
PACIFIC JOURNAL OF MATHEMATICS
Vol. 42, No. 3, 1972

USING BRICK PARΊTΠONINGS TO ESTABLISH
CONDITIONS WHICH INSURE THAT A PEANO CON-
TINUUM IS A 2-CELL, A 2-SPHERE OR AN ANNULUS

RICHARD SLOCUM

Using brick patitioning, sufficient conditions are established
for a subset of a Peano space to be locally euclidean. If M is
a Peano space with no local cut points and S is a subcontinuum
of M, has no local cut points, is the closure of a domain
in M, has connected complement and contains a point x such
that every simple closed curve in S not passing through x
separates M, then S is a closed 2-cell, a 2-sphere or an annulus.

Three corollaries to the main theorem are started here. If M
is a Peano space with no local cut points and for each point x e M,
there is a neighborhood U of x such that every simple closed curve
in U — x separates M, then M is a 2-manifold. If M is a Peano
space with no local cut points and, for some m ^ 1, every disjoint
union of m simple closed curves separates M, then M is a 2-manifold.
If M is a Peano continuum with no local cut points having a collec-
tion C of m(m ^ 0) simple closed curves such that any simple closed
curve in M belongs to C if and only if it does not separate M, then
(1) M is a 2-manifold with boundary U C and (2) M is a subspace of a
2-sphere.

The main theorem and first corollary are generalizations of theo-
rems proved by Gail Young in [6].

The proof of the main theorem uses brick partitionings, the Kline
sphere characterization [3], and the construction used in the proof of
the Kline theorem to show that a certain set satisfies the conditions
of Zippin's characterization of a closed 2-cell [5; page 92, Theorem
5.2]. R. H. Bing developed the concept of partitioning in [2] to solve
the convex metric problem. Bing first proved the Kline theorem in
[1]. He proved the Kline theorem again in [3] by using brick parti-
tionings. When we speak of the Kline theorem in this paper, we
shall speak of the form of the theorem in [3]. Thus the Kline theo-
rem and the main theorem are closely related. The relationship is
apparently best observed by the use of brick partitionings.

Several other corollaries to the main theorem are presented.

1* Preliminaries* For definitions of standard point set terms,
the reader is referred to [5], while for terms concerning partitioning
the reader is referred to [3].

We begin by making precise certain terms which are not universal.
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764 R. SLOCUM

By a Peano space we mean a nondegenerate space which is metrizable,
connected, locally connected and locally compact. A Peano continuum
is a compact Peano space. Domain means connected open set. A
2-manifold is a connected metric space in which each point has a
neighborhood homeomorphic to a closed 2-cell. The boundary of a
2-manifold is the set of points of a 2-manifold which do not have
neighborhoods homeomorphic to an open 2-cell.

We conclude this section with the statements of three theorems
with appropriate references given for their proofs. We say an arc a
irreducibly separates a point p from a point q in M if a separates p
from q in M, but no proper subarc of a separates p from q in M.

THEOREM 1.1 Let M be a Peano continuum which is not separated
by the omission of any two of its points and a an arc of M with
end points p and q which irreducibly separates a point x from a
point y in M. Then there exists a simple closed curve J in M which
intersects a only in p and q while M-J is connected and has property S.

Proof. The proof belongs to Bing [3; Theorem 20].

THEOREM 1.2. (Kline sphere characterization). If M is a Peano
continuum which is not separated by a pair of points, then either M
is a 2-sphere or there is a simple closed curve J in M such that M — J
is connected and has property S.

Proof. See [3; Theorem 20]. Theorem 1.1 implies Theorem 1.2.

THEOREM 1.3. (L. Zippin). A Peano continuum C containing a
simple closed curve J and satisfying the following three conditions
is a closed 2-cell with boundary J:

(a) C contains an arc which spans J.
(b) Every arc of C that spans J separates C.
(c) No proper closed subset of an arc spanning J separates C.

Proof. See [5; page 92, Theorem 5.1].

2* Main theorem. One way to prove that a Peano space is a
2-manifold is to show that each point of the space has a closed
2-cell neighborhood. It is sufficient to show that each point has a
neighborhood which is a 2-manifold. Such a neighborhood might
be a closed 2-cell, a 2-sphere, or an annulus. The main theorem
yields sufficient conditions which will insure that a set is a closed
2-cell, a 2-sphere, or an annulus.

