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ON A GENERALIZATION OF ^-SPACES

AKIHIRO OKUYAMA

In order to simultaneously generalize the class of M-spaces
and (7-spaces, K. Nagami introduced ^-spaces. Subsequently,
E. Michael defined a class of ^-spaces. In this paper we will
discuss the class of 2̂ -spaces which lies between ^-spaces and
^-spaces and which contains all images of I'-spaces under
closed continuous maps.

1* Introduction* Recently K. Nagami [6] has investigated a
new class of spaces, called I'-spaces, containing two different classes
of generalized metric spaces; i.e. the class of M-spaces (cf. [4]) as
well as the class of σ-spaces (cf. [5], [7]).

If J^Γ is a cover of a space X, then a cover j y is called a (mod
Sί^)-network for X if, whenever KaU with Ke 3ί^ and U open in
X, then Kd A a U for some Aej&' According to K. Nagami [6],
X is a Σspace if it has a σ-locally finite closed (mod t:^Γ)-network
for some cover SΓ of X by countably compact sets.

E. Michael [2] has pointed out that the image of a paracompact,
T2 -Γ-space under a closed continuous map need not be a I'-space and
also that replacing "σ-locally finite" by "cF-closure-preserving" in the
definition of a I'-space leads to a strictly larger class of spaces, which
are called Σ*-spaces.

We say that a space X is a Σ*-space if it satisfies the definition
of a J-space with "σ-locally finite" weakened to "σ-hereditarily closure-
preserving", where we say that a collection j y = {Aλ: XeΛ} is here-
ditarily closure-preserving if any collection {Bλ: XeΛ} with Bλ c A7 is
closure-preserving (cf. [3]).

Clearly, every I'-space is a l^-space and every l^-space is a Σ%-
space. Since the image of a locally finite closed cover of the domain
under a closed continuous onto map is a hereditarily closure-preserving
closed cover of the range, we can easily see that the image of a Σ-
space by a closed continuous map is always a i^-space. As a matter
of fact, E. Michael [2] has pointed out that a paracompact, T2 Σ*-
space need not be a I'-space, in general. Hence this fact arouses our
interest in studying Jt^-spaces comparing with I'-spaces as well as
^-spaces.

In this paper we will investigate some relationship between above
spaces and obtain the following results:

(A) Any image of a l^-space under a closed continuous map is
a J?*-space.

(B) Any inverse image of a J^-space by a perfect map (i.e. a
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closed continuous map whose fibre at each point is compact) is a
.P-space, while this is not true for a i^-space.

(C) Every Lindelof, T2, 2^-space is a IZ-space, while this is not
true for a I'̂ -space.

(D) A J^-space X is a J?-space if every open set of Xis an Fσ.
(E) For a paracompact, T2 space X the following conditions are

equivalent:
(1) X is a Jf-space.
(2) I x I is a I'-space, where I denotes the unit closed interval

with usual topology,
(3) I x I is a 2^-space.
According to the first half of (B), the product of a J'-space with

I is a 2^-space. On the other hand, as noted above there exists a
paracompact, T2, I

7*-, non J-space. Hence statement (E) shows that
the product of a paracompact, T2, 2

1*-, non J-space X with J is a
I7*-, non 2^-space. Since the projection from X x I to I is perfect,
this is an example for the later half of (B). Also, this shows that
the class of ^-spaces is strictly larger than the class of 1^-spaces.

Concerning (D), it raises the following question:
Is (D) true for I^-spaces?
§ 2 is concerned with hereditarily closure-preserving closed covers

of a countably compact, T2 space, a Lindelof, T2 space and a T2 space
whose open sets are Fσ's. As an immediate consequence of 2.1 and
2.3 we have the simple facts that every hereditarily closure-preserving
closed cover of a countably compact, T2 space (resp. a Lindelof, T2

space) has a finite (resp. a countable) subcover. In §3 we will prove
main results.

