ON ABSOLUTE DE LA VALLÉE POUSSIN SUMMABILITY

B. Kwee

> Gronwall proved that $(C, r) \cong(V-P)$ for $r \geqq 0$, where (C, r) and $(V-P)$ denote Cesáro and de la Vallée Poussin summability. It is proved in this paper that $|C, r| \cong|V-P|$ for $r \geqq 0$.

1. Introduction. Let

$$
V_{n}=\sum_{k=1}^{n} \frac{(n!)^{2}}{(n-k)!(n+k)!} a_{k} \quad(n \geqq 0) .
$$

If $\lim _{n \rightarrow \infty} V_{n}=s$, we say that the series is summable $(V-P)$ to s. If

$$
\sum_{n=1}^{\infty}\left|V_{n}-V_{n-1}\right|<\infty
$$

The series $\sum_{n=0}^{\infty} a_{n}$ is said to be summable $|V-P|$.
Hyslop [2] proved that the ($V-P$) method is equivalent to the $(A, 2)$ method defined by

$$
\lim _{x \rightarrow 0+} \sum_{n=0}^{\infty} a_{n} e^{-n^{2} x}=s
$$

for all series $\sum_{n=0}^{\infty} a_{n}$ which satisfy the condition $a_{n}=0\left(n^{c}\right)$, where c is any constant, and that the inclusion $(A, 2) \subseteq(V-P)$ is false without restriction.

Kuttner [3] has shown that $(V-P) \subseteq(A, 2)$ without restriction.
Gronwall [1] proved that $(C, r) \subseteq(V-P)$ for $r \geqq 0$, where (C, r) denotes the Césaro summability of order r.

In this paper, we shall prove
Theorem A. $|C, r| \sqsubseteq|V-P|$ for $r \geqq 0$.
2. Proof of Theorem A. Since it is well-known that $|C, r|$ implies $\left|C, r^{\prime}\right|$ for $-1<r \leqq r^{\prime}$, it is enough to consider the case r an integer. Now, writing

$$
V_{n}=v_{0}+v_{1}+\cdots+v_{n}
$$

we find that

$$
\left\{\begin{array}{l}
v_{0}=a_{0} \tag{1}\\
v_{n}=\sum_{k=1}^{n} \frac{((n-1)!)^{2}}{(n-k)!(n+k)!} k^{2} a_{k} \quad(n \geqq 1) .
\end{array}\right.
$$

Now write $\tau_{k}=\tau_{k}^{r}$ for the (C, r) mean of the sequence $\left\{k a_{k}\right\}$; thus the assumption that $\sum_{n=0}^{\infty} a_{n}$ is summable $|C, r|$ is equivalent to

$$
\begin{equation*}
\sum_{n=0}^{\infty} \frac{\left|\tau_{n}\right|}{n}<\infty \tag{2}
\end{equation*}
$$

If we take $((n-1)!)^{2} /(n-k!)(n+k)$! as meaning 0 whenever $k>n$, we deduce from (1) by n partial summations that, for $n \geqq 1$,

$$
v_{n}=\sum_{k=1}^{n} \Delta_{k}^{r}\left\{\frac{((n-1)!)^{2} k}{(n-k)!(n+k)!}\right\}\binom{k+r}{k} \tau_{k}
$$

Now it is well-known that in order that the series-to-series transformation

$$
b_{n}=\sum_{k=0}^{\infty} \alpha_{n k} a_{k}
$$

should be that $\sum_{n=0}^{\infty}\left|b_{n}\right|$ converges whenever $\sum_{n=0}^{\infty}\left|a_{k}\right|$ does so, it is necessary and sufficient that

$$
\sum_{n=0}^{\infty}\left|\alpha_{n k}\right|
$$

should be bounded. Thus it is enough to show that, for $k \geqq 1$,

$$
\begin{equation*}
\sum_{n=k}^{\infty}\left|\Delta_{k}^{r}\left\{\frac{((n-k)!)^{2} k}{(n-k)!(n+k)!}\right\}\right|=O\left(k^{-r-1}\right) \tag{3}
\end{equation*}
$$

It is easily seen by induction on r that

$$
\Delta_{k}^{r}\left\{\frac{((n-1)!)^{2} k}{(n-k)!(n+k)!}\right\}=\frac{A^{r}(n, k)((n-1)!)^{2}}{(n-k)!(n+k+r)!}
$$

where $A^{r}(n, k)$ is defined inductively by

$$
\left\{\begin{array}{l}
A^{0}(n, k)=k \tag{4}\\
A^{r+1}(n, k)=(n+k+r+1) A^{r}(n, k)-(n-k) A^{r}(n, k+1)
\end{array}\right.
$$

Write $P_{j}(k)$ for a polynomial in k of degree not exceeding j, possibly different at each occurrence (thus $P_{0}(k)$ denotes a constant). We deduce from (4) by induction that

$$
\begin{aligned}
A^{2 s}(n, k) & =\sum_{j=0}^{s} P_{2 j+1}(k) n^{s-j} \\
A^{2 s+1}(n, k) & =\sum_{j=0}^{s+1} P_{2 j}(k) n^{s+1-j}
\end{aligned}
$$

