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THE p-CLASSES OF AN H*-ALGEBRA

JAMES F. SMITH

This paper considers a family of *-subalgebras of a semi-
simple H*-algebra A. For 0 < p < « a nonnegative extended-
real value |a|, is associated with each a in A; then the p-class
A, is defined to be {a € A: |a|, < co}. If1 < p < oo, A, is then
a two-sided *-ideal of A (proper only if p < 2), and (A4,, |- |,)

is a normed x*-algebra. (A, |-|[s) is (4,]|-]]); and for 1 < p <
2, (4,, |-]) is a Banach *-algebra, for which structure theorems
are given.

1. Introduction. Let A be a semisimple H *-algebra with inner
product and norm denoted by (,) and || -]||, respectively. The trace
class of A, that is, the set 7(4) = {xy: x, y € A}, has been studied by
Saworotnow and Friedell [8], who show, first of all, that for any
nonzero ¢ € A there exists a positive element [a¢] € A such that [a]* =
a*a, and a€7(A) if and only if [a] €7(A). An algebra norm 7 is then
introduced on 7(A) by defining z(a) = tr[a] for each a <€ 7(A), where
in turn the trace functional ¢» is unambiguously defined on 7(4) by
letting tr 2y = (%, ¥*) = 2 (@YD, D), {P.: © € 2} being any maximal family
of mutually orthogonal nonzero self-adjoint idempotents. With this
norm, 7(A) is actually a Banach algebra [9, Corollary to Theorem 1].
This presentation parallels that of Schatten [10] for z¢, the trace class
of oc, the Schmidt class of operators on a Hilbert space.

In a somewhat similar sense our central development in §3 brings
over into the present context some of the work of McCarthy [6] on
the operator algebras ¢,. We preface this with a basic spectral theorem
established in §2; in §4 we study the structure of the Banach x-algebras
A,, where 1 < p < 2. Finally, in §5 we relate A, to the class ¢, of
operators on a Hilbert space [6; 2, ch. XI. 9] and also to &, spaces
[3, pp. 70 ff.; 5].

2. Preliminary spectral theory. Throughout the remainder of
this paper A will continue to denote a semisimple H*-algebra. By a
projection p in A we shall mean a nonzero self-adjoint idempotent. A
projection p is primitive if p cannot be expressed as p = p, + P,
where p, and p, are orthogonal projections. By a projection base in
A we mean a maximal family of mutually orthogonal projections (not
necessarily primitive); note that if a € A and {p,: @ € 2} is a projection
base, then a = Jap, = ¥p,a [1, Theorem 4.1, where primitivity of
the projections is not needed to establish this point]. Finally, we
shall say that an element a in A4 is positive if (ax,x) = 0 for every
x e A; a is then necessarily self-adjoint.
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LEMMA 2.1. Let b be a nonzero normal element of A. There is
a well-defined family {p.: e 2} of mutually orthogonal projections
m A, and a well-defined set {a,: ® € 2} of complex numbers, such that

(1) b= Ja,p,

(2) bp, = p,b= a,p, for each we Q.
The nonzero a, are precisely the nonzero elements of the spectrum of b.

Proof. Let A, be the intersection of all maximal commutative
x-subalgebras of A containing b. A, is a proper H*-algebra in the
inner product and involution of A. Let {p,: ® € 2} be the collection
of projections of A, which are primitive in A4,; then each p,4, is a
minimal ideal of A4,, and if w, # », we have p, p.,= 0 and (p,, p.,) = 0.
Also, A, = 3p,A4,, the orthogonal direct sum of the minimal ideals
0,4, each of which is one-dimensional and consists of scalar multiples
of p, [1, Corollary 4.1]. Therefore b = Y«,p,, Where {a,:wc @} is a
set of complex numbers. Property (2) is immediate from the orthog-
onality of the p,. We shall show that the nonzero «, are the nonzero
elements of sp(b|A4,), the spectrum of b relative to A,. Let ¢ be any
multiplicative linear functional on A,. We have ¢(p.,) = ¢(p2) = [6(p.)]%
and hence the value of ¢ at each projection p, must be either 0 or
1. ¢ cannot have the value 0 at every p, or else ¢ would vanish on
A;; nor can we have ¢(p,) =1 = ¢(p,,) if ® # w, for then 1=
$(D0)$(D,) = (D0, Du,) = 3(0) = 0. Therefore, each multiplicative linear
funectional on A4, is of the form ¢,(p,) = 0,,, where ve 2. We have,
for each ve @, ¢,(0) = 2, a.6.(p.,) = @, = 5(95,,), where b denotes the
Gelfand transform of be A,. Since the nonzero «, are therefore the
nonzero elements of the range of b, they are by the Gelfand theory
precisely the nonzero elements of sp(b| 4,). However, sp(b| A) = sp(b|A4,),
since if ¢ € A, has a quasi-inverse ¢’ in A, then, as is well-known, ¢°
belongs to every maximal commutative =-subalgebra of A containing
¢, or equivalently, ¢°e 4,. Finally, it is clear that the element b
uniquely determines the algebra A, along with its set of primitive
projections {p,: @ € @} and the corresponding numbers «,, since «,p,
is the orthogonal projection of b on the closed ideal p,4, of A,.

LEMMA 2.2. Let b be a nonzero normal element of A, and let
b= 3p,q,, where {q,} is a countable (possibly finite) family of mutually
orthogonal projections, and the p, are nonzero complex numbers such
that pt, = pt, if m %= n. Let h be any self-adjoint element of A which
commutes with b. Then for each n, hq, = q,h.

