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THE ^-CLASSES OF AN #*-ALGEBRA

JAMES F. SMITH

This paper considers a family of *-subalgebras of a semi-
simple ίP-algebra A. For 0 < p ^ oo a nonnegative extended-
real value \a\p is associated with each a in A; then the p-class
Ap is defined to be {ae A: \a\p < °°}. If 1 <; p <; oo, Ap is then
a two-sided *-ideal of A (proper only if p < 2), and (Ap, | |p)
is a normed *-a!gebra. (A2, I U) is (A, || | |); and for 1 ̂  p <
2, (Ap, I |p) is a Banach *-algebra, for which structure theorems
are given.

1* Introduction* Let A be a semisimple if*-algebra with inner
product and norm denoted by (,) and || ||, respectively. The trace
class of A, that is, the set τ(A) = {xy: x, y e A}, has been studied by
Saworotnow and Friedell [8], who show, first of all, that for any
nonzero aeA there exists a positive element [a] e A such that [a]2 =
a* a, and a e τ(A) if and only if [a] e τ(A). An algebra norm τ is then
introduced on τ(A) by defining τ(a) = tr[a] for each a e τ(A), where
in turn the trace functional tr is unambiguously defined on τ(A) by
letting tr xy = (x, y*) = Σ(xypω, pω), {pω: ω e Ω) being any maximal family
of mutually orthogonal nonzero self-adjoint idempotents. With this
norm, τ(A) is actually a Banach algebra [9, Corollary to Theorem 1],
This presentation parallels that of Schatten [10] for τc, the trace class
of σc, the Schmidt class of operators on a Hubert space.

In a somewhat similar sense our central development in §3 brings
over into the present context some of the work of McCarthy [6] on
the operator algebras cp. We preface this with a basic spectral theorem
established in §2; in §4 we study the structure of the Banach ^-algebras
Apf where 1 ^ p < 2. Finally, in § 5 we relate Ap to the class cp of
operators on a Hubert space [6; 2, ch. XI. 9] and also to ^p spaces
[3, pp. 70 if.; 5].

2* Preliminary spectral theory* Throughout the remainder of
this paper A will continue to denote a semisimple iί*-algebra. By a
projection p in A we shall mean a nonzero self-ad joint idempotent. A
projection p is primitive if p cannot be expressed as p = pί + p2,
where px and p2 are orthogonal projections. By a projection base in
A we mean a maximal family of mutually orthogonal projections (not
necessarily primitive); note that iί aeA and {pω: ω e Ω) is a projection
base, then a = Σapω = Σpωa [1, Theorem 4.1, where primitivity of
the projections is not needed to establish this point]. Finally, we
shall say that an element a in A is positive if {ax, x) ^ 0 for every
xeA; a is then necessarily self-adjoint.
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LEMMA 2.1. Let b be a nonzero normal element of A. There is
a well-defined family {pω: co e Ω) of mutually orthogonal projections
in A, and a well-defined set {aω: co e Ω} of complex numbers, such that

( 1 ) b = Σaωpω

( 2) bpω = pωb = aωpω for each ω e Ω.
The nonzero aω are precisely the nonzero elements of the spectrum of b.

Proof. Let Ao be the intersection of all maximal commutative
*-subalgebras of A containing b. AΌ is a proper iϊ*-algebra in the
inner product and involution of A. Let {pω: co e Ω} be the collection
of projections of AQ which are primitive in Ao; then each pωAΌ is a
minimal ideal of Ao, and if co1 Φ co2 we have pωip<02 = 0 and (pωi, pω2) = 0.
Also, Ao = ΣpωA0, the orthogonal direct sum of the minimal ideals
pωA0, each of which is one-dimensional and consists of scalar multiples
of pω [l, Corollary 4.1]. Therefore b = Σaωpω, where {aω: ω e Ω} is a
set of complex numbers. Property (2) is immediate from the orthog-
onality of the pw. We shall show that the nonzero aω are the nonzero
elements of sp(b\A0)y the spectrum of b relative to Ao. Let φ be any
multiplicative linear functional on AQ. We have φ(pω) = Φ(pl) = [Φ{pω)\\
and hence the value of φ at each projection pω must be either 0 or
1. φ cannot have the value 0 at every pω or else φ would vanish on
Ao; nor can we have φ(pω) = 1 = Φ(pω2) if coι Φ co2, for then 1 =
Φ(Pω)Φ(Pω) = Φ{pωiΊ>ω) = Φ(ty = 0. Therefore, each multiplicative linear
functional on AQ is of the form φv{pω) = duω, where v eΩ. We have,
for each v eΩ, φv{b) = Σωaωφv{pω) = av = b(φu), where 6 denotes the
Gelfand transform of b e Ao. Since the nonzero aω are therefore the
nonzero elements of the range of 6, they are by the Gelfand theory
precisely the nonzero elements of sp(b \ AQ). However, sp(b \ A) — sp(b\A0),
since if ce Ao has a quasi-inverse c° in A, then, as is well-known, c°
belongs to every maximal commutative *-subalgebra of A containing
c, or equivalently, c° 6 Ao. Finally, it is clear that the element b
uniquely determines the algebra AQ, along with its set of primitive
projections {pω: ω e Ω) and the corresponding numbers aω, since aωpω

is the orthogonal projection of b on the closed ideal pωA0 of Ao.

