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GENERALIZED CONTINUATION

ALAN S. COVER

In this paper the operation of analytic continuation is
generalized by relaxing the condition that a direct continua-
tion of a function must have the same values as the original
on the intersection of their domains of definition. Thus the
generalized continuations of a function can have some other
property in common with the original function such as being
preimages of a single function under a local integral opera-
tor. This generalization is accomplished by developing .-
continuation of & = {(f., S,)|f-€® and S. a ball in &
with respect to a collection of maps, -8, of subsets of #
into #. % must satisfy some compatibility conditions.
Many of the proofs in this development parallel those for
analytic continuation and lead to the introduction of a mani-
fold on which the generalized continuation is single valued.
A generalized continuation of function elements (f,, S.) is
achieved when all the f.’s are complex valued functions de-
fined on S, and some examples are given.

In §1 .o~continuation is developed for .. A manifold M(#, .&7)
is developed on which .9~continuation is single valued and the complete
S7-funetion is introduced which is similar to the complete analytic
function of Weierstrass. Theorem 11 states a necessary and sufficient
local condition that M(<, .) and M(S# <#) be holomorphic. In
section 2 .9~continuation is specialized to sets, .&# , where f, is a func-
tion with S, as its domain of definition. Then (f,, S.) is referred to
as a function element. For function elements a compatible set of
maps can be considered as a generalization of direct analytic continua-
tion of power series. An indicator function is defined to help describe
a complete .o~function. Direct analytic continuation and continuation
of the coefficients of a linear Weierstrass polynomial are given as
examples.

Given in §3 is the more intricate example of continuing the nor-
malized B;-associate of the Bergman-Whittaker Integral Operator.
Using Theorem 11 this generalized continuation is shown to be
equivalent to analytically continuating the harmonic function repre-
sented by the B;-associate. This is the example which motivated the
study of generalized continuation.

1. Generalized continuation. Let @ be a set and with each f,
in @ associate ball, S,, in C* and let & = {(f,, S.)|f.€®}. Let x,
denote the center of S, and consider a set of operators or maps .7 =
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{A,|x e C"} such that
Ax: {falxesa}_’{fa|ma = .'E} *

In this paper the statement, “a property holds for an expression
for every a and 2” means that this property holds for all « and x
for which the indicated expression is defined.

DEFINITION. A set of operators, .o is called a compatible set of
operators for .&# if .7 satisfies

(i) for every a,x and y, f.A, = f.AA,

(ii) if f,A, = fs then 7, = r, — d(z,, %)

(iii) for every a, foA., = fa

In the preceding definition d(x, y) denotes the distance between
the two points z = (¢, -+, ") and y = (%', -+, y") in C* given by

% A A 1/2
aw, v) = (2 |+ - v'F)
and 7, is the radius of S,.

DEFINITION. If .o/ is a compatible set of operators and f,A, =
fs, then f;is called a direct generalized .o%continuation of f, or simply
a direct .%“continuation of f,.

As in the case of an analytic function of one complex variable
an analytic manifold is introduced on which .9~continuation is single-
valued. First, the following definitions are given.

1. A finite sequence of balls, S, ---, S, is called a chain if the
center a,., of S;,, lies in S,.

2. If fid,,,,=fis. for ¢ =1, .., m — 1, then f, is said to have
been .o~continued along the chain of balls.

3. A curve or path C on C* is a continuous mapping, x, of the
closed unit interval, I, into C* and is denoted by C = (u(¢), I). The
inverse curve C™* of C = (u(t), I) is the curve (0, I) where d(f) =
pn(l —¢) for tel.

4. Let C = (g, I) be a curve in C* with an element (f}, S,) in
& associated with each eI such that the center of S, is x(¢). If
for every t, and ¢, such that p(¢) lies in S, for all ¢ in the interval
th=t =1t we have f, is a direct .%“continuation of f,, then f, is
said to be the .%~continuation of f, along the curve C.

In order to construct the analytic manifold some properties of
S7-continuation are needed. These results are contained in the fol-
lowing Theorems. Some of the proofs are similar to the proofs of
the corresponding properties in one complex variable and these proofs
are omitted and the reader is referred to [8, pages 63-69]. For the
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rest of this section it is assumed that .o~ is a compatible set of
operators.

Lemma 1. If x, -+, 2,€8, and f.A, -+ A, 1is defined then

fanl cee Ax” zfaAa:n .

