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R-AUTOMORPHISMS OF R[#][[X]]

JooNG-Ho Kim

Let R be a commutative ring with identity, R[{] the
polynomial ring in an indeterminate ¢ over R, and R[¢][[X]]
the formal power series ring in an indeterminate X over E[t].
Let a=7 i, ai)X?and B = 5 iZ0b.(¢)X? be elements of R[¢][[X]]
where a;(t) and b;(f) are elements of R[f] for each <. This
paper gives necessary and sufficient conditions in order that
there exist an R-automorphism of R[t{][[X]] mapping t and X
onto a and 5 respectively.

Recently O’Malley [3] has considered the R-automorphisms of
R[[X]] — that is, those automorphisms of R[[X]] which restrict to the
identity mapping on R. In particular O’Malley has determined neces-
sary and sufficient conditions for existence of an R-endomorphism of
R[[X]] mapping X onto Y2,a;X°. In this paper we consider R-
automorphism ¢ of R[¢][[X]] such that ¢(¢) is not necessarily in E[t].
Then we see that any R-automorphism of R[[X]] mapping X onto B
appears as a particular case of an R-automorphism of R[¢][[X]] mapping
t and X onto « and B respectively.

All rings considered in this paper are assumed to be commutative
and contain an identity element. Throughout this paper, the symbols
w and w, are used to denote the sets of positive and nonnegative
integers, respectively.

1. Preliminaries. If ge R[¢][[X]] and if T is a subring of
R[¢][[X]] containing R and B, then (8"T) will denote the ideal of T
generated by 8", and (7, (3T)) the topological ring with the (BT)-
adic topology. When T = R[¢][[X]], we will simply write (8"
and (R[t][[X]], (B)) to denote the ideal of R[¢][[X]] generated by
B" and the topological ring R[¢][[X]] with the (g)-adic topology,
respectively. It is well known that (T, (8T)) is a Hausdorff space if
and only if M...(8"T) = (0), and that if the (8T)-adic topology is
Hausdorff then it is metrizable ([5], p. 51). If a and B are elements
of R[t][[X]], then R[a][g] will be the subring of R[¢][[X]] consisting
of all forms of >, fi@pg', new, where f(a@) is a polynomial in
a over R which is obtained by substituting « for ¢ in fi(¢). If
f =32, () X" is a nonzero element of R[¢][[X] such that the first
nonzero coefficient of f is f,(f), then f has order k and we write
0(f) = k. If g(t) e R[t], #(g(t)) will denote the coefficient of ¢’ in g(¢).

The following theorem was proved by Gilmer [1].
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THEOREM 1.1. Let f(t)e R[t] and let 0 be the R-emdomorphism
of R[t] which maps g(t) onto g(f((t)) for each g(t)e R[t]. Then 6 is
onto (or automorphism) if and only if w(f()) s a unit of R and
w(f(t), for i = 2, is wmilpotent.

LEMMA 1.2. Let a and B be elements of R[t][[X]] and suppose
that Mo (8" = (0). Then there exists an R-endomorphism ¢ of
R[{[[X]] such that ¢(t) = a and ¢(X) = B, if and only if there exists
a subring T of R[t][[X]] containing R[a][g] such that (T, (BT)) is a
complete Hausdor(f space. Moreover, when such a subring T exists,
¢ is unique and ¢(3Z,f{()X7) = S, f@)B* for each 32, fi(H)X') e
RIAIX]I.

Proof. Let T be a subring of R[t][[X]] containing R[a][B] such
that (T, (8T)) is complete. Let f = X2, f:(H) X e R[t][[X]]. If we
consider the sequence {37, fi(@)B},., then it is a Cauchy sequence
in the topological ring R[a][g] with the (g)-adic topology and hence
a Cauchy sequence in (T, (8T)). Since (T, (8T))is a complete Hausdorff
space, lim, 37, fi(@)G® exists in T and is unique. We define ¢(f) to
be lim, 37, fi(@)pg* in (T, (8T)). Then it is easy to see that ¢(f) =
(3 f{()XP) = 320 fi(@)p', and that ¢(t) = a, ¢(X) = 8 and ¢(r) =
r for each re R. Let f, ge R[t][[X]]. Then it is straightforward to
show that ¢(f + g) = ¢(f) + ¢(9) and ¢(f-g) = 4(f)-8(9). Therefore,
¢ is an R-endomorphism of R[t][[X]] such that ¢(f) = « and ¢(X) = g.
Let 4 be any R-endomorphism of R[¢][[X]] such that +(f) = @ and
w(X) = B. Clearly, ¢ and + are continuous mappings from a Hausdorff
space (R[Z][[X]], (X)) into a Hausdorff space (R[¢][[X]], (), and ¢
agrees with + on R[t][X]. But R[{][X] is a dense subset of (E[{][[X]],
(X)). Therefore, ¢ = « and hence ¢ is unique.

