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STRUCTURE OF RIGHT SUBDIRECTLY
IRREDUCIBLE RINGS II

M G DESHPANDE

The object of this paper is to determine the structure
and properties of right subdirectly irreducible rings which
are either local or self-injective. The rings in the latter class
form a special case of the so-called right PF rings. By em-
ploying the notion of Feller's X-rings, it is proved that right
PF X-rings are finite direct sums of full matrix rings over
self-injective right subdirectly irreducible rings. Thus,
whether or not right PF X-rings are left PF depends on the
answer to the same question for the more elementary case of
self-injective right subdirectly irreducible rings.

For a discussion of artinian and noetherian RSI rings, see [2j.

1* Notation and preliminaries* All rings considered have an
identity and all modules are unitary. A module MR is JS-subdirectly
irreducible if the intersection of all nonzero submodules of M is
nonzero, which will then be called the heart of MR. A ring R is
RSI (right subdirectly irreducible) if RB is jβ-subdirectly irreducible.
The heart H of a RSI ring R is a two sided ideal. These and some
of the following definitions and observations are given in [2] and we
rewrite them for completeness. We will always use the following
notation is connection with a RSI ring R. H = heart, N — Hι =
{x e R:xH= 0}, D = Horn* (HB, HB), R = injective hull of RR, K =
Hoiϊijj (R, R) and L = {f e K: ker / Φ 0}. In addition, for a local ring
R, J will always denote the unique maximal right ideal. A ring R
will be termed self-injective if RR is injective.

We state the following theorem showing the relationship between
R, N, H, D, K, L which has been proved in [2, p. 319].

THEOREM 1.1. If R is RSI, then R/N is isomorphic to a subring
of the division ring D and D = K/L.

In connection with QF — 1 algebras, faithful indecomposable
modules play an important role. In the following proposition we
prove that a RSI ring has a unique faithful indecomposable injective
module. In this respect, it may be remarked that an artinian semi-
simple ring which is not simple is an example of a ring for which
faithful indecomposable injectives don't exist; while over the ring of
integers, for each prime p, by using [12, p. 145, Th. 7] or otherwise,
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one can verify that Zp<*> is a faithful indecomposable injective module,
and obviously they are all nonisomorphic.

PROPOSITION 1.2. A RSI ring R has, up to isomorphism, a unique
faithful indecomposable injective module.

Proof. RR is certainly faithful and injective. It is also inde-
composable because every nonzero submodule contains H. Let MR

be any other such module. If h e H is a nonzero element, then
Mh Φ 0 because M is faithful. Thus, for some m e M, mh Φ 0. The
mapping x —> mx is then an isomorphism on H to mH which can be
extended to an isomorphism of R into M. If N be the image of R
under this isomorphism, N is injective and hence a direct summand
of M. By indecomposability of M, we have N = M and therefore

2* Local RSI rings* We recall that a ring R is a left S-ring
in the sense of F. Kasch [5, p. 455] if each proper right ideal has a
nonzero left annihilator. It is known that [11, p. 412, Th. 2.9] a
(right) self-injective ring is local iff it is right uniform. In the
following an analogue of this is considered for RSI rings.

PROPOSITION 2.1. A self-injective ring R is RSI iff it is a local
left S-ring.

Proof. If R is self-injective and RSI, then it is right uniform and
thus local by the above. If h e H, h Φ 0 then hr is a maximal right
ideal and so must be the unique maximal right ideal J. Thus Jι Φ 0.
If A is any proper right ideal, then A s J implies that 0 Φ Jι g A1

and hence R is a left S-ring. Conversely, R is self-injective and
local implies that it is right uniform. Since R is a left S-ring, by
[6, p. 237, 2.1] R contains a copy of the simple ϋϊ-module R/J. Clearly,
a right uniform ring containing a minimal right ideal must be RSI.

The above proof shows that a RSI local ring is necessarily a left
S-ring. We now prove the following theorem1 which will imply that
a LSI (left subdirectly irreducible) left S-ring is local.