Proof. Extend {q,} to a projection base {¢,:veI'}. For each v,
if ¢, = ¢, for some n, let g, = ,; otherwise, let x2. = 0. (Note that
bg, = q,b = p,q, for each veI'.) Then for any ¢, we have ¢,k =
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2,q,hq;. Also, since b and h commute, p,9.khq, = q,bhq, = q,hbg, =
nq.hq,. If q, # q, then p, # p, and consequently ¢,kq, = 0. Thus
q.h = q,hg,. Taking adjoints we have hq, = ¢.hq,; therefore hq, = q,h.

COROLLARY 2.3. Let b, {1}, and {q,} be as in the lemma, and
let A, be, as before, the intersection of all maximal commutative x-
subalgebras of A containing b. Then for each n,q, € A,.

Proof. Let A, be any maximal commutative *-subalgebra of A
containing b. Since A, is a =-algebra, each xe A, is of the form = =
h + ik, where h, ke A,, and & and k are self-adjoint. Therefore, each
q. commutes with every element of A4,, and by maximality of 4,, ¢, €
A,. Therefore, finally, ¢, c A,.

LEMMA 2.4. Let b, {p,}, and {q,} be as in Lemma 2.2. Then
each q, is a finite sum of the projections p, of Lemma 2.1.

Proof. Each ¢, belongs to A, and therefore, as in the proof of
Lemma 2.1, ¢, = ¥B,p, for suitable numbers B,. Also, ¢, = ¢2 =
2B.p,, and therefore each g, is either 0 or 1. Only finitely many
can be 1, since [[g.| = 2B, |p.|" = 28.

Now let ¢, = p,, + +++ + Da,,,- The orthogonal projection of b
on the closed left ideal Ag, is bg. = ftuqn = ta(Du, + +++ + Duy,)-
From Lemma 2.1, since b = Ya,p,, this projection of b is also a, p,, +
o+ + @y Puy,,» Therefore a,, = 1,1 =1, -+ k(n), and in the repre-
sentation b = Ya,p, we may replace the sum a, p,, + +++ + @, Pn,,
by #¢.q.. If this is done for each n indexing the countable set {q,},
the procedure evidently replaces the representation b = Ya,p, by b =
2p.q,, and therefore makes use of every term a,p, except those for
which a, = 0. We thus have the following spectral theorem.

THEOREM 2.5. Let b be a nonzero normal element of A. Then
b may be represented uniquely (apart from the order of the terms) as
a sum

(*) b= 2N\, ,

in which
1) {\.) s a countable family of distinet nonzero complers num-
bers comsisting of the monzero elements of the spectrum of b, and
(2) {e.} is a countable family of mutually orthogonal projections.
We have be, = e,b = \,e, for each ;b is self-adjoint if and only if
each N, is real, and b is positive if and only if each n, > 0.

DEFINITION 2.6. Let b be a nonzero normal element of A. A
representation (x) of b having properties (1) and (2) of Theorem 2.5
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will be called a spectral representation of b. If bis a positive element
of A, we shall refer to the spectral representation of b, meaning the
one in which ), <\, if m >n. For any nonzero normal element b, the
set E, of mutually orthogonal projections in a spectral representation
of b will be called the spectral family of b.

DEFINITION 2.7. Let b be a nonzero normal element of A4, and let
E, be its spectral family. A projection base {e,: ® € 2} containing
every e, in E, will be called a projection base associated with b. (Note
that by a simple maximality argument, E, can always be extended
to a projection base associated with b.)

3. The classes A, and their basic properties. We begin this
section by recalling some basic results from [8]. Corresponding to
each a in A there is a unique positive element [a] of A such that
[a]* = a*a. Moreover, there is, for each nonzero a in A, a well-defined
partial isometry W on A, having initial set [a]A and final set a4,
such that a = Wla], [a] = W*a, and || W|| = 1. We shall call W the
partial isometry assoctated with a. We define a left centralizer on A
to be an operator S in B(A) such that S(xy) = (Sx)y for all =, y < A.
(This terminology, though widely used, is not universal; the type of
operator just defined is called a right centralizer in [8] and ]9], and
elsewhere.) Evidently, each left multiplication operator L,, ac 4, is
a left centralizer on A; also, for any nonzero a in A, the partial
isometry W associated with a is a left centralizer (see [8, p. 97]).
We note, finally, for fairly frequent use, that for any z € A, ||az]|| =
llalz], since [laz|f = (aw, ax) = (a*az, x) = ([a]*z, 2) = ([a]z, [a]x) =

a2

DEFINITION 3.1. Let a be a nonzero element of A, and let [a] =
3N\,e, be the spectral representation of [a]. We define

lal, = (ENZ]le,[[)? for 0 < p < oo,
@] = Ny

For a = 0, we define |a|, =0, 0 < p < oo.
DEFINITION 3.2. For 0 < p = o, 4, = {acA:|al, < oo}.

REMARK 3.3. For 0 < p £ o,
(1) acA, if and only if [a] € 4,, since [a] = [[a]] implies |a|, =

]l

(2) if e is a projection, ec A, and |e|, = ||e||”?.
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REMARK 3.4. Let {e,: @ € 2} be a projection base associated with
[a]. We shall write [a] = Z\.e,, always assuming that A, =\, if
e, ¢ E- Then |al, = (I\2]le,]|H"® for 0 < p < ; and we continue
to write |a]. = N\, understanding \, to be sup{\.,: we Q}.