We will use the following notations in §2 and §3:
For a cover ^ of a space X and a point x of X we put

C(x, j ^ ) = f]{F:x

and for a sequence {J^n: n = 1, 2, •} of covers of X and a point x
of X we put

C(x) = n C(x, JK)

Throughout this paper we assume that all spaces are T2 and all
maps are continuous.

cover

2* Some properties of a hereditarily closure-preserving closed

THEOREM 2,1. Let J/ = {Fλ:\eΛ} be a hereditarily closure-
preserving closed cover of a space X and C a countably compact set



ON A GENERALIZATION OF Σ-SPACES 487

of X. Then J?~ is locally finite at almost all points of C; i.e. there

exist xl9 , xn in C such that ^ is locally finite at any xeC —

{x19 , xn}, and only finitely many members of ^ meet C — {xly , xn}.

Proof. On the contrary, suppose J?~ is not locally finite at
infinitely many points of C. Since any closure-preserving, point-finite
collection of closed sets is locally finite, J^ is not point-finite at
infinitely many points of C. Then we can choose, step by step,
countably many points xly x2 in C and countably many λ1? λ2, in
A such that xn e Fλn for n = 1, 2, . Since J^ is hereditarily closure-
preserving, {xί9 x2, } must be discrete in X. On the other hand,
since C is countably compact, {xl9 x2, •••} must have a cluster point
in C. This is a contradiction. Hence J^ is locally finite at all points
of C but finitely many points xlf •••, xn.

To complete the proof of 2.1, assume that D = C — {xl9 •••, xn]
is infinite. If infinitely many members of jP" meet D, then we can
again obtain a sequence {pl9 p2, •} in D and a sequence {Fλl, Fλ2, •}
in ^ with Pi e Fλ. for i = 1, 2, by noting that js~ is point-finite
at any point of D. Since ^ is hereditarily closure-preserving,
{Pi, P29 •} must be discrete in X, therefore, in C, which is a contra-
diction. Hence only finitely many members of S^ meet D. This
completes the proof.

As an immediate corollary of 2.1 we have:

COROLLARY 2.2. Every hereditarily closure-preserving closed cover
of a countably compact space contains a finite subcover.

REMARK. 2.2 does not necessarily hold for a closure-preserving
closed cover even if a space is compact and metrizable; for example,
let X = {1/n: n = 1, 2, •} U {0} be a subspace of real line and put
^r — {{o, 1/n}: n = 1, 2, •}. Then X is a compact, metric space and
J^~ is a closure-preserving closed cover of X, but we cannot choose
any finite subcover.

THEOREM 2.3. Let S^ — {Fλ: λ e A} be a hereditarily closure-
preserving closed cover of a Lindelof space X. Then the set

Xo — {x e X: A(x) — {λ e A: x e F}] is uncountable}

is countable, and the set

Λ' = {XeA:FλΠ(X- XQ) Φ 0}

is countable if X — Xo is uncountable.
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Proof. On the contrary, suppose Xo is uncountable. Then Xo

contains a subset {xa: a < ωj, where ωι denotes the least uncountable
ordinal. For each a < ω19 by transfinite induction we can obtain xa

in Xo and aλ f fe Λ(xa) with xa e Fλ(χ and such that a Φ β implies xa Φ xβ

and Xa Φ xβ, because for each xe Xo Λ(x) is uncountable. Since j^~ is
hereditarily closure-preserving, {xa: a < ωj must be discrete in X.
This contradicts the assumption that X is Lindelof, and hence the
first half of 2.3 is proved.

To complete the proof, again suppose Λ' is uncountale. From the
definition of Xo, ̂  must be point-countable at any x e X — Xo. If
X — Xo is uncountable, by transfinite induction, we can choose an
uncountable set {xa: a < ωj in X— Xo and a corresponding set {Xa: a < ωλ}
with xa G Fλa for each a < ω1 and so that a Φ β implies xa Φ xβ as
well as Xa Φ Xβ. Since ̂  is hereditarily closure-preserving, {xa: a < ω,}
must be an uncountable discrete set in X, which contradicts the
assumption that X is Lindelof. Therefore X — Xo is countable, and
hence the proof is completed.