Conversely suppose that there is an R-endomorphism ¢ of R[¢][[X]]
such that ¢(f) = @ and ¢(X) = Q. Then ¢ is a continuous mapping
from (R[Z[[X]], (X)) into (RIII[[X]], (8)). Let T = ¢(R[¢I[X]]). Then
clearly T is a subring of R[¢][[X]] containing R[a][g]. We show that
a Hausdorff space (T, (8T)) is complete. Let {f.}...,, be a Cauchy
sequence of elements in (7, (3T)). Then there exists a subsequence
{94} ncw, OFf {fu}ncw, sSuch that g, = 37 h;8* for each ne w, where h;e
T for each % = 1, +«-, n. Then for each 7 € w, there exists p; € R[[¢][[X]]
such that ¢(p;) = h;, and therefore ¢(3 2, p; X% = >, h:8* = g, for each
n € ®,. Clearly, the sequence {37, p; X*},.,, is a Cauchy sequence in
the complete Hausdorff space (R[¢][[X]], (X)), and it converges to

2, p:X*. Since ¢ is continuous, it follows that {g,}..., converges to
(270 :X7) in (T, (8T)) and hence {f,}..., converges to ¢(>Z, p;X?).
Thus (T, (3T)) is a complete metric space.
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THEOREM 1.3. Let @ = >2,a;() X and B = 52, b,(8) X" be ele-
ments of R[tI[[X]], k = 1. Then there exists a unique R-endomorphism
¢ of R[t|[[X]] such that ¢(t) = a and ¢(X) = B. Further, ¢ is onto
of and only 1if the following conditions are satisfied:

(1) alt) is in S(R[[X]] such that w (a\l)) is a unit of R and
T(ay(t), for © = 2, is nilpotent;

(ii) k=1 and b(t) ts a unit of R[t].

Proof. Since O(B) = 1, (R[¢][[X]], (B) is a complete Hausdorff
space. Therefore, by Lemma 1.2 there exists a unique R-endomorphism
¢ of R[¢][[X]] such that ¢(¢) = e and ¢(X) = 8. In fact, if 3.2, fi(H)X'e
R[I[X]], then ¢(3, f:()X*) = 3%, fi(a)s’. Suppose that ¢ is onto.
Then at) € ¢(R[¢][[X]]), and for each f(¢)c R[{] there exists h =

=0 hi(t) X7 € R[¢t][[X]] such that ¢(h) = f(£). Since O(8) =1 and ¢(h) =

<o hi(@)B%, the constant term (which is an element of R[t]) of &(h)
is hoa,(t)) = f(t). Therefore, it follows that the R-endomorphism @
of R[t] which sends ¢ onto a,(t), is onto. Then it follows from Theorem
1.1 that 7(a,(f)) is a unit of R and m;(a,(f)), for 7 = 2, is nilpotent.
Since ¢ is onto, there exists g = 32, 0:(0) X" e R[t][[X]] such that
#(9) = X. Then the constant term in ¢(9) = 3%, g:()B* considered
as a power series in X over R[t], is ga,f) = 0. Since the R-
endomorphism 6 of R[¢] is onto, ¢ is an automorphism of R[¢] [1]. Thus
g,(t) = 0. Therefore, if & > 1, then O(¢(g)) > 1 which violates the
relation ¢(9) = X. Hence k£ =1 and b,(¢) = 0. But the coefficient of
X in ¢(g) is g.(ay(t))-b,(t) = 1. Therefore, b,(f) is a unit of E[¢].