REMARK 3.5. Let {e,: w € 2} be a projection base associated with

[a] € A.
(1) lalf=[le]f= INille. |l = T heo I = Slale. | = T|lae, | =
[la|. Hence |al|, = ||a|] and A, = A.

(2) Ia’ll = l[a] ll = 27%”%”2 = 2(7\;0,60,, ew) = 2([(1]6,”, ew) = t7‘[a] =
7(a) [8, Lemma 3]. Hence |a|, = t(a) and A, = 7(A4), the trace class
of A.

DEFINITION 3.6. Let b be a nonzero positive element of A, with
spectral representation b = In,e,. For 0 < p < oo, b* = I\%e,, pro-
vided that this sum exists in A.

REMARK 3.7. From [8, Lemma 3] we have that ac A4, if and
only if [a]* e A, = 7(A). This occurs if and only if [a]?’* exists in A;
we then have |a [} = 2)\[e, | = 7([a]”) = |[a]”], = || [a]"*[|* = Z([a]* Dus Do)
for any projection base {p,: w € 2}.

REMARK 3.8. For 0 < p £ o, clearly |a|, =0, and |a|, = 0 if
and only if @ = 0. Also, since [aa] = |a] [a] for any complex number
a, we have |aa|, = |a| |a],.

LEMMA 3.9. For any ac A and 0 < p < oo, |al. = |a],

Proof. For a = 0 the result is obvious. Otherwise, using the
spectral representation of [a], we have |a|2 = \F < INZ]|e, | = |alk.

LEMMA 3.10. For any ac A, |lax|] < |al.l]2]-

Proof. For a # 0, let {e,: w € 2} be a projection base associated
with [a]. Then [a]z = Zrh.e,x and ||[a]z|? = 2N ||e 2| < N2 ||e o] =
M|zl Hence [jax|| = ||[a]x]] = |al|.]|@]].

COROLLARY 3.11. For any ac A, |al. = ||L,||.

Proof. For a,x 0, ||lax]|//|z]| < |al|. Dby the lemma. But
laell/lle]] = lllale.ll/lle.]] = M = |ale.

PROPOSITION 3.12. For acA and 0 < p<q= oo, |a], = |al,
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Hence A,C A,, and if 2 < p < « then A4, = A.

Proof. Using the spectral representation of [a], we have |a|! =
Ihillen P = 2N e |P = MTPIM el [P = |a]Z?|al; < |al;, by Lemma
3.9.

REMARK 3.13. By 8.7,a€ A4,, (0 < p < ) if and only if [a]? exists
in A. For 1 <p< «,A4,,=A and hence [a]? is defined.

ProposITION 3.14. If A is infinite-dimensional, then for 0 < p <
g =2, A, is properly larger than A,.

Proof. From the structure theory of H*-algebras [1], we see
that if A is infinite-dimensional then A contains a countably infinite
set {e,:me N} of mutually orthogonal projections. Choose r such
that » < r < q; then the series 7., n7V"||e,||™? e, converges to a
positive element of A (since the squares of the norms of its terms
have a finite sum). Denoting this element by @, we observe that the
given series (or one obtained from it by grouping and rearranging
terms) is the spectral representation of a. Thus a€ 4,, since |a|! =
S m7YU" < oo; however ag¢ A,, since |alt = Do, n"|e, |0 =

—t nPT = oo,

Some elements of the following lemma appear in [8, p. 96]. For
most of it, however, the author is indebted to M. Kervin.

LEMMA 3.15. Let a be any nonzero element of A, and let [a] =
Znne, be the spectral represemtation of [a]. For each n, let f, =
Nfae,a*.  Then [a*] = 2N, f, is the spectral representation of [a*], and
[ Full = llenll for each n.

Proof. Clearly, the \, are distinct positive numbers and the f,
are self-adjoint. We recall, first of all, that [a]* = Y\, = a*a, and
therefore a*ae, = e¢,a*a = \ie¢,. Thus f,.f.= (\lae,a*)(\ae,a*) =
AN ae,(a*ae,)a® = \2ae,e,0* = 0, +. Therefore, the f, are mutually
orthogonal idempotents. Also, A2 || F.|]*=N\,%(ae.0*, ae,a*)=(e,a*, e,a*)=
A2lleq|’, and therefore || f,|| = |le.|| and the f, are nonzero. Now
we wish to show that [a*] = I\,f.. We shall show first that
a = Xae,. Extend the family E, to a projection base {e,: ® e Q}.
Then ¢ = Yae, and a*a = Za*ae,. But if e,¢ E,; then a*ae, =0,
since a*a = I\, = Ja*ae,. Therefore, for e, ¢ E;,; we have e,a*ae, =
0 = (ae,)*(ae,), and thus ae, = 0 [1, Lemma 2.2]. We conclude that
a = Jae,. Finally, (I\.f.)? = 2I\N:f, = 2ae,a* = aa*, and therefore
I\, f. is the (unique) positive square root of aa*; that is, I\,.f, =

[a*].
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COROLLARY 3.16. For any acA and 0< p = o, |a, = |a*],.
Hence a € A, if and only if a* € A,.

In order to arrive at the results announced in our opening synopsis,
we shall need to establish several crucial inequalities. Lemmas 3.17,
3.18, and 3.22 are adapted from [6, Lemmas 2.1, 2.2].