As an immediate consequence of 2.3 we have:

COROLLARY 2.4. Every hereditarily closure-preserving closed cover
of a Lindelof space contains a countable subcover.

REMARK. Example 3.4 in next section shows that 2.4 does not
necessarily hold for a closure-preserving closed cover.

LEMMA 2.5. Let j^~ be a closure-preserving closed cover of a
space X. Then the set

is discrete in X.

Proof. Let y e X be an arbitrary point and

U=X-

Then U is an open neighborhood of y, because j^~ is a closure-preserv-
ing closed cover. If x e U Π X19 then we have

ΦΦ UnC(x,Jt~) = (X- U{FeJT:yeF})Γ)(n{Fejr:χeF})

and hence C(y, ̂ ) c C(x, ̂ Γ). Since x e Xu C(x, J^) — {x} and thus
we have y = x. This means that U contains at most one point of
Xίf which completes the proof.

THEOREM 2.6. Let X be a space each of ivhose open sets is an
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Fσ, and let J^ be a closure-preserving closed cover of X. Then the
set

Xn = {xeX:\C(x,jT)\ = n}

is σ-discrete in X for n — 1, 2, •••, where we denote by \A\ the cardi-
nality of A.

Proof. We shall prove 2.6 by induction on n. By 2.5 Xγ is dis-
crete in X. Assume that Xn is σ-discrete in X for any n ^ k. We
shall show that Xk+1 is also σ-discrete.

First note that X — U5=i X» is °P e n i n X Let y be any point
of X - UίU Xn and let U = X - U {Fe^ y £ F}. Then U is an
open neighborhood of y. If x e X belongs to U, we have C(y, ̂ ) c
C(x, ̂ r). Since y does not belong to \Ji=1Xn, C{y, ̂ ) contains at
least k + 1 points of X and thus C(x, ̂ ") also contains at least k + 1
points. In other words, x $ \Jl=1 Xn. This shows that Z7ΓΊ (UίU -3ΓJ = 0
and hence X — Uί=i X* i s °P e n i n X*

According to hypothesis, X — Uϊ=i ^ ί s a n Fσ; i.e. X - Uί=i Xn =
US=i ί̂ j where each Yi is closed in X and Ŷ  c F ί + 1 for i = 1, 2, .
Since Xk+1 c UΓ=i Y<, it suffices to show that Z{ = Xk+1 Π Yi is discrete
in X for i = 1, 2, .

Let 7/ e X be an arbitrary point and i fixed. If y £ Yi9 then X — Yi

is clearly the desired neighborhood of y. If y e Yif put U = X —
U { F e ^ : 7/ g F}. Then a; e J7Π ̂  implies C(τ/, ̂ ^) c C(α;, ̂ ^) and
\C(x, J?r)\ — k + 1. Since ?/ belongs to Yi9 y does not belong to any
Xn with n^k: i.e. | C(τ/, ̂ " ) | > k. Hence we have C(y, ̂ ") = C(x, ^).
This means that x must be in C(y, J^) which is finite. Consequently,
U contains at most k + 1 points of Z{. Since X is T19 we obtain the
desired neighborhood of y by deleting finitely many points from U.
Therefore Zi is discrete in X. This completes the proof.

3* Some relations* Let / be a closed map from a space X onto
a space Y and J^" a hereditarily closure-preserving closed cover of
X. Then f{J^~) is also a hereditarily closure-preserving closed cover
of Y. Since the image of any countably compact space by a map is
countably compact, we have the following:

THEOREM 3.1. Any image of a Σ*-space under a closed map is
a Σ*-space.

Let / be a perfect map from X onto Y and j y a (mod
network for Y. Then we can easily see that f~ι{J^f) is a (mod f~ι{3ίΓ))-
network for X. Since the inverse image of any countably compact
space by a perfect map is countably compact, we have the following:
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THEOREM 3.2. Any inverse image of a Σ*-space by a perfect map
is a Σ*-space.