LEMMA 2.2. Let b be a nonzero normal element of A, and let
b = Σμnqn, where {qn} is a countable (possibly finite) family of mutually
orthogonal projections, and the μn are nonzero complex numbers such
that μm Φ μn if m Φ n. Let h be any self-adjoint element of A which
commutes with b. Then for each n, hqn = qnh.

Proof. Extend {qn} to a projection base {qf: 7 e Γ}. For each 7,
if qf — qn for some n, let μf = μn; otherwise, let μf = 0. (Note that
bqr = q7b = μrqr for each 7 6 Γ.) Then for any qn we have qjt =
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Σγqjιqγ. Also, since b and h commute, μnqjιqγ = qj)hqr = qjιbqr =
μiQnhqr. If qr Φ qn then μr Φ μn and consequently qjιqr = 0. Thus
gn/fc = qnhqn. Taking ad joints we have hqn — qnhqn; therefore hqn = gΛA.

COROLLARY 2.3. Let b, {μn}, and {qn} be as in the lemma, and
let Ao be, as before, the intersection of all maximal commutative *-
subalgebras of A containing b. Then for each n, qn £ AQ.

Proof. Let At be any maximal commutative *-subalgebra of A
containing b. Since Aι is a *-algebra, each x£ Aλ is of the form x =
h + ik, where h, k £ A19 and h and k are self-adjoint. Therefore, each
qn commutes with every element of A19 and by maximality of Al9 qn £
Ax. Therefore, finally, qn £ Ao.

LEMMA 2.4. Let b, {μn}, and {qn} be as in Lemma 2.2. Then
each qn is a finite sum of the projections pω of Lemma 2.1.

Proof. Each qn belongs to Ao, and therefore, as in the proof of
Lemma 2.1, qn = Σβωpω for suitable numbers βω. Also, qn = ql =
Σβlpω, and therefore each βω is either 0 or 1. Only finitely many
can be 1, since | |^| |« = Σβ2

ω\\pw\\2 ^ Σβl.
Now let q% = p%1 + + P»k[n) The orthogonal projection of 6

on the closed left ideal Aqn is bqn = μnqn = μn(pni + + 3>«t(n))
From Lemma 2.1, since b = Σaωpω, this projection of 6 is also a%1pni +
' + <***(•)#»*<»)• Therefore an. = μny i = 1, k(n), and in the repre-
sentation b = Σaωpω we may replace the sum anj>Hί + + OL%k[n)pnk{n)

by μnQn If this is done for each n indexing the countable set {qn},
the procedure evidently replaces the representation b = Σaωpω by b =
Σμnqn, and therefore makes use of every term aωpω except those for
which aω = 0. We thus have the following spectral theorem.

THEOREM 2.5. Let b be a nonzero normal element of A. Then
b may be represented uniquely (apart from the order of the terms) as
a sum

( * ) b — Σ\nen ,

in which
(1) {Xn} is a countable family of distinct nonzero complex num-

bers consisting of the nonzero elements of the spectrum of b, and
(2) {en} is a countable family of mutually orthogonal projections.

We have ben — enb = Xnen for each n; b is self-adjoint if and only if
each Xn is real, and b is positive if and only if each Xn > 0.

DEFINITION 2.6. Let b be a nonzero normal element of A. A
representation (*) of b having properties (1) and (2) of Theorem 2.5
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will be called a spectral representation of b. If b is a positive element
of A, we shall refer to the spectral representation of b, meaning the
one in which λm < Xn if m > n. For any nonzero normal element 6, the
set Eb of mutually orthogonal projections in a spectral representation
of b will be called the spectral family of 6.

DEFINITION 2.7. Let b be a nonzero normal element of A, and let
Eb be its spectral family. A projection base {eω: ω e Ω} containing
every en in Eb will be called a projection base associated with b. (Note
that by a simple maximality argument, Eb can always be extended
to a projection base associated with b.)

3* The classes Ap and their basic properties* We begin this
section by recalling some basic results from [8]. Corresponding to
each a in A there is a unique positive element [a] of A such that
[a]2 = α*α. Moreover, there is, for each nonzero α in A, a well-defined
partial isometry W on .A, having initial set [a]A and final set aA,
such that α = W[a], [a] = TF*α, and || TΓ|| - 1. We shall call Wthe
partial isometry associated with a. We define a left centralizer on A
to be an operator S in i?(A) such that S(xy) — (Sx)y for all x,yeA.
(This terminology, though widely used, is not universal; the type of
operator just defined is called a right centralizer in [8] and ]9], and
elsewhere.) Evidently, each left multiplication operator La, α e i , is
a left centralizer on A; also, for any nonzero a in A, the partial
isometry W associated with a is a left centralizer (see [8, p. 97]).
We note, finally, for fairly frequent use, that for any xeA, \\ax\\ =
\\[a]x\\, since | |αa?||2 = (ax, ax) = (a*ax, x) = ([afx, x) = ([a]x, [a]x) =

\\[a]x\\\

DEFINITION 3.1. Let a be a nonzero element of A, and let [a] =
Σ\nen be the spectral representation of [a]. We define

enWψ* for 0 < ί 9 < oo ,

F o r a = 0, w e define | α | P = 0, 0 < p ^ c o #

D E F I N I T I O N 3.2. F o r 0 < j> ^ oo? Ap = { α e A : | α | p < oo}.