LEMMA 3.17. For 0 < p < o, let b be a positive element of A,,
(so that b® exists in A). Then for any monzero x € A,

(1) ', 2) = (b, )" ||2|* if 1 < p < oo,

(2) (b, o) < (bw, ) [|2]™ if 0<p=<1.

Proof. (1) Suppose 1 < p < . Let {e,: w e 2} be a projection
base associated with b, where, as usual, we take A, = A, ife, = ¢, €
E,, and \, = 0 if ¢, ¢ E,. We have, by Holder’s inequality,

(bx, ) = In, (e, x)
= [DMieww, )7 [2 (e, )] 77
= [(INZe.m, )]7[2 | e | ]/
— (bpx’ m)llp HxHZ(p-—l)/p .

Hence (b%z, ) = (bx, x)?||x|[2*~.
(2) Suppose 0 < »p < 1. Replace the element b in (1) by b” and
the exponent » by 1/» to obtain the desired inequality.

LEMMA 3.18. Let ac A, and let{q,: w e 2} be a projection base
Sfor A. Then

(1) lelf = ¥lagllllg.l* tf 1=p =2,

(2) lelf = 2aqull’llqull” of 2= p < oo

In each case, equality holds if {q,: ® € 2} is a projection base associated
with [a].

Proof. We note first that [a]” exists, since p = 1.
(1) Supposel < p <2. By (2) of Lemma 3.17 we have for each

9o

([al*9., 9.) = (([a]®)*"q., 9.)
= ([a]°qu, 90"l qu |P7*
= |lag. |’ ¢u "7 .

Summing over 2 gives, by 3.7,
|a“lg = 2([a]pqu qw) § ZIIQ’Qw”pIIanz—p M

If {q.} is a projection base associated with [a], then by 3.4 we have
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2laga|lPllgull™ = Z|[algu?llgu |
= 2Nl gu Pl qu I
= I\l

= lal}.

(2) 1is proved similarly, using (1) of Lemma 3.17.

PrOPOSITION 8.19. For 1 < p < o, let ac A,, and let S be a left
centralizer on A. Then Sac A,, and |Sal, < ||S]] |a|s-

Proof. The result is standard for p = . Suppose 1 < p < 2;
let {e,: w € 2} be a projection base associated with [¢]. By Lemma 3.18
D), [Sal; < Z||(Sa)e.)|”]| e.]]"" =2 ||S(ae.)||*|l el * < || S1IP2 || aeu| | |le| " =
[1S]]?]als. Now suppose 2 < p < o, and this time let {¢,: w € 2} be a
projection base associated with [Sa]. We have, using (2) of Lemma 3.18,
!HSSG}F ZIEH(SG)%II”H%HZ“’ = Z||S(ae)|"lle. [ = ISP |[ae, [Plle. P77 =
Plalk.

COROLLARY 3.20. For 1< p < o, letac A, xcA. Then xa and
ax belong to A,, and |za|, < |2|.|al, (a2, < |@]s| 2.

Proof. By Corollary 3.11 the statements about xa are immediate,
since L, is a left centralizer. We also have, by Corollary 3.16, |ax|, =
l(ax)*[, = |z*a*], < [2*].|a*], = |a],|®]w.

COROLLARY 3.21. For 1 < p < oo, let a,bec A,. Then |abl, =
|alolblpe

In our next lemma we shall make use of a special operator decom-
position given by McCarthy [6, p. 250]. Suppose T € B(A); then T =
(TT*YU(T*T)"¢, where U is a partial isometry with || U|| = 1.

LEMMA 3.22. Suppose 1 < p < co. Let ac A, and let {g,: © € 2}
be any projection base for A. Then X|(aq., ¢.)|?/|q.1F"™ < |al.

Proof. We use the operator decomposition just mentioned: L, =
(L L¥MU(L¥L,)"* = L3 UL, We have, by two applications of the
Schwarz inequality,

31 (agu, @) PNl @u P = ZN(ULr""qo, Lo u)I? 1407
= 2| Lidqu P | Lidgo 17 [ qu [P
= 2 (| Litgo 17 1196 172 Lizhgu 17 1l 0 [[77)
< [N Lidga 17 1 qu (P11 1] Litgo |17 | gu [P 77T
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= [2(Lifg0, Litiq.)" 11 9ol 1 (2 (Litgu, Lithgs)” |1 ¢u |71
= [2([0]gw, 0.)° [l 20| P* T [2([0*]40, 9u)7 1€ 17T

= [2([2)*¢., 2.)1"[2([2*]7q0, ¢.)]'"* by Lemma 3.17 (1)

= |al}"|a*[}" by 3.7

= laf;

PROPOSITION 8.23. Forl < p < oo, leta,be A,. Then|a + b[, =
lal, + Dl

Proof. The result is well-known for p = . For 1 < p < oo,
let {e,: @ € 2} be a projection base associated with [a + b], and let W
be the partial isometry associated with a 4+ b. Then

la + bl, = [Z([a + ble,, €.,)” || €.~ ]"”
= [2]([a + bled, e.) " || e, |71
= [Z](W*(a + b))ea, e.) I*l| e, |71
= [Z1(W*a)e, e.) |leu |7/ + (W*b)eu, eu) || eu |7/ [P]7
= ZI((W*a)ea, e.) Pllea [P47177 + [Z]((W*D)ew, €u) || ea |77

by Minkowski’s inequality

< |W*al, + | W*b|, by Lemma 3.22
< |IW*|llal, + || W*|||b], by Proposition 3.19
= |al, + b,

COROLLARY 3.24, For 1 < p < o, A, is a mormed linear space.
Hence A, is a two-sided =-ideal of A and (4,, |-|,) ts & normed algebra.