THEOREM 2.2. Let R be a ring. For the three statements
( i ) R is local,
(ii) there exists a bimodule TMR such that A1 in TM is nonzero

for any proper right ideal A of R, and TM is subdirectly irreducible,

1 The author is obliged to the referee for this version of the theorem and other
helpful suggestions.
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(iii) KR is subdirectly irreducible and R is a left S-ring
we have (iii) => (ii) ==> (i). If, further R is RSI, then we also have

Proof, (iii) ==> (ii) is obvious.
(ii) ==> (i). If MQ is the heart of TM, then Mo £ A1 for any

proper right ideal A of R. Thus A £ Alr g Ml which proves that
R is local with J = MQ

r.
Now we assume that R is RSI and prove (i) ==> (iii). That R

is then a left S-ring is already noted above. Now, let h and a be
any two nonzero elements respectively from H and R. Since R is
local and hr — J, we have ar £ Ar. Thus α# —+ to is a homomorphism
of αi? into if which can be extended to some element / of K. Then
h = /(α) 6 Ka which shows that each nonzero submodule of KR con-
tains h and so KR is subdirectly irreducible. In fact, it can be easily
seen that KR and RR have the same heart H.

Since a LSI, left S-ring i? satisfies condition (ii) of the above
theorem, we have in particular,

COROLLARY 2.3. For a RSI and LSI ring, the following are
equivalent.

( i ) R is local
(ii) R is a left (right) S-ring.

3. Self>injective RSI rings* In a local RSI ring R, the left
annihilator N of H, and the right annihilator J of H (which will be
the unique maximal right ideal) need not coincide, though obviously
we must have N Q J. We show by an example2 that this inclusion
can be proper and then prove that for self-injective rings, N = J.

EXAMPLE 3.1. Let F = k(x19 •••,«», •••) be the field of rational
functions in xl9 x2, over the field k of real numbers and L the
subring of fractions with denominators prime to xim Let a and β
denote an epimorphism and a monomorphism respectively on L to F
given by f(xl9 , xn)

a = /(0, xl9 , xn_λ) and β = inclusion. Let R
be the ring defined by (R9 +) = L © F and {a, b){c, d) = (αe, δcα + a?d).
If A denotes the element (0, 1) of R, then every element of R can be
written as a + hb and A2 = 0. It can be verified that R is RSI with
heart H — hR and that a + Aδ is a unit in J? iff α is a unit in L.
Since L is a local ring, so is R. For this ring R, N = Hι = {(0, δ):
i G ί7} and J = {(α, δ): αα - 0}. Thus N £Ξ J.

2 Professor P. M. Cohn has kindly communicated this example to the author.
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PROPOSITION 3.2. If R is self-injective and RSI, R/N~ D.

Proof. It was shown in [2] that /: R/N-> D defined by f(a + N) =
fa, where fa: H—>iΠs the left multiplication by α, is a monomorphisnu
If R is self-injective and d: H—> H is any element of D, then there
exists an element aeR such that d — fa — f(a + N) and R/N ~ D.

COROLLARY 3.3. If R is self-injective and RSI, N = J.

Proof. Self-injective and RSI implies local. Since R/N is a
division ring, N must be a maximal right ideal and hence N — J.

We now give a characterization of RSI rings in the class of
self-injective rings which is analogous to McCoy's Theorem [9, p. 382,
Th. 1] for the commutative subdirectly irreducible rings.

THEOREM 3.4. Let R be self-injective. Then R is RSI iff there
exists a nonzero principal right ideal X = xR and an ideal Y in R
such that

( i ) Yι = X, so that X is a two sided ideal,
(ii) Xι= Y,
(iii) R/Y is a division ring, and
(iv) // a is an element of Y not in X, there exists an element

b of Y not in X, such that ab — x.

Proof. (=̂ >). If R is RSI, we choose X to be H = hR and Y = N.
Then (ii) holds by definition of N and (iii) is a consequence of 3.2
above. Since R is in this case local with N = unique maximal right
ideal, aN = 0 if and only if aR is a minimal right ideal. Thus Nι =
H which proves (i). Now let aeN such that a&N. Since HQaR
we have h = ab for some b e R. (ii) implies that b g H. Also if
b ί N then 6 is a unit which implies a = hb~λ e H contradicting the
hypothesis on a.