R E M A R K 3.3. F o r 0 < p ^ oo,

( 1 ) α e A p if a n d o n l y if [a] e A 9 , s i n c e [α] = [[a]] i m p l i e s | a\p

I Ml,;
( 2 ) i f β i s a p r o j e c t i o n , e € A p a n d \ e \ p — | | e | | 2 / ί >
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REMARK 3.4. Let {eω: ω e Ω} be a projection base associated with
[a]. We shall write [a] — Σxωeωy always assuming that λω = λΛ if
eω$Eίal. Then \a\p = (i;λ2||eω|]2)1/2 for 0 < p < co; and we continue
to write |α|«> = λ1? understanding Xλ to be sup{λω: coeΩ}.

REMARK 3.5. Let {eω: ωeΩ} be a projection base associated with
[a] e A.

(1) \ a \ t = \[a]\l = Σxl\\eω\\2 = Σ\\Xωeω\\2 = Σ\\[a]eJ\2 = Σ\\aeω\\2 =
\\a\\2. Hence \a\2 = | | α | | and A2 = A.

(2) | α | t - I[α] |x = 2 X | | e ω | | 2 - I ( λ Λ , O - Σ([a]eω9 eω) = tr[a] =
τ(a) [8, Lemma 3]. Hence \a\x = τ(a) and Aγ — τ(A)9 the trace class
of A.

DEFINITION 3.6. Let b be a nonzero positive element of A, with
spectral representation b = 2Xe%. For 0 < p < coy b

p = -Γλ^, pro-
vided that this sum exists in A.

REMARK 3.7. From [8, Lemma 3] we have that aeAp if and
only if [a]p e Aλ = τ(A). This occurs if and only if [a]Pl2 exists in A;
we then have | a \% = ΣXζ \ \ en ||

2 - r([α]*) - | [α]' |x - || [a]Pί21|2 = Σ([a]'pφ, pω)
for any projection base {pω-0) e Ω}.

REMARK 3.8. For 0 < p <; oo, clearly | α | p ̂  0, and | α | p = 0 if
and only if a = 0. Also, since [era] = | α | [α] for any complex number
a, we have \aa\p = | α | | α | p .

LEMMA 3.9. For α^τ/ aeA and 0 < j> < ©o, JαU

Proof. For α = 0 the result is obvious. Otherwise, using the
spectral representation of [a], we have |α|£ = λf ^ JλJHe^H2 = |α|f.

LEMMA 3.10. For any aeA, \\ax\\ <£ |αUI|ί»||.

Proof. For α ̂  0, let {eω: ω e Ω) be a projection base associated
with [αj. Then [a]x = ΣXωeωx and | | [ φ ] | 2 - ^λi| |eωα?||2 ^ λ?i;| |βωα;||2-
λJHajll2. Hence | | α ^ | | = | | [ φ | | ^ |αU||a?| | .

COROLLARY 3.11. For any aeA, |αU = | | L β | | .

Proof. F o r a,x Φ §, \\ax\\l\\x\\ ^\a\oo, b y t h e l e m m a . B u t

PROPOSITION 3.12. For aeA and 0 < p < q ^
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Hence Ap c Aq, and if 2 ^ p ^ oo then Av = A.

Proof. Using the spectral representation of [α], we have \a\\ =

^λίlle.H1 = J λ Γ ^ | | β J | 2 ^ λΓ^λϊ l lβ. lΓ = \a\Vp\a\l ^ | α | ; , by Lemma
3.9.

REMARK 3.13. By 3.7, a e A2P (0 < p < oo) if and only if [a]p exists
in A. For 1 <̂  p < oo? A2P = A and hence [α]p is defined.

PROPOSITION 3.14. If A is infinite-dimensional, then for 0 < p <
q ^ 2, Aq is properly larger than Ap.

Proof. From the structure theory of iΓ*-algebras [1], we see
that if A is infinite-dimensional then A contains a countably infinite
set {en:neN} of mutually orthogonal projections. Choose r such
that p < r < q; then the series Σ~=i w~1/r||ej|~2/ςf βn converges to a
positive element of A (since the squares of the norms of its terms
have a finite sum). Denoting this element by α, we observe that the
given series (or one obtained from it by grouping and rearranging
terms) is the spectral representation of a. Thus aeAq, since |α|J =
Σn=in-qlr < oo; however a$Ap, since \a\% = ΣΓ=i^~ W r | |eJ | 2 - ( 2 2 ) / 9 ) ^

Some elements of the following lemma appear in [8, p. 96]. For
most of it, however, the author is indebted to M. Kervin.

LEMMA 3.15. Let a be any nonzero element of A, and let [a] =
Σ\nen be the spectral representation of [a]. For each n, let fn =
X~2aena*. Then [α*] — Σ\nfn is the spectral representation of [α*], and

IIAll = IKII for each n.

Proof. Clearly, the Xn are distinct positive numbers and the fn

are self-adjoint. We recall, first of all, that [a]2 = Σ\\en = a*a, and
therefore a*aen = ena*a = X2

nen. Thus fmfn = (λ~2αβwα*)(λ~2αe%α*) =
λ~2λ~2αβm(α*αe%)α* = X~2aemena* = 3 m w / n . Therefore, the / Λ are mutually
orthogonal idempotents. Also, λi | |/w | | 2=λ~ 2(αeΛα*,αe nα*) = (enα*, e%α*) =
λi | |e Λ | | 2 , and therefore | |/» | | = | | e n | | and the fn are nonzero. Now
we wish to show that [α*] = ΣXnfn. We shall show first that
a = ^αβΛ. Extend the family Ew to a projection base {eω: ω e Ω).
Then a — Σaeω and α*α = 2τα*αβω. But if ea £ Eίa} then a*aea = 0,
since α*α = ΣX2

nen — Σa*aen. Therefore, for ea £ Ew we have eaa*aea =
0 = (aea)*(aea), and thus aea = 0 [1, Lemma 2.2]. We conclude that
a = Σaen. Finally, {Σxjn)

2 = J λ ' / ^ = Σaena* = aa*, and therefore
ΣXnfn is the (unique) positive square root of αα*; that is, Σxnfn =
[α*].
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COROLLARY 3.16. For any aeA and 0 < p ^ oo, \a\p = \a*\p.'