Now for 1 < p < « we wish to investigate the relationship be-
tween A, and the dual space of A, where (1/p) + (1/g) =1. In
what follows we shall omit proofs for the cases p = 1,¢ = o and p =
eo, ¢ = 1; these are given in [9].

LEMMA 3.25. Let (1/p) + (1/g) = 1, wherel < p,q < co. Letac
A, beA,. Then |tr ab| = |tr ba| < |al,|b],.

Proof. We shall assume with no loss of generality that 1 < p < 2
and hence 2 < g < . Let{e,: ® e 2} be a projection base associated
with [a]. Then [tr ab| = |tr ba| = |Z(bae,, €.)| < 3| (ae,, b*e,)| <
Zlae, || [|b%es || = Zae, || [le.[|*7 ]| b%e, || [[e.||*~"7, since ((2 — p)/p) +
(2 — 9)/g) = 0. By Holder’s inequality, the last sum does not exceed
[2] ae,|?|le. P21 [ 2 ]| b€, ||?]] €, |]*7] 7. But the first sum in brackets
is |a|3, and the second is less than or equal to |b*[?, by Lemma 3.18
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(2). Hence |tr ab| < |a],|b],

For each ae 4, we now define ¢,(x) = tr xa for allze 4,. From
the linearity of ¢r on the trace class 7(4), it is evident that ¢, is a
linear functional on A4,; moreover, ¢, is bounded and ||¢,|| < |a|, by
Lemma 3.25. We shall show that the opposite inequality holds as well.

PROPOSITION 3.26. Forl < p < o, the mapping a — ¢, 1s a linear
isometry of A, into Al, the dual space of A,.

Proof. Again using the linearity of ¢r on z(A) one easily verifies
that the mapping is linear. In view of our above remarks, therefore, we
need only prove that |a], < ||4.]|. Let [a] = 2\,e, be the spectral repre-
sentation of [a], and let w, = 3%_ A%, ac A,. We shall compute |w;]|,.
First of all, wiw,=C k- A2 2ae,) S\ %e,a*) =3k . A2 %ae,e,0 =

kNP Dge af =3k AU\ 2ae,at = DVE_A\2XPY £, where f, = A\ %ae,a*.
Since, by Lemma 3.15, the f, are mutually orthogonal projections with
[ £all = lleall, we have [w,] = 335, M2 f, and |wil, = [ NP7 || £LlF]1 =
[25-AZllen| 1. We also have X i 2|l e,|[P =315 A\itre, = [tr(3i-\fe,)| =
[tr(Xn=niena*a)| = [tr wya|=|ga(wi) | S| Gl [wils =] Sal[ [ X5 N2 [ €4l F]/7.
Thus [>5-, M e, [[F]"” < |[¢.1], and since 35_, M le, || < [|4,]|” for every
k, we have [a[} < [|g.]"

THEOREM 8.27. For 1 < p < 2, the mapping a— ¢, 1s a linear
isometry of A, onto A,.

Proof. Let ¢ be any bounded linear functional on A,. Then
for all we A= A), [¢@)| = ||¢llx|, = |I¢ll [|«|l, by Proposition 3.12.
Therefore ¢ is a bounded linear functional on A, and by the Riesz
representation theorem there exists a€ A such that ¢(x) = (z, a*) =
tr za for all € A. We need only show that ae A,. But if we again
consider the spectral representation [a] = Z\,e, and define w, as in
the preceding proof, the same computations show that >k_ A\2|le, || <
l|#]|> for every k, and hence XAZlle,||* < « and a€ A,.

COROLLARY 38.28. For 1 <p <2, (4,,]+],) s a Banach *-algebra.

We conclude this section with an example to show that if 2 <
p < o and A(= A4,) is infinite-dimensional, then (47, |-|,) is incomplete.
First of all, if (4,,]-],) is complete, then from the inverse mapping
theorem and the fact that ||, is dominated by ||-||, we can conclude
that these two norms are equivalent on A. But this is not so if 4
is infinite-dimensional, for if {e,: n € N} is a countably infinite set of
mutually orthogonal projections in A and we let s, = >k_, n™'2||e, || e,
then {s,} is a Cauchy sequence in the |.|,-topology but not in the
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||+]|-topology.

4. The structure of the Banach =-algebras 4,. In this section
we shall confine our attention mainly to the algebras A,, where 1 <
p < 2, although some of our results hold for p > 2 as well. TUnless
otherwise indicated, therefore, we shall assume throughout that 1 <
p < 2. We begin by observing that for these vealues of p, 4, is a
quite special instance of an IP-algebra, as introduced and studied by
Yood in [12]; hence the entire theory of that paper is at our disposal.
Furthermore, it is readily verified that (A4,,1]-]]) is a (normed) Hilbert
algebra; we shall immediately note some properties of this Hilbert
algebra. Our first lemma is a simple consequence of the || [|-continuity
of multiplication.

LEMMA 4.1. If R is any right ideal of A,, then R, the closure
of R in A, is a closed right ideal of A.