(«=). By assuming (i), (ii), (iii), and (iv) we will show that
every nonzero right ideal of R contains the fixed element x of R.
Accordingly, let a be a nonzero element in a right ideal A of R. If
α ? 7 , by (iii) we have 1 — aye Y for a suitable ye R. Then by (ii),
(1 — ay)x = 0 which implies x = ayx eaR^A. If a e Y and a £ X then
by (iv) we have x e aR £ A. Lastly, if ae X, then a = xc for some
ceR. c cannot be in Y because then we would have a — xce XY=0»
Thus, again by (iii) 1 — cd = u e Y for some d e R. Then ad = xcd =
x(l — u) — x which proves that xe A. Thus R is RSI with heart X — xR.

4. Right PF X-rings* Utumi [14, p. 56] defined a ring R to
be right PF if every faithful right jβ-module is completely faithful.
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These rings afford a nice generalization of QF rings and have been
discussed by Azumaya [1], Osofsky [10], Kato [6, 7], Utumi [13, 14J
and others. A ring R is right PF if and only if [1, p. 701, Th. 6]
it is a finite direct sum of indecomposable injective right ideals each
of which contains a unique minimal right ideal. It is not known
whether a right PF ring is also left PF. Clearly, a self-injective
RSI ring is right PF. Either by using the theory of right PF rings
developed by the authors mentioned above, or directly as a consequence
of our Theorem 2.2 it can be seen that a self-injective RSI ring is
left subdirectly irreducible. (In this case, R is local, R = R and
K = R). We state this as a

PROPOSITION 4.1. A self-injective RSI ring is LSI.

The following definition is due to Feller [3, p. 20, 2.2].

DEFINITION 4.2. A ring R is called an X-ring if for every pair
e> f of primitive idempotents such that eR £ fR; aeeR and ar Γ\fRφ
0 implies afR = 0.

We state the following useful lemma whose proof is straightforward*

LEMMA 4.3. If A and B are rings and R = A 0 B is the ring
theoretic direct sum, then R is a self-injective ring iff each of A and
B are self-injective rings.

We are now in a position to prove the following

THEOREM 4.4. A ring R is a right PF X-ring if and only if R
is isomorphic to a finite direct sum of full matrix rings over self-
injective RSI rings. Further, this decomposition is unique.

Proof. If S is a self-injective RSI ring with heart H, then the
n x n matrix ring Sn is self-injective [13, p. 172, Th. 8.3] and is the
direct sum of indecomposable right ideals eaSn, i = 1, 2, , n each
of which contains a unique minimal right ideal euHn. Consequently
Sn is a right PF ring which is trivially an X-ring. Now, by using
4.3 we can see that any finite direct sum of such rings is again right
PF. In order to show that it is also an X-ring, it is enough to
remark that eR and fR are nonisomorphic only if they belong to
different matrix rings, in which case eRfR — 0.

Conversely, Let R be a right PF X-ring. Then

4.5. R = e,R 0 0 enR
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where eu , en are primitive and let us assume that exR, , ekR
(k ^ n) denote a complete set of nonisomorphic right ideals among
the n summands in 4.5. Since each ejt is indecomposable and injec-
tive, it is right uniform. By the same argument as in [3, p. 20,
Th. 2.3] we conclude that R = Aί 0 © Ak where each At is the
sum of all summands in 4.5 which are isomorphic to etR and Al9 ,
Ak are all two sided ideals. Further, each A< is isomorphic to a full
matrix ring over βjife That this decomposition is unique follows from
[4, p. 42, Th. 1]. Also, by 4.3, each of the rings Al9 •••, Ak is self-
injective and hence by [13, p. 172, Th. 8.3] so are the rings e{2fe{

Finally, if Hi is the unique minimal right ideal of R contained in
βtR, it can be verified that eJRei is RSI with heart e^i?^. This prove
the Theorem.

As a consequence of this theorem, a right PF X-ring will be left
PF (if and) only if the self-injective RSI rings over which matrix
rings appear in the above decomposition are also left self-injective.
The author does not know if such is always the case.
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