Hence aeAp if and only if a* e Ap.

In order to arrive at the results announced in our opening synopsis,
we shall need to establish several crucial inequalities. Lemmas 3.17,
3.18, and 3.22 are adapted from [6, Lemmas 2.1, 2.2].

LEMMA 3.17. For 0 < p < oo, let b be a positive element of A2P

(so that bp exists in A). Then for any nonzero xeA,
(1) ( b p x , x ) ^ ( b x , x ) p \ \ x \ \ 2 { l ~ p ) if l ^ p < °°,
( 2 ) (bpx, x) ̂  (bx, x)p\\x\\2{1~p) if 0 < p ^ 1.

Proof. (1) Suppose 1 ^ p < oo. Let {eω: ωeΩ} be a projection
base associated with b, where, as usual, we take λω = Xn if eω = ene
Eh, and Xω = 0 if eω 0 Eb. We have, by Holder's inequality,

(bx, x) = Σxω(eωx, x)

= [(ΣXp

ωeωx,x)Y!p[Σ\\eωx\\T~ί)lP

= (bpx,x)lίp\\x\\2(p-ιUp .

Hence (bpx, x) ^ (bx, x)p\\x\\2{ι~p).

(2) Suppose 0 < p ^ 1. Replace the element b in (1) by bp and
the exponent p by 1/p to obtain the desired inequality.

LEMMA 3.18. Let aeA, and let {qω: ωeΩ} be a projection base
for A. Then

(1) \ a \ p ^ Σ \ \ a q ω \ \ p \ \ q ω \ r p i f l ^ p ^ 2 ,
( 2 ) \a\* ̂  Σ\\aqω\\p\\qω\rp if2^p<*«.

In each case, equality holds if {qω: ωeΩ} is a projection base associated
with [a].

Proof. We note first that [a]p exists, since p ^ 1.
(1) Suppose 1 ̂  p ^ 2. By (2) of Lemma 3.17 we have for each

qa»

([a]pqω, qω) = ((W)p'2qw, qω)

S([afqω,qω)Pί2\\qω\rp

- IIaqω\\p\\qω\rp .

Summing over Ω gives, by 3.7,

\a\> = Σ(la)'q.,q.)£Σ\\aq.\\>\\qm\r>.

If {qω} is a projection base associated with [a], then by 3.4 we have
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= \a\%.

(2) is proved similarly, using (1) of Lemma 3.17.

PROPOSITION 3.19. For 1 ^ p ^ <*>, let aeAp, and let S be a left

centralizer on A. Then SaeAp, and \Sa\p ^ \\S\\ \a\p.

Proof. The result is standard for p = oo. Suppose 1 ̂  p ^ 2;
let {eω: α> e Ω} be a projection base associated with [a]. By Lemma 3.18
( l ) , | S α | J ^ | | ( S α ) ^
| |S | | p |α | ; . Now suppose 2 <* p < °°, and this time let{eω: ωeΩ} be a
projection base associated with [Sα]. We have, using (2) of Lemma 3.18,

βJ|'||U^

COROLLARY 3.20. For 1 ̂  p ^ oo, let ae APf xeA. Then xa and
ax belong to A P 9 and \ x a \ p S \xU\a\p, \ax\p ^ |Gt|p|a5!««,•

Proof By Corollary 3.11 the statements about xa are immediate,
since Lx is a left centralizer. We also have, by Corollary 3.16, \ax\p =
\{ax)% = \χ*a*\P £ |»*U|α*|p = |α|Jα?U.

COROLLARY 3.21. For 1 ̂  j> ̂  oo, let a, be Av. Then \ab\p^L
\a\P\b\p.

In our next lemma we shall make use of a special operator decom-
position given by McCarthy [6, p. 250]. Suppose TeB(A); then T =
(TT*γi4U(T*T)1/*, where U is a partial isometry with || Z7|| = 1.

LEMMA 3.22. Suppose 1 <£ p < oo. Let aeA, and let {qω: ωeΩ}
be any projection base for A. Then Σ\(aqω, qω)\p\\qω\\*{1~p) ^ \a\p

p.

Proof. We use the operator decomposition just mentioned: La =
(LαL*)1/4?7(Lα*Lo)

1/4 = Ll^UL[!

a]. We have, by two applications of the
Schwarz inequality,

Σ\(aqω, qω)\p\\qω\\2{1-p)

^ [Σ11 L}'a]q J \" 11 q J Γ~ pψ 2[Σ \ \
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[Σ(Ll<a]qω, L^qω)η\qω\

lΣ([a]qω, qJ)'\\qm\r^

[Σ([a]>qφ, qω)]φ[Σ([a*]pqω, qωψ2 by Lemma 3.17 (1)

|α|f |α*|f by 3.7

P R O P O S I T I O N 3 . 2 3 . F o r 1 ̂  p ^ oo, let a , b e A P . Then \a + b \ p ^
\ a \ p + \b\p.