Conversely, suppose that ¢ is an R-endomorphism of R[t][[X]]
mapping ¢t and X onto a and S respectively, and that the condition (i) and
(ii) are satisfied. Since a,(t) € ¢(R[t][[X]]) and ¢(¢t) = ac ¢(R[][[X]]),
there exists ke R[t][[X]] such that ¢(h) = @ — a,(t). By Lemma 1.2
there exists a unique R-endomorphism « of R[t][[X]] such that «(f) =
t — h and (X) = X. Clearly, the condition (i) and Theorem 1.1 show
that there exists d(t) € R[¢t] such that d(a,t)) =t. Let n be the R-
endomorphism of R[¢][[ X]] such that 7(¢) = d(¢) and »(X) = X. Then for
each X2, fu(t)X'e R[t[[X]], it follows that (goyron) (i, fi(1)X') =
(o) (2o F1AD) X9 = 6(S50 £ Ld(E— 1) X9) = S fild@—a+a,() g =

2o fi(@d(a(t))B = >, fi(t)B'. Therefore, goqron is an R[t]-endomor-
phism of R[{][[X]] mapping X onto B8. But G(B) =1 and b,(¢) is a
unit of R, hence gospon is an R[t]-automorphism of R[{][[X]] (7],
p. 137). Therefore ¢ is onto and the proof is complete.

LEMMA 1.4. Let a = 32,a:,(6) X e R[E[[X]] such that a,t) —
wo(ay(t)) is regular in R[t], and suppose that B = > b,(t) X e R[][[X]],
k=1, b,(t) = 0. Let ¢ be the R-endomorphism of R[t][[X]] such that
o) = a and ¢(X) = B. Then if ¢ is not one-to-one, b,(t) is a zero
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divisor of R[t].

Proof. Suppose that ¢ is not one-to-one. Then there exists f =
=0 f:() X e R[{][[X]], f # 0 such that ¢(f) = 0. Since O(B) = 1, the
constant term of ¢(f) = 3.2, f:«(®)B® considered as a power series in X
over R[t], is fo(a(t)) = 0. But if a,(t) — 7(a,(?)) is a regular element
of R[t], it follows that the R-endomorphism of R[t{] mapping ¢ onto
a,(t), is one-to-one ([1], p. 830). Therefore, f,(f) = 0 and so O(f) = 1.
If O(f) =n =1, then f,(t) # 0 and the coefficient of X*" in ¢(f) is.
Fala(®)-(b,(t))" = 0. Bince f,(t) = 0 and a,(t) — 7,(a,(t)) is regular in
R[t], we have that f,(a,?) # 0. Therefore (b.(t))" is a zero divisor
of R[t], and hence b,(f) is a zero divisor of R[t].
From Theorem 1.3 and Lemma 1.4 we have the following corollary.

COROLLARY 1.5. Under the hypothesis of Theorem 1.3, ¢ is an
R-automorphism of R[t][[X]] if and only if the following conditions
are satisfied: .

(1) aut) is in ¢(R[E][[X]] such that w(a\?)) is a unit of R and
wi(a,(t)), for ¢ = 2, nilpotent;

(i) k=1 and b(t) is a unit of E[t].

2. Main result. In ([4], p. 326) O’Malley and Wood proved the
following lemma.

LEMMA 2.1. Let B = 32,0, Xc R[[X]]. Then there exists an R-
automorphism ¢ of R[[X]] such that ¢(X) = 8 if and only if the
following conditions are satisfied:

(1) (RI[X1, (B) is a complete Hausdorfl space;

(i) b, is a unit of R.

LEmMMA 2.2, Leta = >2,a,(0)X  and 8 = 372,b,(6) X* be elements
of R[t[X]], and let ¢ be an R-endomorphism of R[t][[X]] such that
o{t) = aand ¢(X) = 5. Then bt) is in the Jacobson radical of R[t] if
one of the following conditions is satisfied:

(1) m(alt)) is a unit of R, and mw(a,(t), for © = 2, s nilpotent.

(i) ¢ is onto.