Actually, the main theorem is really two theorems; the first theo-
rem being a special case of the second theorem. It appears to be
easier to prove the theorem for a special case first and then apply
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the special case to the proof of the more general case.
Each proof utilizes brick partitionings.

LEMMA 2.1. Let M be a Peano space with no local cut points.
Suppose D is a domain whose closure is a proper subset of M, is a
Peano continuum, has connected complement and has the property
that every simple closed curve in D separates M. Then D contains a
simple closed curve J such that D — J is connected and has property
S, while B d S c J.

Proof. Obviously D is not a 2-sphere. Thus by Theorem 1.2
there is a simple closed curve J in D such that D — J is connected
and has property S. BάDcz J, since J separates M.

We define the E metric on K for x e if, y e K as E(x, y) is the
greatest lower bound of the diameter of all connected subsets of K
which contain x and y. One problem which arises when one is dealing
with a set with property S occurs when one desires to partition the
set in such a way that the boundary has certain properties. When this
happens, one would rather deal with a set which is uniformly locally
connected. But if a set has property S and is connected and locally
connected, it is uniformly locally connected under the E metric. The
E metric also preserves the original topology.

LEMMA 2.2. Suppose D is a domain with property S, D has no
local cut points and BάD is a set with no isolated points. Then for
every e > 0, there exists a brick partitioning G = [gQ, glf , gn] of D
such that E(D; Bd D, g^) ̂  0, the equality holding if and only if i Φ 0,
and for i — 1, , n the diameter of gi is less than ε, g0ΠgiΦ 0 ,
and giΠBάD consists of more than one point.

Proof. The proof essentially belongs to Bing ]3; Theorem 1].
For a complete proof see [4].

THEOREM 2.3. Let M be a Peano space with no local cut points.
Suppose M contains a domain D such that D is a Peano continuum
with no local cut points and M — D is connected (or empty). Suppose
also that every simple closed curve of D separates M.

Then D is either a closed 2-cell or a 2-sphere.

Proof. If D = M, then M is a 2-sphere by Theorem 1.2. If
D Φ M, then, by Lemma 2.1, D contains a simple closed curve J
such that R = D — J is connected and has property S, while Bd D c /.

Let ε < 1100 diameter of Bd D. By Lemma 2.2 there is a brick
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partitioning G = [g0, , gn] of R such that g0 Π / Φ 0 and for each
i — 1, , n the diameter of each g{ is less than ε, g{ Π / consists of
more than a point and g{ Π g0 Φ 0 .

The remainder of this proof is given in sectionalized form. It
will be convenient at times to denote J by Jn+1.

2.31. Each gt for ί — 0, 1, , n has connected complement in M.

Proof. For i = 0, M - g0 = (M ~ R) U (U?=iG/i ~ B d 0o)) is a con-
nected set. For i Φ 0, ikf — gt is connected by the definition of brick
partitioning and choice of ε.

2.32. Each gt for i = 0,1, •••, n has a simple closed curve J*
which does not separate giy while B d ^ c J{.

Proof. Each gi has property S, hence each gi has property S.
Since for compact spaces property S and local connectivity are
equivalent properties, each g{ is locally connected. Thus each #; is a
Peano continuum. Note that no gt is all of M. By Lemma 2.1 and
2.31, each fa has a simple closed curve /; which does not separate g{,
while Bd <ji a Ji.

2.33. TliΦj and J^JjΦ 0 for i, i = 0, , n + 1, then J* Π Jy
is an arc.

Proof. Suppose i < j and J^ Π Jj is separated. Then there are
at least two open arcs of J{ — J3 which have end points on J3. The
properties of the brick partitioning G make it possible to choose one
such open arc, say α, such that another such open arc contains a limit
point of D — gim There are two arcs of Jj which have the same end
points as does a. Again the properties of the brick partitioning G
make it possible to choose one of these arcs, say β, such that the
other arc contains a limit point of D — gj9 if j Φ n + 1, or a limit point
of Bd D, if j = n + 1. Then a U β forms a simple closed curve J'.

If j Φ n + 1, then from the properties of G, D — (g{ (J g,) is a
connected set. Now g{ — J' contains a limit point of D — (</; (J <7;)
and <;,• — J ' contains a limit point of (D — (</; U gj)) U (<7i — Jf) hence
JD — Jf is connected. The diameter of / ' is less than 2ε, thus

φ - J') Π Bd D Φ 0 .