Proof. The result is well-known for p = oo. For 1 ̂  p < °°,
let {eω: ωeΩ} be a projection base associated with [α + δ], and let W
be the partial isometry associated with a + &. Then

|α + δ|,

= [Σ\([a + b]eω,eω)\*\\eω\\*«->ψ>

= lΣ\((W*a)eω,eω)\\e»\\1{1~p)!p

)eω,eJ)nen\r->ψ> + [Σ\((W*b)eω,eω)\*\\eω\Γ->ψ*

by Minkowski's inequality

ύ \W*a\p + I W*b\p by Lemma 3.22

< \\W*\\ \a\p + \\W*\\ \b\p by Proposition 3.19

= | α | p + \b\p.

COROLLARY 3.24. For 1 <^ p ^ c°, Ap is a normed linear space.
Hence Ap is a two-sided *-ideal of A and (Ap, \ \p) is a normed algebra.

Now for 1 ̂  p <J oo we wish to investigate the relationship be-
tween Ap and the dual space of Aq, where (1/p) + (1/g) = 1. In
what follows we shall omit proofs for the cases p = 1, q = oo and p =
oofqz=l; these are given in [9].

LEMMA 3.25. Let (Ifp) + (1/q) = 1, where 1 ̂  p, q S °° Let a e
Ap, b e Aq. Then \ tr ab \ = | tr ba \ <: | a \p \ b \q.

Proof. We shall assume with no loss of generality that 1 < p ^ 2
and hence 2 ̂  q < oo. Let{eω: α) e i3} be a projection base associated
with [a]. Then | ί r α δ | - | ί r ba\ - l^δαe., eβ)| ̂  Σ\(aeω, b*eω)\ ^
2 | |αeJ | | |δ*ej | = ̂ | |αe β | | \\eω\Γ^η\b*eω\\ \\eω\\w, since ((2 - p)/p) +
((2 - g)/g) = 0. By Holder's inequality, the last sum does not exceed
[Σ\\aew\\η\eω\\2~ψ»[Σ\\b*eω\\«\\eω\\2-ψ«. But the first sum in brackets
is |α |J, and the second is less than or equal to |δ*|J, by Lemma 3.18
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( 2 ) . H e n c e \tr ab\ ^ \a\p\b\q.
For each a e Ap we now define φa(x) = tr xa for all x e Aq. From

the linearity of tr on the trace class τ(A), it is evident that φa is a
linear functional on Aq; moreover, <ρa is bounded and | |0 α | | ^ \a\pί by
Lemma 3.25. We shall show that the opposite inequality holds as well.

PROPOSITION 3.26. For 1 <* p ^ ©o, £Λ,e mapping a~*φais a linear
isometry of Ap into Aq, the dual space of Aq.

Proof. Again using the linearity of tr on τ(A) one easily verifies
that the mapping is linear. In view of our above remarks, therefore, we
need only prove that \a\p ̂  \\φa\\ Let [a] — Σxnen be the spectral repre-
sentation of [α], and let wk — Σk

n=ι Xζ~2ena e Aq. We shall compute \wk\q.
First of all, wj^* = ( Σ U i λ Γ a α O ( Σ U λ Γ 2 β » α * ) = ΣU-iλΓ 2 λΓ 2 αe m e i l α* =
Σ U λ ϊ ί ' - ' W * =ΣUΛΪ p - 1 ) λ- 2 αe l l α* = ΣJUiλl(*-1)/ > where / . = λ~2αewα*.
Since, by Lemma 3.15, the fn are mutually orthogonal projections with
II/JI - | | e j | , wehave[wj = Σ ί s s i λ Γ 1 Λ , and |w
ί Σ U λ S l k l l ? " . We also haveΣUiλS| |eJ | 2 = Σ
IMΣLΛΓ^^^I-Ur^αl-I^^l^iμjll^l.-I^JIE^^
Thus [ Σ 5 U λ £ | K | | 2 ] 1 / 2 ? ^ l l^ll, and since Σ L i λ £ | K I I 2 ^ l l^l l" for every

k, we have | α | J ̂  | | ^ β | | p .

THEOREM 3.27. i^or 1 <S p ^ 2, ί/ιβ mapping a-+φa is a linear

isometry of Ap onto AJ.

Proof. Let ^ be any bounded linear functional on Aq. Then
for all ^G^L g(- A), \φ{x)\ ̂  | | ^ | | . τ | g ^ | | ^ | | ||a?||, by Proposition 3.12.
Therefore φ is a bounded linear functional on A, and by the Riesz
representation theorem there exists ae A such that φ(x) — (x, α*) =
tr xa for all xe A. We need only show that a e Ap. But if we again
consider the spectral representation [a] — Σ\nen and define wh as in
the preceding proof, the same computations show that ΣίUiΛS | |e w | | 2 ^
\\φ\\v for every fc, and hence Σ\l\\en\^ < oo and aeAp.

COROLLARY 3.28. For 1 <g p ^ 2, (Ap, | |p) is α Banach *-algebra.