Proof. Suppose that the condition (i) is satisfied. Let f(¢) € R[¢].
Then there exists g(¢) € R[t] such that g(a,t)) = f (). By ([7], p. 131),
if 1 denotes a unity of R[¢][[X]] then 1 + ¢g(t)X is a unit of R[¢][[X]].
Therefore, ¢(1 + g()X) = 1 + g{a)B is a unit of R[¢][[X]], and hence
1 4 f(t)by(t), the constant term of 1 -+ g(a)B considered as a power
series in X over R[t], is a unit of R[t]. But f(¢) was an arbitrary
element of R[t], so it follows that b,(¢) is in the Jacobson radical of
R[t].
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Next we suppose that the condition (ii) holds. Then for any
f(t) € R[t], there exists he R[¢][[X]] such that ¢(h) = f(¢). Clearly,
1+ h-X is a unit of R[¢][[X]] and therefore ¢(1 + h-X) =1+ f(H)B
is a unit of R[{][[X]]. Hence 1 + f(¢)b,(t) is invertible in R[t] for
every f(t)e R[t]. So b,(t) is in the Jacobson radical of R[¢].

DEFINITION. If ¢ is a nilpotent element of a ring R, we define
the order of nilpotence of ¢ to be the smallest positive integer k such
that ¢* = 0.

LEMMA 2.3. Leta= 32,0, X" and B = >2,b,() X" be elements
of R[tI[X]]. If bft) is in the Jacobson radical of R[t], then the
topclogical ring (R[t][[X]], (B)) is a Hausdorff and complete space.

Proof. Suppose that b,(t) is in the Jacobson radical of R[¢{]. Then
every coefficient of the polynomial b,(¢) is nilpotent ([2], p. 152) and
hence b,(t) is nilpotent in R[t]. Let » be the order of nilpotence of
by(t). Then for each m e w,, O(8**™) = O((Z 2, b;(H) XH)**™) =m + 1, and
therefore it follows that ,..(8") = (0) and that for any sequence
{hi}ico, of elements of R[¢t][[X]], the sequence {h;53%};.,, is summable
in R[t][[X]]. Therefore, the topological ring (R[¢][[X]], (B)) is com-
plete and Hausdorff. Moreover, by Lemma 1.2 there is a unique R-
endomorphism ¢ of R[¢][[X]] such that ¢(3=, f:(0) X" = 32, fi(a)s’
for each >, f:{(6)X* e R[t][[X]]-

LEMMA 2.4. Let g(t) = S\7,c;it' € R[t] such that ¢, is a unit of R
and ¢;, for 1 = 2, is nilpotent in R. Then for f(t)e R[t], it follows
that f(t) is milpotent if and only if f(g9(t)) is nilpotent.

Proof. The lemma is an immediate consequence of Theorem 1.1.
We now prove the most important result of this paper.

THEOREM 2.5. Let a =32, a;(0) X and B = 32, b:(H) X* be elements
of R[t][[X]], and let ¢ be an R-endomorphism of R[t][[X]] such that
$(t) = a and ¢(X) = B. Then ¢ is an R-automorphism of R[t][[X]]
iof and only if the following conditions are satisfied:

(1) alt) is in S(R[L[[X]]) such that m(a, t)) is a unit of R and
7w (a,(t), for © = 2, is milpotent.

(i) b,(t) is a unit of R[t].