Hence M — Jf is connected. Thus /* Π Jy is connected.
It j = n + 1, D — J' is connected since the closure of each brick

meets g0. Also β was chosen so that 0 — J') f]BdD Φ 0 . Thus
M — Jf is connected. Thus J{ Π Λ+i is connected.

By the properties of G, the intersection can not be either a point
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or a simple closed curve. Thus Ji Π Jj is an arc.

2.34. If Ji Γ\JjΦ0 i,j, = 1, , n, then J{ Π Jj Γ) J consists of
at most one point.

Proof. Let xx and x2 denote the end points of the are J Π Ji and
yt and yz denote the end points of arc / Π Jy. Suppose Ji ΠJjΠJ
consists of more than one point. Let β denote the interior of the arc

Ji n Jj π J.
Suppose some Jk, k Φ i, j intersects β. The set («/* — β) U (Jj — β)

contains a simple closed curve J\ J' does not separate in D since,
by the properties of the brick partitioning (?, the closure of each
brick of G except g{ and gs meets Jo in points not on J ' , while gk

meets g{ and gά in points not on J'. By choice of ε, Jf does not
separate in M.

Suppose that Jif]J and Jj Π J have an end point x1 = yι in common.
Denote the open arc of J, — (J U Jo) with one end point x1 and other
end point z1 e JQ by a. Denote the open arc of Jj — (J U Jo) with one
end point x1 and the other end point z2 e Jo by 7. If zx Φ z2, then
choose λ an arc of Jo with end points zx and z2 such that Jo — λ meets
some gk, where gke G and k Φ 0, ί, j . Now a (J 7 U λ contains a simple
closed curve J\ By 2.33, the closure of each brick of G except gQ

meets J — J' while g0 meets some ^fc, k Φ 0, i, j in points of Jo — Jf.
Hence Jr does not separate in M. If ^ = z2, then the closure of
Ji — Jj and J 3 — Ji form two arcs whose union is a simple closed curve
J'. Now J f] J' is the arc of J with end points x2 and y2. Also
J Π Jo is an arc since ^ = z2. The closure of every brick of G except
g{ and gό meets the open arc Jo — J ' . Now J — J' is contained in
the component of D — J' which contains Jo — J 7 . Thus Jr does not
separate in M.

Thus we may assume yx is an interior point of the arc J f]Ji and
xx e J Π Jy. Denote the subarc of J Π Jy with end points x1 and yx by
&i2/i We also assume no gk Π Ji is a subset of xγyγ. For if this is
the case we may replace g3- by some gte G for which these conditions
do hold. Denote the open arc from yx to Jo on Ji — (J U Jo) by a with
2 the end point of a on Jo. Start at ^ and travel along J f] Ji to »„
along Ji — J to Jo, along Jo to z on an arc 7 such that Jo — 7 meets
some £/fc, & ̂  ΐ, i , and along a to ^ forming a simple closed curve J ' .
Now J ' does not separate in D since the closure of each brick of G
except g0 meets the open arc J — J ' while the closure of g0 meets the
closure of some gk, where k Φ i, j . By the choice of ε, / ' does not
separate in M. Thus Ji Π Jj Π J is a point.

2.35. JD is a closed 2-cell with boundary J.
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Proof. We show that D satisfies conditions (a), (b), and (c) of
Theorem 1.3.

(a) There is an arc spanning / .

Proof. Ji — J is an open arc with distinct end points on / .
(b) Every arc spanning J separates D.

Proof. Suppose xzy is an arc spanning J which does not separate
D. Let xwy denote one of the arcs of J with end points x and y
such that J — xwy meets Bd D. The simple closed curve J ' = xzy U
xwy separates a point t from a point s in D. Since D is locally con-
nected, we may choose s and t in R. Then there exists an arc tps
in D — xzy from ί to s. Suppose the ε chosen above for G also satis-
fies ε < min {d(t, J), d(s, J), (1/S)d(tps, xzy)}. Note that t and s are
elements of g0.

For each i = 1, ••, n for which tps {λgiΦ 0 , let a{ denote the
open arc Jι — J. By 2.33, 2.34, and the choice of ε,

is a connected subset of D — J' joining t to s. Then J7 does not
separate £ from s in 5 .