The proof of this Lemma is by induction and (i) of the definition
of compatibility.

For a given f, and any z,¢ S, define r(x,) to be the radius of S,
the ball associated with f,4, . Using (ii) of compatibility the fol-
lowing Theorem can be proven.

THEOREM 1. 7(x.) ts either identically infinite or is a continuous
function of %,.

THEOREM 2. Let f; = f, A, and let C = (¢, I) be a curve such
that |C|cC S, p(0) = x,, and p(l) = 2.  Then there exist @, +++, ®,
on |C| such that

frA, -r A, = f..

Lemma 1 is used in the proof of Theorem 2. This Theorem says
that if f; is a direct .o~continuation of f, and C is a path in S, which
joins @, to x, then there exists an .9%continuation of f; along a chain
S, +++, S, to obtain f, where the centers of the S;’s,7 =1, -+, n lie
on |C|.

THEOREM 3. If f.A, = fiA, = f, and if x, = %, then f, = fs

Proof. By Theorem 2 there exists z,, +++,2, = ¥ = %, = 2; on the
line segment between y and x such that

Jily or A, = fa
Also substituting for f, and using (iii) of compatibility and Lemma 1
(fsA)A, <+ A, =T
Hence, f, = f;.

COROLLARY 1. If f A, +-+ A, = fed, -+ A, and if x. =
then fo = f3.

THEOREM 4. Let {f.} be the elements of an S-continuation of f,
along the path C to obtain f.. Then {f,_} are the elements of an
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S-continuation of f, along the path C™ and this continuation gives

foe

THEOREM 5. .S~continuation of a given element f, along a given
curve C always leads to the same element f,.

THEOREM 6. If an S~continuation of f, along a path C is possi-
ble, it can always be accomplished by .S7-continuation along a finite
chain of balls.

THEOREM 7. Let S, ---, S, be a chain of balls with centers
%y, +ee, %, and C = (¢, I) be a path from x, to x, and passing through
Xy =, B,y SUCh that p(t)eS; for all t, t; <t < t;,, where p(t;) = ;.
Then if fi, «++, f. 18 an S-continuation along this chain, there exists
an S7-continuation of f, along C which gives f, at x,.

The desired .%~continuation along the curve C for Theorem 7 is
given by: for each t¢[0, 1] associate the element f, = f, A.(¢) where
tf =t = ti+1-

DErFINITION. For every « and g define

%j = {xlfaAz :fﬂA:v} .
THEOREM 8. Zf = @ or & = S,.NS,.

Proof. Both &z!c S,NS; and (S, N S;)\#: are open sets. The
theorem follows since S, N S; is connected.

Y~continuation need not be possible along a given curve C=(g, I).
The point (%) is a singular point or an .%singular point relative to
C and f, if the element f, can be continued along the segment 0 to
t for all ¢t < t, but not along the segment if ¢ > {,.

DEFINITION. The (complete) .o~function is the set F of all ele-
ments obtainable from a given element by .%~continuation.

From this definition and Theorem 4, it is clear that each element
of F' can be obtained from any other element of F by .%“continuation.
Furthermore, two Sfunctions F, and F, which have a single element
in common are identical. Let

M; = {(@ f.)|f-€ F and =, is the center of f.}
and for p < r(x,) let
Ko(ey fo) = {(, 9) |9 = f.A, and d(y, x.) <} .
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Let {K,(x., f.)} be the base for a topology on M, and the projection
map of K,(%., f), (¢, 9) — y be the coordinate map for M.

THEOREM 9. I" = (u(t), I) where p(t) = (x,, 1), ts a path on M,
if and only if fi is an -continuation along the path C = (x,, I).

Proof. Clearly (x,, I) is a path. For any ¢, let ¢, be such that
w, eS8, forall{, {,<t<t. In particular », €S, and (x,, f:) € K,(2:, 1)
of some o > r,. Hence, f;, = f%AM1 and we have an .%~continuation.

DEFINITION. The union of all M, is called the manifold of &#
with respect to .9~continuation and is denoted by M( ¥, &).

THEOREM 10. M, is a connected analytic manifold.