Proof. (—) Suppose that ¢ is an R-automorphism of R[t][[X]]
such that ¢(f) = a and ¢(X) = 8. Then clearly a,(t) e ¢(RIt[[X]])-
By Lemma 2.2, b,(f) is in the Jacobson radical of R[¢{] and hence
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every coefficient of a polynomial b,(t) is nilpotent. Let P be a prime
ideal of R distinct from R. For each f(t) = 31, d;t' € R[t], we define
F() to be S, d;t* where d; = d; + Pc R/P for eachi =1, --+, n, and
let @ and B be 3=, @;(t) X* and 3=, b,(t) X?, respectively. Since b,(t) =0
in R/P[t], from Theorem 1.3 it follows that there exists a unique R/P-
endomorphism ¢* of R/P[t][[X]] such that ¢*({) = @ and ¢*(X) = .
Since ¢ is onto, clearly ¢* is onto. Therefore, by Theorem 1.3, it
follows that 7,(@,(t)) is a unit of an integral domain R/P and 7,(@,(¢)),
for ¢ > 2, is 0 in A/P, and that b,(f) is a unit of R/P[t{]. Note that
b,(t) is a unit of R/P[t] if and only if 7,(b,(#)) is a unit of R/P and
7y (bi(t)), for =1, is 0 in R/P. Since P was an arbitrary prime ideal
of R distinet from R, it follows that 7 (a,(¢) is a unit of R and x;(a,(?)),
for 7 =2, is nilpotent in R, and that 7z (b,(f)) is a unit of R and
w.(b.(t), for ¢ = 1, is nilpotent. Thus the condition (i) holds and b,(¢)
is a unit of R[¢].
(«=) Suppose that ¢ is an R-endomorphism of R[{][[X]] such that
#(t) = a and ¢(X) = B, and such that the conditions (i) and (ii) are
satisfied. Then by Lemma 2.2, b,(¢) is in the Jacobson radical of E[t]
and therefore every coefficient of a polynomial b,(¢) is nilpotent in R.
We show that b,(¢) € (R[¢][[X]]). Since a,(t) € ¢(R[¢][[X]]), there exists
h e R[t][[X]] such that ¢(h) = a,(t). Let 6 be the R-automorphism of
R[t] which sends ¢ onto a,(#) [1]. Then there exists g(f) € R[¢{] such
that 0(g(?)) = b,(1). Clearly g(h)e R[{][[X]] and ¢(9(R)) = g(¢(h)) =
9(ai(t)) = 0(g(1) = by(t). Thus by(t) € g(R[L[X]]). Let f =3, fi() X' e
R[t]l[«]] such that ¢(f) =b,(t). Since b,(t) s nilpotent in R[t], N..(8") =
(0). By Lemma 1.2, ¢(R[¢][[X]]) is complete and Hausdorff with respect
to the (B)-adic topology, and ¢(3Z, f:(t) X?) = 32, fi(@)B* = by(f). Let
n be the order of nilpotence of b,(f). Then the constant term of
2o fi{@)B? considered as a power series in X over R[{], is
15 fi@(D)(b(8)’. Then clearly 3723 fi(ay(8))(bo(8))* = bo(t). Therefore,
Folan(®)) = — S22 f(ao(0)(b(8))* + bo(t) where (by(£))* is nilpotent in R[t}]
for each ¢=1,---,n —1. Hence f(a,(t)) is nilpotent, and by
Lemma 2.4, f,(¢) is nilpotent. We show that f,(¢) is nilpotent in RJ[].
Let f’(f) be the derivative of f(f) with respect to ¢ for each f(¢) € R[t]
(I6], p. 121). Then the coefficient of X in 32, fi(@)g* is

S, FHa®)aOG(0) + 3 i-Fad)bOG(B) = 0
and so
(1)  fulal()b,(t) = — gf;(ao(t))al(t)(bo(t))i S i Aa(®) b BB

Since f,(f) is nilpotent in R[t], f,(f) is in the Jacobson radical of R[t}
and therefore each coefficient of f,(t) is nilpotent. Then clearly the
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derivative f4(t) of f.(t) is nilpotent and hence fi(a,(t)) is nilpotent (by
Lemma 2.4). Then from (1) it follows that f,(a,(¢))-b,(¢) is nilpotent.
But b,(t) is a unit of R[t], so f.(a.t)) is nilpotent and hence f.(t) is
nilpotent. Let v =X — f =X — 32, f:()X*. Then the constant
term of v is fo(t). Since f,(¢) is nilpotent, (R[¢][[X]], ((7)) is a complete
and Hausdorff space (by Lemma 2.3). The coefficient of X in 7 is
1 — f.(¢) which is a unit of R[{]. Therefore, by Lemma 2.1, there exists
a unique R[¢]-automorphism «r of R[t][[X]] such that ¢(3i2,9:()X?) =

= .9:()7 for each >32,0:(0) X" e R[{][[X]]. Then go+r is an R-endomor-
phlsm of R[¢][[X]], and for each 3.2, ¢:(t)X*e R[t][[X[] we have that

oo

(g0 qlf)(Z 9.0 X7) = ¢( 0:(t)7") = ¢(Z 90X — 1))

1=0

9@ (B — by(t))* .