(c) No proper closed subset of an arc spanning J separates D.

Proof. Let xzy be an arc spanning / . Suppose some proper closed
subset K of xzy separates a point p from q in 5 . We may choose p
and q to be in i?. Let a denote one of the arcs of J with end points
x and y. Now a U i£ is contained in an arc λ c a (J ##2/ which separates
p from g. Thus some subarc β of λ irreducibly separates p from g.
Since a does not separate space, one of the end points of β belongs
to R. By Theorem 1.1, there is a simple closed curve Jf which does
not separate D and intersects β only at its end points. Since Bd DaJ',
there is a subarc 7 of J' spanning / . Thus 7 does not separate D.
But by part (b), 7 does separate space.

LEMMA 2.4. Let K be any space with property S which has no
local cut points. No closure of any brick belonging to a brick parti-
tioning of K has any local cut points.

Proof. Each brick is uniformly locally connected under E(K; x, y).

The next lemma is a slight improvement of a theorem by Young
[6; Theorem 2.3]. The proof here is new and, unlike Young's proof,
uses brick partitioning.
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LEMMA 2.5. Let M be a Peano space with no local cut points.
Then for every e > 0 and pe M, there is a domain D in M having
property S such that pe D, while D is a Peano continuum, has no
local cut points, has connected complement and is of diameter less
than ε.

Proof. Let peM. By [5; page 79, Theorem 3.7], p has a uni-
formly locally connected neighborhood U of diameter less than ε such
that U is a Peano continuum. By [5; page 82, Cor. 3.16[, p has a
neighborhood Ur contained in U such that M — U is contained in a
single component of M — U'. By [3; Theorem 8], there is a brick
partitioning G of ϋ such that each brick of G is of diameter less
than (lβ)d(p, Bd U'). Let D denote the maximal brick consolidation
in Uf which contains p and is such that D is the union of the closures
of the elements of G which do not have a limit point in Bd U.

Since D is a brick, D has property S. Thus D has property S.
Since D is compact and has property S, D is lc; hence D is a Peano
continuum. By Lemma 2.4, D has no local cut points.

We now show that M — D is connected. D c U'9 hence M — U
is contained in a single component of M — D. Since D is maximal,
every point of U — D lies in the closure of an element of G which
may be consolidated into a brick in Ό whose closure meets Bd U.

THEOREM 2.6. Let M be a Peano space with no local cut points
and xr 6 M. Suppose xr belongs to the closure of a domain D such
that D is a Peano continuum with no local cut points and M — D is
connected (or empty). Suppose also that every simple closed curve of
D not passing through xf separates M.

Then D is a closed 2-cell, a 2-sphere, or an annulus.

Proof. Let δ < diameter Bd D if D Φ M. By Lemma 2.5, for
each x' Φ yeD,y has a neighborhood G in D which is a Peano con-
tinuum with no local cut points, x' &G, D — G is connected and the
diameter of G is less than δ. Now every simple closed curve in G
separates D since the diameter of Bd D is greater than δ. By Theo-
rem 2.3, G is a closed 2-cell. Thus D — x', is a 2-manifold.

Suppose y Φ xf belongs to a simple closed curve J in D which
does not separate D. We now show that y belongs to the mani-
fold boundary of D—xf. Suppose y is not a point of the manifold
boundary. Then y has a closed 2-cell neighborhood G in D — xf

such that 7 = G Π J is an arc while G — Ί consists of two com-
ponents d and C2. Let x e d Π Int G and zeC2f) Int G. Let a be an
arc from x to z in Int G such that a Π 7 — y Now (D — xf) — Bd D



770 R. SLOCUM

is a connected set. Denote the manifold boundary of D — x' by B. We
note that N= (D — %') — (Bd D U B) is also connected. Thus there is an
arc β in N from a? to z. Now α (J β contains a simple closed curve J'
such that J' ΠJ = y. Since J ' does not meet the manifold boundary
of D — %', J' has an annular neighborhood. Thus if J ' does separate
D, there are two components of D — / ' . But J — y meets both sides
of the annular neighborhood of J \ So J ' does not separate in D.

There are two cases. We shall reduce the second case to the first
case.

Case 1. Every simple closed curve in D — xf separates D.

Case 2. There is a simple closed curve Jx in D — x' which does
not separate D.