LEmMmA 4.2. If R is a right ideal of A, and P is the orthogonal
projection operator of A onto R, the closure of R in A, then for any
a€A, Paec A, In particular, if R 1is relatively || -||-closed in A,
then Pac R.

Proof. This is immediate from Proposition 3.19, inasmuch as P
is a left centralizer on A.

ProposITION 4.3. If R is a relatively ||-||-closed vright ideal of
A,, then A, = R@® R*, where R* is the orthogonal complement of R
m A,

Proof. Considering the closures in 4 of these right ideals, we
have, for any ac A,, a = a, + a,, where a, ¢ R, a,€ R*. But by Lemma
4.2, a,€¢ R and a,€ R-. '

REMARK 4.4. For a closed right ideal R in any Hilbert algebra,
we have £ (R) = R**, where & (R) is the left annihilator of B. This
is readily established by the argument used for an H*-algebra [5,
Theorem 12]. Combining this fact with Proposition 4.3 we obtain the
following.

COROLLARY 4.5. (A,, ||+ ts a dual Hilbert algebra.
Our next proposition, along with the known structure theory of

H*-algebras [1, Theorem 4.2], enables us to obtain a structure theorem
for the Hilbert algebras A,.
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ProproSITION 4.6. Let I be a closed two-sided ideal of A (and
therefore an H*-algebra). Then IN A, = I,, the p-class of I.

Proof. If acl, then [a], as an element of the H*-algebra I, has
a spectral decomposition [a] = I\.e., where e,el for each #n, and
2IAP|le,||F < . This is therefore the (unique) spectral decomposition
of [a] in A, and therefore a € I N A,. Conversely, suppose aclINA,.
Since a €I, [a] has a spectral decomposition [a] = Z\,e, in I, and again
this is its unique spectral decomposition in A. Since a€ 4, we have
Inrlle, P < o, and therefore a < I,.

REMARK 4.7. Let J be a relatively [|- ||-closed two-sided ideal of
A,. Then J is a minimal closed ideal of A4, if and only if J, the
closure of J in A, is a minimal closed ideal of A. If the latter con-
dition holds (so that J is a topologically simple H*-algebra), then
J is a topologically simple Hilbert algebra.

We use these results and Lemma 4.2 to obtain our structure
theorem for A, as a Hilbert algebra.

THEOREM 4.8 The Hilbert algebra (A,, || - ||) is the direct topological
sum of its minimal closed two-sided ideals, which are mutually orthog-
onal. FEach of these is a topologically simple Hilbert algebra and is
the p-class of a minimal closed two-sided ideal of A.

For the remainder of this section we consider the Banach x-algebras
(4,,]+],). Our aim in the following development is twofold: (1) to
investigate the |.|,-closed right ideals of A,; (2) to obtain a structure
theorem for (A4,,|-|,) analogous to Theorem 4.8.

LEMMA 4.9. Let I be any || - ||-closed two-sided ideal of A. For
any ac A, let a, denote the orthogonal projection of a on I. Then

(1) (@)= (@)%

(2) [a’]l = [all'

Proof. Let a = a, + a,, where a, € I+, the orthogonal complement
of I in A. Then o* = a} = (a)* + (a,)*. (1) follows readily from the
fact that I and I* are closed under the involution. To establish (2),
we first note that a*a = afa, + afa,. Then, letting [a] = [a], + [a],,
we have a*a = [a]* = [a]} + [a];, and hence [a]} = afa', by the unique-
ness of the decomposition. If we show that [a], is positive, then [a], =
[¢.] by the definition of [a,]. For any wec A, let x = x, + x,, where
x,el,x,eI*. Then ([a]x,x) = ([alx, + [ala., 2, + 2,) = ([a)2,, ) =
([a]@, + [a].@,, @) = ([a]@,, @) = 0.
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PRroPOSITION 4.10. Let {J,: v € I'} be a family of mutually orthogonal
relatively || - ||-closed two-sided tideals of A,. Let a,cd, for each v,
and let a = Ya, (in the || - ||-topology). Then |a|t = 3|a,|5, and hence
ac A, if and only if X|a, |5 < oo.

Proof. Clearly, each a, is the orthogonal projection of a on J,,
and hence, by the preceding lemma, [a] = Z[a,]. Now for each 7,
let [a,] = 2.\, e, be the spectral representation of [a,] in the H*-
algebra J,,t he || - [|-closure of J, in A. Then |a,[; = J,\] ||e, [*. Also,
[a] = 2,3\ 6, and since in this sum there cannot be infinitely many
equal coefficients, the spectral represention of [a] is obtained by merely
grouping the terms of the series having the same coefficient, and
then rearranging the terms, if necessary. Hence [a|} =233\ [le, [P =
Zrla; 3.

REMARK 4.11. This proposition also holds for 2 < p < «. Also,
it is easily seen that |al. = sup, |a,|..

LEMMA 4.12. Let ac A, and let € be any positive number. Then
there exist projections e and f in A, such that |a — ae|, < e and
la — fal, < €.