We conclude this section with an example to show that if 2 <
p <̂  oo and A(= Ap) is infinite-dimensional, then (Ap, | |p) is incomplete.
First of all, if (Ap, \ \p) is complete, then from the inverse mapping
theorem and the fact that |-1^ is dominated by || ||, we can conclude
that these two norms are equivalent on A. But this is not so if A
is infinite-dimensional, for if {en: ne N} is a countably infinite set of
mutually orthogonal projections in A and we let sk = ΣίUi w~1/2 II βΛ \\~2lPen,
then {sk} is a Cauchy sequence in the |-^-topology but not in the
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11.||-topology

4* The structure of the Banach *-algebras Ap. In this section
we shall confine our attention mainly to the algebras Ap9 where 1 fg
p <̂  2, although some of our results hold for p > 2 as well. Unless
otherwise indicated, therefore, we shall assume throughout that 1 ^
p < 2. We begin by observing that for these vealues of p, Ap is a
quite special instance of an IP-algebra, as introduced and studied by
Yood in [12]; hence the entire theory of that paper is at our disposal.
Furthermore, it is readily verified that (Ap, || ||) is a (normed) Hubert
algebra; we shall immediately note some properties of this Hubert
algebra. Our first lemma is a simple consequence of the || ||-continuity
of multiplication.

LEMMA 4.1. If R is any right ideal of Ap, then R, the closure
of R in A, is a closed right ideal of A.

LEMMA 4.2. // R is a right ideal of Ap and P is the orthogonal
projection operator of A onto R, the closure of R in A, then for any
aeAP9PaeAp. In particular, if R is relatively \\ \\-closed in Ap

then Pa e R.

Proof. This is immediate from Proposition 3.19, inasmuch as P
is a left centralizer on A.

PROPOSITION 4.3. If R is a relatively \\ \\-clo$ed right ideal of
Ap, then Ap — jβ 0 R1, where RL is the orthogonal complement of R
in Ap.

Proof. Considering the closures in A of these right ideals, we
have, for any a e Ap, a = αx + α2, where αx e R, a2 e R1. But by Lemma
4.2, axeR and a2eRL.

REMARK 4.4. For a closed right ideal R in any Hubert algebra,
we have ^f(R) = iϋ1*, where £f(R) is the left annihilator of R. This
is readily established by the argument used for an iί*-algebra [5,
Theorem 12]. Combining this fact with Proposition 4.3 we obtain the
following.

COROLLARY 4.5. (Ap, || ||) is a dual Hilbert algebra.

Our next proposition, along with the known structure theory of
iJ*-algebras [1, Theorem 4.2], enables us to obtain a structure theorem
for the Hilbert algebras Ap.
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PROPOSITION 4.6. Let I be a closed two-sided ideal of A (and
therefore an H*-algebra). Then I n Ap = Ip, the p-class of I.

Proof. If aelp then [α], as an element of the iί*-algebra /, has
a spectral decomposition [α] = Σ\nen, where ene I for each n, and
ΣXξ\\en\\2 <. °° This is therefore the (unique) spectral decomposition
of [a] in A, and therefore αelΓΊ Ap. Conversely, suppose αe/Πi j , .
Since α e ί , [α] has a spectral decomposition [α] = Σxnen in I, and again
this is its unique spectral decomposition in A. Since ae Ap we have
ΣXζ\\en\\2 < oo, and therefore aelp.

REMARK 4.7. Let / b e a relatively || ||-closed two-sided ideal of
Ap. Then J is a minimal closed ideal of Ap if and only if J, the
closure of J in A, is a minimal closed ideal of A. If the latter con-
dition holds (so that J is a topologically simple ZP-algebra), then
J" is a topologically simple Hilbert algebra.

We use these results and Lemma 4.2 to obtain our structure
theorem for Ap as a Hilbert algebra.

THEOREM 4.8 The Hilbert algebra (Ap, || ||) is the direct topological
sum of its minimal closed two-sided ideals, which are mutually orthog-
onal. Each of these is a topologically simple Hilbert algebra and is
the p-class of a minimal closed two-sided ideal of A.

For the remainder of this section we consider the Banach *-algebras
(Ap, I |p). Our aim in the following development is twofold: (1) to
investigate the | ^-closed right ideals of Ap; (2) to obtain a structure
theorem for (Ap, | \p) analogous to Theorem 4.8.

LEMMA 4.9. Let I be any || [{-closed two-sided ideal of A. For
any ae A, let ax denote the orthogonal projection of a on I. Then

(1) ((**)!= (αθ*,
(2) [aK=[aJ.

Proof. Let a = a^ + a2, where a2e i*1, the orthogonal complement
of I in A. Then α* = αf = (α^* + (α2)* (1) follows readily from the
fact that I and IL are closed under the involution. To establish (2),
we first note that α*α = αfax + a*a2. Then, letting [a] = [α]x + [α]2,
we have a*a — [a]2 — [a]\ + [a]\, and hence [a]\ = αf a1, by the unique-
ness of the decomposition. If we show that [a]1 is positive, then [a]t =
[αx] by the definition of [αj. For any xeA, let x — xγ + x2, where
xιel,x2eI1. Then ([α]^, x) = ([a^x, + [a]^2, x, + x2) = ([α]A, x,) =
([al.x, + [a]2xl9 xt) = ([a]xlf xx) ^ 0.
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PROPOSITION 4,10. Let {Jr: ye Γ} be a family of mutually orthogonal
relatively || \\-closed two-sided ideals of Ap. Let areJr for each 7,
and let a = Σar (in the || \\-topology). Then \a\ζ = Σ\ar\%, and hence
ae Ap if and only if Σ\ar\

p

p< 00.