Hence, uniformly in the ranges stated

$$
A^{r}(n, k)=\left\{\begin{array}{lc}
O\left(n^{(r+1) / 2}\right) & \left(1 \leqq k \leqq n^{1 / 2}\right), \\
O\left(K^{r+1}\right) & \left(n^{1 / 2}<k \leqq n\right) .
\end{array}\right.
$$

Next, for large n uniformly in $k \leqq n^{2 / 3}$ we have, by Stirling's formula

$$
\frac{(n!)^{2}}{(n-k)!(n+k)!}=O(H(n, k)),
$$

where

$$
H(n, k)=\left(1-\frac{k}{n}\right)^{-n+k-1 / 2}\left(1+\frac{k}{n}\right)^{-n-k-1 / 2} .
$$

We have

$$
\log H(n, k)=-\frac{k^{2}}{n}+O\left(\frac{k^{3}}{n^{2}}\right) .
$$

Now since we supposing that $k \leqq n^{2 / 3}$ we have

$$
\begin{equation*}
\exp \left\{O\left(\frac{k^{3}}{n^{2}}\right)\right\}=O(1) \tag{5}
\end{equation*}
$$

so that

$$
\frac{(n!)^{2}}{(n-k)!(n+k)!}=O\left\{\exp \left(-\frac{k^{2}}{n}\right)\right\}
$$

This will not apply if $k>n^{2 / 3}$. Since we cannot then assert (5). However, for fixed $n,(n!)^{2} /(n-k)!(n+k)$! is a decreasing function of k so that, for $k>n^{2 / 3}$,

$$
\frac{(n!)^{2}}{(n-k)!(n+k)!}=O\left\{\exp \left(-n^{1 / 3}\right)\right\}
$$

Also, it is trivial that

$$
\frac{((n-1)!)^{2}}{(n-k)!(n+k+2)!}=\frac{(n!)^{2}}{(n-k)!(n+k)!} O\left(n^{-r-2}\right) .
$$

Combining these results, we find that

$$
J_{k}^{r}\left\{\frac{((n-1)!)^{2} k}{(n-k)!(n+k)!}\right\}= \begin{cases}O\left(n^{-(r+3 / 2)}\right) & \left(1 \leqq k \leqq n^{1 / 2}\right), \\ O\left(\frac{k^{r+1}}{n^{r+2}} \exp \left(-\frac{k^{2}}{n}\right)\right) & \left(n^{1 / 2}<k \leqq n^{2 / 3}\right), \\ O\left(n^{-1} \exp \left(-n^{-(1 / 3)}\right)\right) & \left(n^{2 / 3}<k \leqq n\right) .\end{cases}
$$

Thus the sum (3) is

$$
\begin{aligned}
& O\left\{\sum_{k \leqq n<k^{3 / 2}} \frac{1}{n} \exp \left(-n^{-(1 / 3)}\right)\right\}+O\left\{\sum_{k^{3 / 2} \leqq n<k^{2}} \frac{k^{r+1}}{n^{r+2}} \exp \left(-\frac{k^{2}}{n}\right)\right\}+O\left\{\sum_{n \geqq k^{2}} \frac{1}{n^{(r+3 / 2}}\right\} \\
& \quad=O\left(I_{1}\right)+O\left(I_{2}\right)+O\left(I_{3}\right)
\end{aligned}
$$

say. It is clear that

$$
\begin{aligned}
& I_{1}=O\left(k^{-r-1}\right), \\
& I_{3}=O\left(k^{-r-1}\right)
\end{aligned}
$$

so we need consider only I_{2}. Now for fixed k

$$
\frac{k^{r+1}}{y^{r+2}} \exp \left(-\frac{k^{2}}{y}\right)
$$

is increasing for $y<y_{0}$ and decreasing for $y>y_{0}$, where $y_{0}=y_{0}(k)=$ $k^{2} /(r+2)$. Hence

$$
\begin{equation*}
I_{2} \leqq k^{r+1} \int_{k^{3 / 2}-1}^{k^{2}+1} \frac{1}{y^{r+2}} \exp \left(-\frac{k^{2}}{y}\right) d y+\frac{k^{r+1}}{y_{0}^{r+2}} \exp \left(-\frac{k^{2}}{y_{0}}\right) \tag{6}
\end{equation*}
$$

The second term on the right of (6) is a constant multiple of k^{-r-3}. The first does not exceed

$$
k^{r+1} \int_{0}^{\infty} \frac{1}{y^{r+2}} \exp \left(-\frac{k^{2}}{y}\right) d y
$$

Putting $y=k^{2} / w$, this becomes

$$
k^{-r-1} \int_{0}^{\infty} w^{r} e^{-w} d w=\Gamma(r+1) k^{-r-1},
$$

hence the result.

References

1. T. H. Gronwall, Über eine summationsmethode und ihre anwendung auf die Fouriersche reihe, J. Für Math., 147 (1916), 16-25.
2. J. M. Hyslop, Some relations between the de la Vallée Poussin and Abel methods of summability, Proc. London Math. Soc., (2), 40 (1936), 449-467.
3. B. Kuttner, The relation between de la Vallée Poussin and Abel summability, Proc. London Math. Soc., 44 (1938), 92-99.

Received May 28, 1971.
University of Malaya
Kuala Lumpur
Malaysia