THEOREM 3.3. Every LindeVόf Σ*-space is a Σ-space.

Proof. Let X be a Lindelof 2r*-space having a ^-hereditarily
closure-preserving closed (mod J^")-network JF* for some cover .ί%Γ
of X by countably compact sets. Without loss of generality, we can
denote jβ~ by (J~= i «^^ such that each jjTn is a hereditarily closure-
preserving closed cover of X. Put ^~% = {Fλ: λ e Λn} for n — 1, 2, ••

By 2.3, for each n the set

Xn = {x e X: Λ(x) = {λe Λn: x e Fλ) is uncountable}

is countable. If X — Xn is countable for some n, then X is countable.
Since X is T2, X is clearly a I'-space; more precisely, it is a cosmic
space (cf. [1]). If X — Xn is uncountable for n = 1, 2, , then again
by 2.3,

Λ'u = {\eΛn:FλΓι(X-Xn)Φ 0}

is countable for n = 1, 2, . Put J^ζ = {{x}: x e X J U {Fλ: X e Λ'n) for
n = 1, 2, . Then each ^ ζ is countable and, therefore, 3ίf = U » = i ^ ^
is still countable. Since each Jg^ covers X, < ^ covers X and thus

f̂7 is a σ-locally finite closed cover of X. Furthermore, if we put
SίT' = {{x}: x e U~=i Xn) U {ΛΓG . ^ : if Π (X - Xn) Φ 0 for some n), then
SΓ' is a cover of X by countably compact sets. It is easy to see that
3ί? is a (mod <:^')-network, and hence X is a I'-space.

EXAMPLE 3.4. We shall show that in general a Lindelof 2^-space
need not be a J-space.

Let X = {xa: ae A} U {p} be an uncountable set with a special point
p. We define the topology for X as follows: each {xa} is open; V is
an open set containing p iff X — F is countable. Then we can easily
see that X is a regular, Lindelof (T2) space.

Now, put J ^ — {{p, xa}: a e A}. Then J ^ is a closure-preserving
closed cover of X, because any subset of X missing p is open. If we
put J>tΓ — J^~, then StΓ is a cover of X by countably compact sets
such that JF' is a (mod j^Γ)-network for X; i.e. X is a ^"-space.

Next, we shall show that X is not a J-space. On the contrary,
suppose X is a I'-space. Then there exists a σ-locally finite closed
cover £%f = Un=i £{fn of X which is a (mod J ^ ) - n e t w o r k for some
cover <5ίΓ by countably compact sets. We can assume without loss
of generality that {Sίfn\ n = 1, 2, •••} is an increasing sequence of
locally finite closed covers of X and that each ^fn is closed under
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finite intersections. Furthermore, in case of a I'-space we can put
j ^ ~ = {C(x): x e X}, where C(x) = Π~=i C{x, ^gζ) as noted in the intro-
duction. Since X is Lindelόf, each 3i?n is countable. From the
definition of the topology for X any member of ^f missing p is a
countable set. Therefore X' = X — I) {He 3ί?\ p $ H) is an uncountable
closed subspace of X, which is a iZ-space having Sίf\X' = {H Π X':
i ϊ e ^ } as a cr-locally finite (mod J2Γ/X')-network. Consequently, we
could have assumed from the beginning that each 3ίfn is finite and
each member of £%f contains p. For each xe X and n, let H(x, n)
be the smallest (as a subset) member of Sίfn containing x. H(x, n)
exists because £%fn is closed under finite intersections. Since the
compact sets of X are exactly the finite sets, C(x) = fi»=i H(x> n) m u s t
be finite for each xe X. Furthermore, for each xe X there is an nx

such that H(x, nx) is finite. To see this, suppose not. Then there is
an increasing sequence nγ < n2 < with H(x, ni+1) £ H(x, n^ for
i = 1, 2, . Now pick a point xi e H{x, n{) — H{x, ni+1) which is
distinct from p and x. Then F = {x^ i = 1, 2, } is a closed set in
X with JP7 n C(x) = 0 but F Π H(x, n) Φ 0 for all w. This contradicts
the fact that έ%? forms a network around C(α). Hence there exists
such an nx. We denote by n(x) the smallest nx for which Jϊ(ίc, nx) is
finite. Put

Ln = {x e X: n(x) ^ n) for w = 1, 2, .