Proof. Clearly, each ar is the orthogonal projection of a on J r ,
and hence, by the preceding lemma, [a] — Σ[ar). Now for each 7,
let [ar] = Σn\nern be the spectral representation of [ar] in the J9Γ*-
algebra J r , t he [f ||-closure of Jr in A. Then \ar\* = ΣnX*J\e7J\2. Also,
[α] = ΣrΣnXrnern, and since in this sum there cannot be infinitely many
equal coefficients, the spectral represention of [a] is obtained by merely
grouping the terms of the series having the same coefficient, and
then rearranging the terms, if necessary. Hence \a\l — ΣrΣnXfn \\er% ||2 =
Σγ ar\p.

REMARK 4.11. This proposition also holds for 2 <; p < 00. Also,
it is easily seen that |α|«> = sup r |α r U.

LEMMA 4.12, Let ae Ap and let ε be any positive number. Then
there exist projections e and f in Ap such that \ a — ae \p < e and
\a — fa\p< ε.

Proof. Let Ao be the intersection of all maximal commutative
*-subalgebras of A containing [a]. Then, as in Lemma 2.1, we have
a representation [a] = Σanpn (each an Φ 0), which, by grouping and
rearranging of terms, yields the spectral representation of [a]; hence
\a\% = Σal\\pn\\\ (Note that [a] e (AQ)P.) We may write [a] = ([a] -
Σi=1 anpn) + (ΣίU a*Pn)> where Σί=i &npn belongs to the relatively
||.| |-closed two-sided ideal Σϊ=i (Λ>)PP» of (A0)p, and ([a] - Σ5=i«»^ )
belongs to the orthogonal complement of this ideal in (A0)p. By
Proposition 4.10, | a \l = \ [a] \% - | [a] - Σ L i anpn 15 + | Σ L i anpn |;. But
this last term is Σ£=i #£||2>J|2> which has the limit |α|J as k—>oo.
We therefore have H m J ^ | [ α ] - Σ U α « P | ; = 0 = Km^ # β β | [α]- [α lΣUp l5

Hence for sufficiently large k there is a projection e = Σί=i P^ s u c ^
that I [α] — [a]e \p < ε. Taking W to be the partial isometry associated
with α, we have, using Proposition 3.19, \a — ae\p = | W[α] — (TF[α])β|p =
I W[a] - W{[a\e) \p ̂  11W\ \ \ [a] - [a]e \p < ε. There is likewise a projection
/ such that |α* — a*f\p < ε; hence \a — fa\p = |(α — fa)* \p < e.

COROLLARY 4.13. For any a e Ap, a e aAp Π Apa, where the closure
is in the \ \p-topology.

We remarked at the beginning of this section that Ap is a special
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case of an IP-algebra, and now that we have established the result
of Corollary 4.13, we immediately have the following from [12,
Theorems 3.5 and 4.9].

COROLLARY 4.14. (Ap, | \p) has dense socle, and is the direct
topological sum of its minimal closed two-sided ideals.

COROLLARY 4.15. (Ap, | \p) is a dual algebra.

A simple consequence of Corollary 4.15 is the following.

PROPOSITION 4.16. Let R be a right ideal of Ap. R is closed in
the I \p-topology if and only if R is relatively closed in the\\ \\-topology.

Proof. Since | | α | | ̂  \a\p for every aeAp, by Proposition 3.12, it
is clear that every relatively || [(-closed subset of Ap is | ^-closed.
Moreover, if the right ideal R is | ^-closed, then it is an annihilator
ideal, by Corollary 4.15, and therefore is relatively || | [-closed, by the
|| I |-continuity of multiplication.

REMARK 4.17. This result holds for 2 <. p ^ oo. In this case,
R is clearly || ||-closed if it is | |p-closed. But if R is a || ||-closed
right ideal of Ap(= A), we have R = R1L = ^f(RL)*, by 4.4. By the
I ^-continuity of multiplication, ^(R1) is | ^-closed.

We combine Proposition 4.16 with Proposition 4.3 to obtain the
following.

COROLLARY 4.18. (Ap, | \p) is a right complemented algebra (in
the sense of [11]).

More can be said about the manner in which Ap is the direct
topological sum of its minimal closed two-sided ideals. In order to
do so, we obtain a converse of Proposition 4.10, which leads to our
final structure theorem.

PROPOSITION 4.19. Let {Jr: yeΓ} be a family of mutually orthog-
onal closed two-sided ideals of Ap. Let ar e Jγ for each 7, and suppose
that Σ\ar\l<, oo. Then there exists aeAp such that a = Σaγi where
the sum may be taken in the \ \p-topology or the || \\-topology.

Proof. Considering only the nonzero αr, which we denote as
αn, let sk = ΣiUi an Then, by Proposition 4.10, for k > m we have
Iβ*-β m 15 = I Σ U +iα 15 = ΣUm+iIα» 15-*0 as k,m-+ - . The Cauchy
sequence {sk} thus has a limit a in the Banach algebra (Ap, \ \p), and a =
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Σan = Σar in the | j^-topology. (A standard argument shows that
the limit is independent of the order of summation.) By Proposition
3.12, the sum is the same in the || | [-topology.

