal B Π m is prime in
B. So, localizing B at B ΓΊ m, we get a local Noetherian subalgebra
B' of A, such that Bf Π m is the maximal ideal of B\ and z and w
are elements of F^{Br). We can therefore assume that A is Noetherian.
By Proposition 6, there exists n such that the image of w in F£(A/mn)
is nonzero. Thus zr, the image of z, is a zero divisor in F£(A/mn).
However K is separably closed in A/m and so, by induction from
Proposition 5, we see that F£(A/mn) is a ZDN ring. The image z' is
thus nilpotent and the same is true of μpz

f e Ajmn. As the image of
μpz in A/mn is μvz', it follows that μvz e m.

Proof of Theorem 2. As As is a field we can apply Proposition
4 to get CKA ~ CAjjA. However Proposition 7 shows that CA$A =
FAsA. This completes the proof.

The following corollary to Theorem 2 is immediate on applying
Proposition 1.

COROLLARY. // A satisfies the hypotheses of Theorem 2, then
H£A = 0 for p > 0.

Clearly any local algebra over a separably closed field (i.e. separably
closed in its algebraic closure) satisfies the hypotheses of Theorem 2.
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If A is a complete Noetherian local Z-algebra, there exists [5,
Chapter VIII, §12, Theorem 27] a subίield L of A which is mapped
onto A/m by the natural map. Under these circumstances As is
mapped isomorphically onto the separable closure of K in A/m. Thus
it follows that, for such an algebra also, the hypotheses of Theorem
2 are satisfied.

Our ultimate goal is to prove the conclusion of Theorem 2 for all
local If-algebras; then, loosely speaking, to study this cohomology
theory for an arbitrary if-algebra by using sheaf theoretic methods to
patch the algebra together from its localizations (at prime or maximal
ideals). Partial results in this direction have been obtained.
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