Then {L%: π = 1, 2, •} is an increasing cover of X Since X is un-
countable, there exists an n0 such that LnQ is an uncountable set
containing p. Clearly LnQ is closed in X and hence it is a J-space
having £έf \ L%0 as a (mod 3ίT \ Lno)-network. But U*=i ̂  i s finίte a n ( i

for each x e LnQ there exists an H(x, n(x)) with w(α?) ̂  w0. This means
that Lnj must be finite, which is a contradiction. Thus X is not a
I'-space.

LEMMA 3.5. If X is a Σ*-space (resp. a Σ*-space), then X has a
sequence {J^n: n = 1, 2, •••} of hereditarily closure-preserving (resp.
closure-preserving) closed covers of X such that any sequence {xn: n =
1, 2, } with xn e C{x, ̂ Q for some xe X has a cluster point. In
particular, X is a Σ-space iff X has a sequence {^n: n = 1, 2, •} of
locally finite closed covers of X such that any sequence {xn: n = 1, 2, }
with xn e C(x, J?Z) for some xe X has a cluster point.

Proof. Since all cases are proved similarly, we shall prove for a
2^-space, only. Let X be a 2^-space having a σ-closure-preserving
closed (mod .^T)-network ^f = JJ»=i ̂  f o r a cover SΓ of X by
countably compact sets, where we can assume that each §ίfn is a
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closure-preserving closed cover of X. Put ^Ί = \Jk^n έ%fk for n =
1, 2, •••. Now we shall show that {^Z: n = 1, 2, •} satisfies the
required condition. On the contrary, suppose not. Then there exists
a discrete sequence {xn: n = 1, 2, •} with xn e C(x, .βQ for some xe X.
Since J3ίΓ covers X, there is a KeSΓ containing x. Since {xn: n =
1, 2, •} is discrete, there exists an w0 such as {xn: n^ n0} f] K = 0 .
Then G = X — {α?π: w ^ %0} is an open set containing K and thus, by
the assumption, there exists an Fe^m for some m with KczFciG.
Hence we have xt e CO, ^7) c C(α, ^ Q aFcG for any £ with m < i
as well as n0 < i, which is a contradiction.

The * if' part in the later half is easily seen noting that any
C(x, <_̂Q could have been a member of

THEOREM 3.6. Let X be a Σ*-space for which every open set is
an Fσ. Then X is a Σ-space.

Proof. Let J^ = U»=i ^l be a cr-hereditarily closure-preserving
closed (mod SΓ)-network for a cover St~ by countably compact sets.
We can assume that each ^ n covers X and that J?~% c , ^ + 1 for n =
1, 2, . Put

Γ = {a;Gl:|C(x, ^l)\ is finite for some n) .

Then X' is σ-discrete in X by 2.6. Denote X ' by U"=i P«> where each
P Λ is discrete in X and we can assume Pn c P Λ + 1 for w = 1, 2, .

We shall show that each . ^ is locally finite at any xe X — X'.
On the contrary, suppose some <J^0 is not locally finite at some xe X —
X'. Since J^ c ^l+1 and since each j ^ * n is closure-preserving, Λ'n =
{λ G /ί%: a? 6 F;} must be infinite for all n ^ n0. Since x ί X', C(x, ^l)
is infinite for all n ^ w0. We can choose a point a;n e C(x, J ^ ) and a
λn e Λ'%Q with α?Λ e Fλn for each n ^ n0 and such that n Φ m implies
xn Φ xm as well as λΛ Φ λm. By 3.5 {xn: n = nQ, n0 + 1, •} has a
cluster point. On the other hand, it must be discrete, because each
{xn} c Fχn e ^l0 and ^nQ is hereditarily closure-preserving. This con-
tradiction shows that each ^ n is locally finite at any xe X — X'.