THEOREM 4.20. The Banach *-algebra (Ap, j \p) is the p-direct sum of
its minimal closed two-sided ideals Jx. The Jλ are mutually orthgonal
and each is a topologically simple Banach *-algebra. Ap is the "p-
direct sum" in that it consists precisely of all sums Σax, aλeJλ, such
that Σ\ax\ζ < ©o, where a — Σaλ may be understood as a limit in either
the I \p-topology or the || \\-topology, and \a\p — (Σ\aλ\ζ)ίlP.

5* Relationship to other systems* If A is a topologically simple
if*-algebra, then there is a *-isomorphism x —> X of A onto the
Schmidt class σc of operators on the Hubert space H = 12(Γ), where
Γ is the index set of a maximal family {qr} of mutually orthogonal
primitive projections in A [1, Theorem 4.3]. Under this isomorphism,
11 a? 11 = aσ(X), where σ(X) denotes the Schmidt norm of the operator
X and a ^> 1 is the norm of each of the projections qr (actually, all
primitive projections in A have the same norm [7, Corollary 5.9]).
Now if x is any nonzero element of A and [x] = ΣXnen is the spectral
representation of [x], then we may replace the nonprimitive projections
among the en by finite sums of primitive projections to obtain a new
representation

( * ) [%] = Σμnpn ,

where μm ^ μk if m > k. For a given coefficient μn in (*), we shall
call the number of primitive projections having μn as coefficient the
multiplicity of μn in this representation, denoted by m(μn). We have,
ioτ Q<p<c*,\χ\p = (Σμi\\pn\\ψv=:a^{Σμl)^. Also, \x\» - μx. Since
the μn are the nonzero elements of the spectrum of [x], and since
the corresponding operator [X] is compact, these numbers are the
nonzero characteristic values of [X]. Now for each μn, let M{μn)
denote the multiplicity of μn as a characteristic value of the operator
[X]; that is, the dimension of the subspace of H spanned by the
characteristic vectors of [X] corresponding to μn. We shall show
that m(μn) = M(μn).

LEMMA 5.1. Let p be a primitive projection in the topologically
simple H*-algebra A. Then the corresponding projection P in σc is
one-dimensional on H.

Proof. If P is not one-dimensional, let P = Q + R, where Q and
R are projections onto orthogonal nonzero subspaces of P(H). Letting
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q and r be the corresponding elements of A, we see that q and r are
orthogonal projections in A with p = q + r. Thus p is not primitive.

LEMMA 5.2. For cm?/ μΛ in (*), m(//w) = M{μn).

Proof. Let p Λ l , , p«fc be the projections in (*) having coeffi-
cient μn. Then m(μw) = k. Also, letting PW l, , Pnjc be the corre-
sponding projections in σc, we have, using the preceding lemma,
dim (Pni + + Pnj)(H) = k; therefore M{μn) ^ k. Suppose M{μn) > k,
and let h be a nonzero element of H such that [X]h = μji and A is
orthogonal to (P%1 + + Pni)(H). Let Q be the orthogonal projection
onto the one-dimensional subspace of H spanned by {h}. Q e σc, and
[X]Q = μnQ Now let q be the corresponding projection in A) then
[x]q = μnq. For i = l, , k, pnίq = 0 since Pn.Q = 0; and for mφn19 ,%,
P«[α]tf = j"mP»tf = /-Άtf, so that pmg = 0, since /̂ m ̂  /iΛ. Thus q is
orthogonal to all the pn, which means that [x]q = 0, a contradiction.
We conclude that m(μΛ) = k = M(μn).

Now we observe that the coefficients μn in (*) are the nonzero
characteristic values of [X] enumerated according to their multiplicity
M(μn). Thus, for 0 < p< oc, \X\P= (Σμ*)lfp and also | X U = ^ , where

• |p here denotes the cp norm of X as an operator on H. Finally, we
have \x\p — a?lP\X\p for 0 < p <; oo, and therefore the mapping $—>
X is a bicontinuous isomorphism of Ap into cp(H). Since c2 = σc [2,
p. 1093] and cpac2 for 0 < p <̂  2, the isomorphism is onto cp for these
values of p.

Now let A be any proper iϊ*-algebra, and let {Iλ: X e A) be the family
of minimal closed two-sided ideals of A. Each Iλ is a topologically
simple iϊ*-algebra and A is the Hubert space direct sum ΣIλ. For
each Xe A, let Γλ be the index set of a maximal family {eλ : y e Γλ} of
mutually orthogonal primitive projections in Iλ, and let aλ be the norm
lle i || of each of the eλ in Iλ. For each xλelλ let X2 be the cor-
responding Schmidt class operator on Hλ — l2(Γλ). Then, as we have
noted above, \xλ\p = a\lp\Xχ\P9 0 < p <£ oo, where |-3ΓJP is the cp norm
of the operator Xλ. Then, by Proposition 4.10, we have \x\p —
(ΣI xλ \*yι* = (Σa\ I Xλ \ζ)ι'p for 0 < p < °o, and, by 4.11, [x U - sup;> | xλ \ =
sup;|X ;. |. Thus, again, as in Proposition 4.10, XGAP if and only if
each xλ e (Iλ)p = Iλ Π Ap and J [ xλ \ζ < o°. These conditions in turn imply
that each corresponding operator Xλ e cp(Hλ) and Σa\\ Xλ\

v

p < oo. For 1 ^
p ^ 2, it has been established that the last-mentioned implication is
an equivalence; for these values of p, therefore, in the special situation
in which each Hλ is finite-dimensional, we have shown that the algebras
Ap are instances of the g^ spaces studied in [3, pp. 70 ff.] and [5].
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