I
0M8

Since a,(t) € ¢(R[{][[X]] and + is an automorphism of R[t][[X]], a,(?) is
in (go)(R[t][[X]]). Note that O(8 — by(t)) =1 and b,(¢) is a unit of
R[t]. By Corollary 1.5, ¢ovr is an R-automorphism of R[t][[X]] which
maps ¢ and X onto a and B — by(f), respectively. Hence ¢ is an R-
automorphism of R[¢][[X]] and the proof is complete.

Observe that if ¢ is any R-endomorphism of E[¢{][[X]] such that
() = a and ¢(X) = B, and that is onto, we have the conditions (i)
and (ii) stated in Theorem 2.5. Therefore, by the proof of the “if”
part of Theorem 2.5, ¢ is an automorphism. Thus we have the
following.

COROLLARY 2.6. Let a = >2,0:(t)X* and 8 = 32,0:,(0) X° be ele-
ments of R[¢][[X]], and suppose that ¢ is an R-endomorphism of
R[t][[X]] such that ¢(¢) = @ and ¢(X) = 8. If ¢ is onto, then ¢ is
an automorphism of R[¢][[X]].

From Theorem 2.5 we have the following result.

THEOREM 2.7. Let a = 3>2,a,(0)X" and B = 32, 0;() X be ele-
ments of R[t][[X]]. Then there exists an R-automorphism ¢ of R[t][[X]]
such that ¢(t) = a and ¢(X) = B, if and only if the following condi-
tions are satisfied:

(1) by(t) 2s milpotent in R[t] and b,(t) is a unit of R[t].

(i) a,(t) € Rlx]IIB]] such that mw (a)t)) is a unit of R and m(a,(t)),
for © = 2, is nilpotent.

Proof. Let ¢ be an R-automorphism of R[¢][[X]] such that ¢(f) =
a and ¢(X) = B. Using the same argument as that used in the
proof of Theorem 2.5 we see that b,(¢) is nilpotent and that ¢(R[¢][[X]])
is a complete and Hausdorff space with respect to the (8)-adic topology.
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Thus R[¢[[X]] = #(R[¢I[X]]) = R[a]l[g]]. Therefore a(t) € R[a][[5]]-
Then by Theorem 2.5, the conditions (i) and (ii) follow immediately.

Conversely we assume the conditions (i) and (ii). Since b,(¢) is
nilpotent in R[¢], (R[¢][[X]], (8)) is a complete and Hausdorff space.
Then by Lemma (1.2), there exists a unique R-endomorphism of
R[t][[X]] such that ¢(f) = « and ¢(X) = 8. Then ¢(R[¢][[X]]) is a
complete and Hausdorff space with the (B)-adic topology and therefore
S(RILIX]]) = Rla]l[p]]. Hence ay(t) € ¢(R[¢][[X]]). By Theorem 2.5,
¢ is an R-automorphism of R[¢][[X]].

COROLLARY 2.8. Let 8= >2,b,(0) X" e R[t][[X]], and let @ = g(t) +
. a8 where g(t) € R[t] and a,€ R for each i =1, «++, n. Then there
exists an R-automorphism ¢ of R[t][[X]] such that ¢(t) = a and ¢(X) =
B, if and only if the following conditions are satisfied:
(i) b(t) is nilpotent in R[t] and b,(t) is a unit of R[t].
(i) 7(9(t) is a unit of R and m,(g(t)), for © = 2, is nilpotent.

Proof. Since g(t) =a — >, a;8° € Rla][[B]] and g(t) + 7=, a;(b(t)) €
R[«][[B]], the corollary is an immediate consequence of Theorem 2.7
and we omit the proof.

REMARK. By Lemma 2.2 and 2.3, we may replace the condition
(i) in Theorem 2.7 by the condition “(R[¢][[X]], (B)) is a complete and
Hausdorff space and b,(t) is a unit of R[{].” Then it is easy to see
that Lemma 2.1, the main result of O’Malley and Wood [4], appears
as a special case of Theorem 2.7.
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