Next, put

Yn = {x e X: J^n is locally finite at .τ}, n = 1, 2, .

Then each FΛ is open in X and therefore an Fσ. Denote Yn by
Um=i Qnm, where each Q%m is closed in X and Qnm c Qwm+1 for m, n =
1, 2, . Further, as was seen above, we have X — X ' c Yn for
w = l ,2, . . . .

Finally, put
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= {F* Π Qnm: XeAJu {X} for n, m = 1, 2, . ,

ς - {{x}: xePn}{J {X} for % = 1, 2, . . . .

Then each ^ n m as well as 3$fn is locally finite closed cover of X. In
order that X be a I'-space, it suffices to show that the sequence
{^»: n, m = 1, 2, ...} U {<§K: n = 1, 2, •} = {gf<: i = 1, 2, •} satisfies
the condition in 3.5. Let a e l b e any point and {ay ί — 1, 2, •} a
sequence with α?< e C(#, ^ ) . If a? e Xf, then a? e Pfc for some k, and since
{Pn: n = 1, 2, •} is increasing, we have C(#, ^ ) = {x} e ^ for all
n^k. Hence {ay i = 1, 2, •} has a cluster point a;. If x $ X', then
x e Yn for n = 1, 2, and hence, for each n, there exists a &Λ with
% e Qnkn Thus, for any n we have C(x, ^lkj c C(ίt?, ̂ U) On the other
hand, by 3.5 any sequence {pn: n = 1, 2, •} with pΛ e C(a;, JΓ,) has
a cluster point. Hence {a?<: i = 1, 2, •• •} must have a cluster point.
This shows by 3.5 that X is a J-space.

THEOREM 3.7. Let Xbe a paracompact space. Then the following
conditions are equivalent.

(1) X is a Σ-space.
( 2 ) X x I is a Σ-space.
( 3) X x I is a Σ*-space.

Proof. Since the property of being a paracompact iJ-space is
countably productive (cf. [6]), we have (1) => (2), From the definition
clearly (2) => (3).

(3) => (1). Let j ^ ~ — \Jn=ιJKι be a σ-hereditarily closure-preserv-
ing (mod J^)-network for some cover J%" of X x I by countably
compact sets. We assume that <β^a<^l+1 for n = 1, 2, •••.

At first we shall construct by induction on n a collection
{V(al9 '- -, an): axe Au , an e An; n = 1, 2, } of open sets of X and
a corresponding collection

{I(al9 •, α j : ^ e Λ , , αΛ e An; n = 1, 2, .}

of subsets of I satisfying the following conditions:
( i ) {V(al9 • *,an):a1eAl9 , an e An) is a locally finite open

cover of X for n = 1, 2, .
(ii) F(α :, ••-,«*, αn + 1) c ^(α,, •••,«„) for ^ e i , •••,«.£ Aw,

α Λ + 1 e An+1; w = 1, 2, ••-.
(iii) If F(α :, •• ,α:n) is nonempty, then /(α^ •••,«„) is a closed

interval.
(iv) /(«!, , αw,αw + 1) c !(«!, •••,«») for αx e Ax, , an e An, an+1 e

An+1; n = 1, 2, - - .
(v ) y(«i, •••,««) x I(al9 , an) meets only finitely many mem-

bers of ^ for a,eAlf , an e An; n = 1, 2,
Assume that such collections are constructed for all n ^ k and



494 AKIHIRO OKUYAMA

consider n = k + 1.
Fix ^ e 4 , ak e Ak with V(al9 , ak) Φ 0 . For any point

xe V(aL, , ak), since {x} x I(aly ••-,#&) is compact and ^l+1 is
hereditari ly closure-preserving, by 2.1 J??k+1 is locally finite a t all b u t
finitely many points of {x} x I(al9 •••, α A ) . Let {plf •••, pm} be those
points of {x} x J(α!, •••, ak) a t which ^ I + 1 is not locally finite. Let
Ix be a closed subinterval of I(al9 •••, α^) missing ^ , •••, pTO. Since
{#} x Ix is compact, there exists an open neighborhood Ux(in V(aίy cck))
of x such t h a t

Uxx IxdX x I - U{FeJsηc+ι:FΓ) ({x} x /,) = 0} .