Suppose Case 2 holds. Then Bd D c J19 for Jx separates M. Also
since we have shown that Jx is contained in the manifold boundary
of D — x\ Jx is the only simple closed curve in D — x', which does
not separate D. Consider the free union C of D and a closed 2-cell
G under a homeomorphism from the manifold boundary of G onto Jλ

We note that C is a Peano continuum with no local cut points and
C — %' is a 2-manifold. Now any simple closed curve in C — xf which
does not separate C may be replaced by a simple closed curve in
D — x' which does not separate C; hence does not separate in D.
Thus every simple close curve in C — x' separates C.

If we think of C as D and C as M in Case 1, we have only to
deal with Case 1. Then if in Case 1, D can be shown to be a closed
2-cell or a 2-sphere, D in Case 2 is an annulus or closed 2-cell. We
now deal with Case 1.

If D is not a 2-sphere, then, by Theorem 1.2, D contains a simple
closed curve J such that R — D — J is connected and has property S.
Note that xf e J, since J does not separate D.

Let ε < 1/100 diameter of Bd D if D Φ M, or if D = ilί, let ε <
1/100 diameter of J . By Lemma 2.2, there is a brick partitioning
G = [gQ, •••,#»] of i? such that ^0 ΓΊ J = 0 and for each i = 1, , w
the diameter of each (/i is less than ε, gζ n J" consists of more than
one point and giΠg0Φ 0 •

Now ( 5 — x') — #0 is connected since each brick of G except gQ

has closure which meets J . By Lemma 2.4, gQ has no local points.
Thus by Theorem 2.3, letting M ~ D — x and D = #0, i7o is a closed
2-cell.

This also proves that Bd DaJ. For if y e Bd D Π i?, then ε may
be chosen so that y e gQ. Since g0 is a closed 2-cell and y is not a local
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cut point of My one may construct a simple closed curve Jr in g0 —
x' — y which separates g0 into two components each of which intersects
Bdi3. Then Jf does not separate in M.

That D is a closed 2-cell with boundary / follows from Theorem
1.3.

(a) There is an arc spanning /.

Proof. Let x, y, zeJ be such that {x, x'} separates y from z on
J. There is an arc a from y to z in D — {x, x'}. Then a Π R Φ 0 .
By using the order topology on a, one easily obtains a subarc of a
which spans J.

(b) Every arc spanning J separates D.

Proof. Let a be an arc spanning J with zea f) R. Choose ε so
that z e g0. Let G be a closed 2-cell neighborhood of z in gQ such
that /S = G Π α is an arc and G — β consists of exactly two components
d and d such that d and C2 are both closed 2-cells. Let r e d and
ί 6 d Suppose α does not separate r from £ in D. Then there is
an arc 7 from r to t in 5 — α which also misses xr. Since J — #' is
contained in the manifold boundary of D — x\ Ί can be replaced by
an arc Y lying in R such that Y joins r to έ in 5 - α. Choose ε
so ε < d(Y, J). Denote the new gQ by T. Obviously, T is a closed
2-cell, Y c Γ, and the old gQ c Γ Let a' denote the subarc of a
containing β which spans T. We have shown that r is not separated
from t in T by a!.

(c) No proper closed subset of an arc spanning J separates D.

Proof. Suppose xzy is an arc spanning /. Suppose some proper
closed subset K of xzy separates a point p from q in D. We may
choose p and q to be in R. Let 7 denote one of the arcs of J with
end points x and y. Now 7 U K is contained in an arc λ c 7 U xzy
which separates p from q. Thus some subarc a of λ irreducibly sepa-
rates p from g. Now one of the end points of α, say r, is in R.
Choose ε so that ε < d(r,J). Then reg0. Let G be a closed 2-cell
neighborhood of r such that Gag0 and G Π α — /3 and arc with one
end point r and other end point t. But β does not separate G, hence
the subarc of a with end points s and ί separates p from g in Zλ
But a was irreducible with respect to that property.

3* Characterizations of 2-manifolds* The next result is an
improvement of Young's characterization of 2-manifolds [6; Theorem
1.1], in that for each point x of the space one needs only to find a
neighborhood such that every simple closed curve in that neighbor-
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hood not passing through x separates. One should note that Young's
theorem may be obtained as a corollary from Theorem 2.3 via Lemma
2.5.