Proof. Let A, be the intersection of all maximal commutative
x-subalgebras of A containing [a]. Then, as in Lemma 2.1, we have
a representation [a] = Za,p, (each a, # 0), which, by grouping and
rearranging of terms, yields the spectral representation of [a]; hence
|a]? = Jaz||p,|?. (Note that [a] € (4,),.) We may write [a] = ([a] —
Xk a,p,) + Gkl a,p,), where >k a,p, belongs to the relatively
|| - ||-closed two-sided ideal >}_, (4,),p, of (4,), and ([a] — >t a,p.,)
belongs to the orthogonal complement of this ideal in (A4,),. By
Proposition 4.10, a2 = |[a] |2 = |[a] — k., a.p.[2 + | 23k, @,p. 2. But
this last term is >%_, a2||p,|’, which has the limit |a|? as k— .
We therefore have lim,_..|[a]— >\, @, p, [2=0=lim,_..|[a] —[a] >} , p, |2

Hence for sufficiently large k there is a projection ¢ = 3}%_, p, such
that |[e] — [a]e], < e. Taking W to be the partial isometry associated
with a, we have, using Proposition 3.19, |@ — ae|, = |W]a] — (W]a))e|, =
|Wla] — W([ale) |, || W] |[a] —[ale|, < e. There is likewise a projection
f such that |e* — a*f|, < &; hence |a — fa|, = |(e¢ — fa)*|, < e.

COROLLARY 4.13. For any ac A,, acad, N A,a, where the closure
18 1n the |- |,~topology.

We remarked at the beginning of this section that A4, is a special
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case of an IP-algebra, and now that we have established the result
of Corollary 4.13, we immediately have the following from [12,
Theorems 3.5 and 4.9].

COROLLARY 4.14. (4,,|-|,) has dense socle, and is the direct
topological sum of its minimal closed two-sided ideals.

COROLLARY 4.15. (4,, |+1,) s a dual algebra.

A simple consequence of Corollary 4.15 is the following.

ProrosiTION 4.16. Let R be a right ideal of A,. R 1is closed in
the | - |,-topology if and only if R is relatively closed in the || - ||-topology.

Proof. Since ||a]] < |a|, for every ac A4,, by Proposition 3.12, it
is clear that every relatively | -||-closed subset of A, is |- [,-closed.
Moreover, if the right ideal R is |.|,-closed, then it is an annihilator
ideal, by Corollary 4.15, and therefore is relatively || - ||-closed, by the
| + ||-continuity of multiplication.

REMARK 4.17. This result holds for 2 < p < . In this case,
R is clearly ||.||-closed if it is |- [,-closed. But if R is a || ||-closed
right ideal of A,(= A), we have R = R** = & (R*)*, by 4.4. By the
| - |;~continuity of multiplication, .~ (R*) is |.|,~closed.

We combine Proposition 4.16 with Proposition 4.3 to obtain the
following.

COROLLARY 4.18. (4,,|-1,) ts a right complemented algebra (in
the sense of [11]).

More can be said about the manner in which A4, is the direct
topological sum of its minimal closed two-sided ideals. In order to
do so, we obtain a converse of Proposition 4.10, which leads to our
final structure theorem.

ProPOSITION 4.19. Let {J.:veI'} be a family of mutually orthog-
onal closed two-sided ideals of A,. Let a,<cJ, for each v, and suppose
that X |a,|2 < co. Then there exists ac€ A, such that a = Za,, where
the sum may be taken in the |-|,-topology or the || - ||-topology.

Proof. Considering only the nonzero a,, which we denote as
a, lets, = 3\t _ a,. Then, by Proposition 4.10, for k¥ > m we have
[8k = Sml5=|Dkomsi@0|s = Skonii|@,|;—0 as k, m— co. The Cauchy
sequence {s,} thus has a limit o in the Banach algebra (4,, |- [,), and a =
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Ya, = Xa, in the |-|,-topology. (A standard argument shows that
the limit is independent of the order of summation.) By Proposition
3.12, the sum is the same in the ||.||-topology.

THEOREM 4.20. The Banach x-algebra (A,, |- |,) is the p-direct sum of
its minimal closed two-sided ideals J;,. The J, are mutually orthgonal
and each is a topologically simple Bamach x-algebra. A, is the “p-
direct sum’” in that 1t consists precisely of all sums Xa,, a; < J;, such
that 3|a;|? < o, where a = Ya; may be understood as a limit in either
the |- |,-topology or the || - ||-topology, and |a|, = (F|a;|5)"".

5. Relationship to other systems. If A is a topologically simple
H*-algebra, then there is a =-isomorphism x#— X of A onto the
Schmidt class oc of operators on the Hilbert space H = [,(I"), where
I' is the index set of a maximal family {¢,} of mutually orthogonal
primitive projections in A [1, Theorem 4.3]. Under this isomorphism,
l|#]] = ao(X), where d(X) denotes the Schmidt norm of the operator
X and a =1 is the norm of each of the projections ¢, (actually, all
primitive projections in 4 have the same norm [7, Corollary 5.9]).
Now if ¢ is any nonzero element of A and [x] = 2\,e, is the spectral
representation of [x], then we may replace the nonprimitive projections
among the e, by finite sums of primitive projections to obtain a new
representation

(%) [#] = 2ttupa s

where p,, < o, if m > k. For a given coefficient z, in (), we shall
call the number of primitive projections having g, as coefficient the
multiplicity of , in this representation, denoted by m(z,). We have,
for 0< p< oo, 2], = (Td|| 0, |D"" = P (Fp2)*. Also, |z|.. = p,. Since
the p, are the nonzero elements of the spectrum of [¢], and since
the corresponding operator [X] is compact, these numbers are the
nonzero characteristic values of [X]. Now for each p,, let M(y,)
denote the multiplicity of g, as a characteristic value of the operator
[X]; that is, the dimension of the subspace of H spanned by the
characteristic vectors of [X] corresponding to g,. We shall show
that m(p,) = M(p,)-

LEMMA 5.1. Let p be a primitive projection in the topologically
simple H*-algebra A. Then the corresponding projection P im oc is
one-dimensional on H.