Since Ffe, * , ^ ) is paracompact, there is a locally finite open cover

{Vλ: Xe Λ(aly ,ak)} of F(α1? ,ak) which refines {Ux: xe V(a19 ,αΛ)}

Let

9>: ̂ (αx, , ak) • V(al9 , ak) c X

be a function which satisfies F^c ί7^(;) for XeA{al9 •• ,αA ;).
Now varying ^ G ^ , , αΛ G AΛ, put

4̂.̂ +1 = U {Λ(al9 , α/c): α ^ A , , ak G A,}

and

(^, , ak) Π Fα / c + 1 if F ( ^ , , ak) φ 0 and α:^, e Λ(a19 , ak)

otherwise

Furthermore, if V(al9 " ,ak9 ctk+1) Φ 0? then from the definition we
have V(aly *',(xk) Φ 0 and ak+1 e Λ(alf •• ,α / ί ) . By inductive hypo-
thesis I(aί9 — ,ak) is not empty. Hence we put I(al9 •••, ak9 ak+1) =
I<p(ak+1)9 which is not empty. Otherwise we put I(al9 , ak9 ak+ί) = 0 .
Then we can easily see that {V(ctϊ9 , cck+1): aγe Al9 , ak+ι e Ak+1}
and {I(al9 , ak+1): a, e Al9 , ak+1 e Ak+ι} satisfy all required condi-
tions ( i ) — ( v ) .

Consequently, for each n we can construct {V(au •• ,αw):α:1G
Al9 , an G An) and {I(al9 , an): av e Aί9 an e An} satisfying (i)—(v).

Next, put

Y« = U {V(al9 , an) x /(«!, , α j : a, e Aί9 , an e An}

and

γ=n γn.

Since { F ^ , •• ,α 1 , ) :α 1 eA 1 , •••, ane An) is locally finite in X, Yn is
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closed in X x I and thus Y is closed in X x I. Also by (v) the
collection

is a locally finite closed cover of Y for n = 1, 2, .
Now we show that Y is a Jί-space. For this purpose it suffices

to show that {J%?n: n = 1, 2, •••} satisfies the condition in 3.5. Let
y e Y be any point and {yn: n = 1,2, } any sequence with j / w e C(y, β£ζ).
Since C(#, β£ζ) c C(τ/, . i Q for each n and since X x I is a I^-space,
by 3.5 {yn: n, = 1, 2, •••} has a cluster point in X x I. Since Y is
closed in I x J, {τ/%: w = 1, 2, •} must have a cluster point in Y,
which shows by 3.5 that Y is a I'-space.

Finally, let π be the restriction to Y of the projection from X x I
onto Y. Since the projection is perfect and since Y is closed in X x J,
7Γ is perfect. It remains to show that π is onto, because a I'-space
is preserved by a perfect map (cf. [6]). Let x be any point of X.
Since {V(al9 - , an): aLe Au , an e An} covers X for n = 1, 2, ,
by (ii) we can choose a point (alf α2, •••) in AL x Λ> x with
xe V(al9 , an) for n = 1,2, . Since each V(al9 •••,«») is non-
empty, by (iv) {/(#!, , an): n = 1, 2, •} is a decreasing sequence of
nonempty closed intervals. Hence Γ\n^il(o:lf - --, an) Φ 0. Pick a
point g in this intersection. Then (x, q) belongs to V(alf « , α j x
I(al7 , α%) c Yn for w = 1, 2, , and thus belongs to Y. Clearly
τr((^, q)) = x. This shows that π is onto and hence X is a I'-space,
which completes the proof.
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