THEOREM 3.1. Let M be a Peano space with no local cut points.
Suppose that for each point x e M, there is a neighborhood U of x
such that every simple closed curve in U — x separates M. Then M
is a 2-manifold.

Proof. By Lemma 2.5, each point x e M has a neighborhood D
contained in U such that D is a Peano continuum, has no local cut
points and has connected complement in M. Since D c U every simple
closed curve in D — x separates M. By Theorem 2.6, D is a closed
2-cell, a 2-sphere, or an annulus. Since D is a neighborhood of x, x
has a closed 2-cell neighborhood.

Young obtained his characterization of 2-manifolds by first proving
the following theorem. See [6; Theorem 3.1]. Note that Theorem
2.6 is a generalization of this theorem.

THEOREM 3.2. If the Peano continuum M has no local cut points,
but contains a point x such that every simple closed curve not passing
through x separates M, then M is either a 2-sphere or a closed 2-cell.

Proof. This is the special case in which D — M in Theorem 2.6.
Obviously, M is not an annulus.

The following theorem is not a characterization of 2-manifolds.
However, the converse of the theorem is well known for compact 2-mani-
folds. Thus we may consider the theorem a characterization of com-
pact 2-manifolds. The usefulness of Theorem 2.6 is demonstrated in
the proof of this theorem.

THEOREM 3.3. Let M be a Peano space with no local cut points.
Suppose for some m ^ 1 that every disjoint union of m simple closed
curves separate M. Then M is a 2-manifold.

Proof. We first prove the existence of a collection of m disjoint
simple closed curves of M. Choose m distinct points of M and let
ε be less than one-half the minimum distance between any two of the
points. By Lemma 2.5 each of these m points has a neighborhood of
diameter less than ε, such that each of these neighborhoods is a Peano
continuum with no local cut points. It is well known that each of
these neighborhoods has the property that every two points of the
neighborhood are contained in a simple closed curve in that neighbor-
hood. See [5; page 85, Theorem 3.32]. Thus each neighborhood
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contains a simple closed curve, and we have shown the existence of
a disjoint collection of m simple closed curves.

Choose m so that m is minimal with respect to the property stated
above. If m = 1, then M is a 2-sphere by Theorem 1.2. Suppose
m > 1. Then there is a disjoint collection K of m — 1 simple closed
curve Sly S2, , Sm_x whose union does not separate M. Then every
simple closed curve in M — \JK separates M. Letting M — U ^ be
both the U and M of Theorem 3.1 M - U ^ is a 2-manifold.

Let 2/eS< 1 <. i <. m — 1. Suppose £< may be replaced in if by
a simple closed curve Sί where y 0 SI and such that K', the set formed
by replacing S* by Si in if, is also a disjoint collection of m — 1 simple
closed curves whose union does not separate M. Again, by Theorem
3.1, M — \JK' is a 2-manifold. Thus y has a closed 2-cell neighbor-
hood.

Suppose every SI which replaces Si in K passes through y. By
Lemma 2.5, y has a neighborhood G such that for i Φ j , G Π S3 — 0 ,
G is a Peano continuum with no local cut points, and M — G is con-
nected. Now every simple closed curve in G — y separates Λf Thus,
by Theorem 2.6, G is a closed 2-cell, a 2-sphere, or an annulus. Then
y also has a closed 2-cell neighborhood. Then M is a 2-manifold.

One is also interested in knowing what Peano continua may be
embedded in 2-spheres. The previous theorem is helpful because we
can in many cases show first that a Peano continuum in a 2-manifold
and then show that the 2-manifold is homeomorphic to a subspace of
a 2-sphere.

THEOREM 3.4. Let M be a Peano continuum with no local cut
points which for some integer n ^ 0 has a collection C — {Ju , Jn)
of n simple closed curves such that any simple closed curve in M
belongs to C if and only if it does not separate M. Then

(1) M is a 2-manifold with boundary \JC, and
(2) M is a subspace of a 2-sphere.

Proof. The proof will be done by induction on the number of
elements in C For n = 0, M is a 2-sphere with empty boundary by
Theorem 1.2. Suppose that the theorem is true for any space satis-
fying the conditions of the theorem where C has n elements. Let M
be a space satisfying the conditions of the theorem where C has n + 1
elements. By Theorem 3.3, M is a 2-manifold. Let T be closed 2-
cell with boundary / and h: J—>J1SL homeomorphism. Let Mf be the
disjoint union of M and T obtained by identifying each xeJ with
h(x) e JΊ Note that M' is also a 2-manifold and M is a subspace of
M'.