Proof. If P is not one-dimensional, let P = @ + R, where @ and
R are projections onto orthogonal nonzero subspaces of P(H). Letting
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q and r be the corresponding elements of A, we see that ¢ and » are
orthogonal projections in A with p = ¢ + ». Thus p is not primitive.

LEMMA 5.2. For any p, in (=), m(g,) = M(p,).

Proof. Let p,, -+, p,, be the projections in (+) having coeffi-
cient f,. Then m(y,) = k. Also, letting P,,---, P, be the corre-
sponding projections in oc¢, we have, using the preceding lemma,
dim (P,, + +++ + P, )(H) = k; therefore M(y,) = k. Suppose M(y,) >k,
and let % be a nonzero element of H such that [X]h = p,h and h is
orthogonal to (P,, + «+- + P, )(H). Let Q be the orthogonal projection
onto the one-dimensional subspace of H spanned by {A4}. @ <oe¢, and
[X]Q = ¢,Q. Now let ¢ be the corresponding projection in A; then
[x]¢g=tt.q. Fori=1,.-+,k, p,q=0since P, @=0; and for m # n,, - - -, n,,
.l®le = papnq = t.0.q, so that p,q = 0, since p, =+ p,. Thus ¢ is
orthogonal to all the p,, which means that [#]¢ = 0, a contradiction.
We conclude that m(y,) = & = M(p,).

Now we observe that the coefficients g, in () are the nonzero
characteristic values of [X] enumerated according to their multiplicity
M(p,). Thus, for 0 < p< e, | X|, = (Zp2)'” and also | X|. = p,, where
|- |, here denotes the ¢, norm of X as an operator on H. Finally, we
have |z], = &*"| X |, for 0 < p < oo, and therefore the mapping x —
X is a bicontinuous isomorphism of A, into ¢,(H). Since ¢, = gc [2,
p. 1093] and ¢, Ce¢, for 0 < p < 2, the isomorphism is onto ¢, for these
values of p.

Now let A be any proper H *-algebra, and let {I,: A\ € 4} be the family
of minimal closed two-sided ideals of A. Each I, is a topologically
simple H*-algebra and A is the Hilbert space direct sum XI,. For
each ne 4, let I'; be the index set of a maximal family {eZT: ve '} of
mutually orthogonal primitive projections in I,, and let a; be the norm
He,.)_l[ of each of the e, in I,. For each xz,eI, let X; be the cor-
responding Schmidt class operator on H, = [,(I";). Then, as we have
noted above, |x;[, = a¥?| X;|,, 0 < p < o, where |X,|, is the ¢, norm
of the operator X,. Then, by Proposition 4.10, we have |z|, =
(2|07 = (Fai| X, |0)" for 0< p < oo, and, by 4.11, |2|.=sup; |2;| =
sup, | X;|. Thus, again, as in Proposition 4.10, x€ A, if and only if
each ;e (I;), = I, N A, and ¥ |x,;|2 < . These conditions in turn imply
that each corresponding operator X, € ¢,(H;) and Yo X;[p < . For 1 <
p < 2, it has been established that the last-mentioned implication is
an equivalence; for these values of p, therefore, in the special situation
in which each H, is finite-dimensional, we have shown that the algebras
A, are instances of the &, spaces studied in [3, pp. 70 ff.] and [5].



THE p-CLASSES OF AN H*-ALGEBRA 793

REFERENCES

1. W. Ambrose, Structure theorems for a special class of Banach algebras, Trans. Amer.
Math. Soc., 537 (1945), 364-386.

2. N. Dunford and J. T. Schwartz, Linear Operators, vol. II, New York, Interscience,
1963.

3. E. Hewitt and K. A. Ross, Abstract Harmonic Amnalysis, vol. II, Heidelberg,
Springer-Verlag, 1970.

4. 1. Kaplansky, Dual rings, Ann. of Math., 49 (1948), 689-701.

5. J. La Duke, On a certain generalization of lp spaces, Pacific J. Math., 35 (1970),
155-168.

6. C. A. McCarthy, c¢p, Israel J. Math., 5 (1967), 249-271.

7. M. A. Rieffel, Square-integrable representations of Hilbert algebras, J. Functional
Analysis, 3 (1969). 265-300.

8. P. P. Saworotnow and J. C. Friedell, Trace-class for an arbitrary H*-algebra, Proc.
Amer. Math. Soec., 26 (1970), 95-100.

9. P. P. Saworotnow, Trace-class and centralizers of an H*-algebra, Proc. Amer.
Math. Soe., 26 (1970), 101-104.

10. R. Schatten, Norm Ideals of Completely Continuous Operators, Berlin, Springer-
Verlag, 1960.

11. B.J. Tomiuk, Structure theory of complemented Banach algebras, Canad. J., Math.
14 (1962), 651-659.

12. B. Yood, Noncommutative Banach algebras and almost periodic functions, Illinois
J. Math. 7 (1963), 305-321.

Received July 23, 1971 and in revised form November 23, 1971. This research was
done while the author was at the University of Oregon on sabbatical leave from Le
Moyne College. He gratefully acknowledges the direction and assistance of Professor
Bertram Yood.

LE MoYNE COLLEGE