Suppose Mr contains a simple closed curve J' which intersects T
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but does not separate M'. Since Mr is a 2-manifold, J' may be altered
near T to form a new simple closed curve /", which does not intersect
T, does not separate ΛP, and agrees with Jf near each of J2, , Jn+1.
But J" does not separate M either. Hence J'eJl9 • *,Jn+1.

Thus Mf satisfies the conditions of the theorem for the collection
C = {J2, •• ,Jn+1}. By the induction hypothesis, M' is a 2-manifold
with boundary \JC and Mr is a subspace of a 2-sphere S. Since
M is a subspace of M', ikf is a subspace of S and has manifold
boundary \JC.

As a corollary we have the following characterization of an annu-
lus. It is also true that by considering a disjoint union with a closed
2-cell the following theorem is a direct corollary of Theorem 2.6.

THEOREM 3.5. Let M be a Peano continuum with no local cut
points and which has precisely two simple closed curves Jλ and J2

which do not separate M. Then M is an annulus.

Proof. Every disjoint union of three simple closed curves sepa-
rates M. Thus by Theorem 3.4, ikί is a 2-manifold with manifold
boundary Jλ U /2 and is also a subspace of a 2-sphere.

4* Almost 2-manifolds* We shall say that a Peano space P is
an almost 2-manifold if P contains a domain D which is a 2-manifold
and D = P. In particular, we shall consider the case where P is a
Peano space with no local cut points, x e P , and JD = P — x is a 2-
manifold. The reason for the interest in this case arises from the
proof of Theorem 2.6. The proof essentially consists of showing that
D is a 2-manifold knowing that D — x' is a 2-manifold. The question
of just how badly does a space need to behave in order that it fail
to be a 2-manifold because of a singleton point is answered in this
section.

Almost 2-manifolds may also arise by considering quotient spaces.
If M is a space and J a simple closed curve of that space, let M/J
denote the quotient space obtained by identifying / t o a point.

THEOREM 4.1. Let M be a Peano continuum which contains a
simple closed curve J such that M — J is connected, every simple
closed curve in M — J separates M and M/J has no local cut points.
Then M/J is a 2-sphere or a closed 2-cell.

Proof. Let /: M—> M\J be the natural map and /(/) = x. Since
every simple closed curve in M/J — x separates M/J, by Theorem 3.2,
M/J is a 2-sphere or a closed 2-cell.

THEOREM 4.2. Suppose that M is a Peano space with no local
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cut points which contains a point x such that M — x is a 2-manifold
but M is not. Then there is a sequence {Jn} of disjoint simple closed
curves in M — x which converge to x such that \Jn {Jn} does not sepa-
rate M.

Proof. By Lemma 2.5, x has neighborhood A such that A is a
Peano continuum with no local cut points, M — D1 is connected and
the diameter of Dι is less than 1. Since Dί is not a 2-sphere, a closed
2-cell or an annulus, by Theorem 2.6, there is a simple closed curve
J1 in D1 — x which does not separate M. Let M1 — M—Jι Again,
by Lemma 2.5, x has a neighborhood D2 such that D2 c Dl9 D2 is a
Peano continuum with no local cut points, M1 — D2 is connected,
jιf)D2=z 0 , and the diameter of D2 is less than 1/2. Again, by
Theorem 2.6, there is a simple closed curve J2 in D2 — x which does
not sepapate Mλ. Let M2 — M1 — J2. In this manner a sequence {Jn}
of simple closed curves, a sequence {Dn} of Peano continua and a
sequence {Mn} of Peano continua are obtained such that for each n >
2, Dn is a neighborhood of x, Dn c Dn-l9 Dn is a Peano continuum with
no local cut points, Mn^ — Dn is connected, Dn D Jn-ι — 0 , Dn contains a
simple closed curve Jn such that Jn does not separate Mn^19 Mn = Mn_1—Jn

and the diameter of Dn < 1/n. Then the {Jn} converges to x.
Let K = \Jn{Jn}. Suppose y and z lie in different components of

M — K. Then either y = x or z = x since, if not, then y and z for
some n would belong to ΛfΛ_i — Dn. Then if M — K is separated, a?
would form a component of M — K. Thus Λί — iΓ is connected.
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