DEFINITION. Given .S~continuation for & and <Z-continuations
for & a mapping  from M(F,.o7) to M(Z, &&) is called an .&7Z-
morphism if

(1) P(%ay fa) = (Yay 9.) implies z, = ¥,

(i) V(% fo) = (e, 9.) implies y(x,, fod.) = (X, 9.B.) if both f.A,
and g¢.B, are defined.

Since an .%7<Z-morphism leaves the first entry in (x,, f.) fixed it
is convenient to write +f, in place of +(x,, f,). Using this convention
(ii) can be stated as:

()" ¥ (feds) = (Vo) B,.

LEMMA 2. + a bijective .7ZZ-morphism implies " is a B~
morphism.

Proof. Let +f, = g, have their center at x and assume f,A4, = f3
and g.B, = g; both exist.

'\"ffﬁ = r'f,f(faAy) - (W’ff«)By = gaBy = s -
Hence,

V7 (9eBy) = V79 = 5 = fouly = (v70) A, .

THEOREM 11. Let + be a bijective mapping from M(F, .7) to
M(27, &) such that (z, f) = (x, h). + is a homeomorphism if and
only if v is an EB-morphism.

Proof. Assume + is an .&ZZF-morphism, f, = ks, (fa S.) € .F,
(hey T,)e &, and U= S,N T,. Then

W@, feA.) @ e U} = {(%, hB,)|w € U}
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implies that 4 and ' are continuous.

Assume +r is a homeomorphism and using the same notation
E = {(y, h.B) |y c U}

is a basic open set in M(5#, &%) and  a homeomorphism implies
4~ '(E) contains a basic open set of the form

{(y, foA)) |y € Na}

where N,C U is a ball. + preserves first coordinate and is injective
implies

(1) v, f.4,) = (¥, h.B,)

for all y in N,. Hence, +f, = h, implies there exists a ball N, such
that (1) holds for y in N,.

Let z be in S and L denote the line segment from «, to 2. For each
xin L let f, =f.A, and N, be the ball where (1) holds for f,. Let M, be
the ball concentric with N, and having a radius which is one fourth the
radius of N,. L compact implies there exist {}M, |j = 1, ---, n} which
covers L. Then assuming ¢ = %, «,, --+, ¢, = 2 are ordered along L
then w; is in N,,_ . Hence,

faAz = fanzA'xg cee Aac
and since (1) holds for f,, in N,
“/’(faAz) = "lf[(fanz et Ax,,_l)Aw,,] = [“/f(fasz e Aa:n__l)]an
= ('\l"fa)B:cz e B:cn = (“Ffa)Bz .

Therefore, (1) holds in S which is the ball in which both f,A, and
h.B, are defined.

n

COROLLARY. If + is a bijective .7zZ-morphism and (f, %) =
(90, ) then My is homeomorphic to M, where F and G are the .~
function and Z-function of f, and g, respectively.

THEOREM 12. Let + be a bijective S78-morphism and C= (a(?), I)
be a path in C*. {f.|tel} is an ~continuation along C if and only
if {g:1v (@), f) = (@), 9.) and tel} is a Z-continuation along C.

Proof. From Theorem 9 {f.,|te I} an .Y-continuation along C is
equivalent to {(x(¢), f;)|t€ I} being a path on M(Z, .&). Since 4 is
homeomorphism {4(x(t)), /)|t e I} is a path on M(%, &) and this is
equivalent to {g,|v(x(?), f) = (2(?), 9.), t€ I} being a <Z- continuation
along C.
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2. Examples of generalized continuation of function ele-
ments. The elements of @ are called function elements if (f,, S,) in
& implies f. is a complex valued function whose domain of defini-
tion is S, or S, X T where T is fixed (see §3). In general, for y in
S, N S;, where (f,, S.) and (f.4., S;) are in &~

(fed ) () # f,(v)

as can be seen in the examples. The Complete Weierstrass Analytic
is quite similar to the complete .S~continuation of function elements
except the values of a function element do not have to agree with its
direct .S7%~continuation.

DEFINITION. Let F be a complete .“function generated by a
function element then the single-valued function, f, defined on M, by

Fl@ay f)] = ful®a)

is called the indicator function of F.

In the case of .%-continuation of function elements the Law of
Permance of Functional Equations can be applied, however, the func-
tional equations to which it applies depends on the particular .o~con-
tinuation. Two examples of generalized continuation of function ele-
ments are given.

1. Analytic Continuation: Let @ denote the set of absolutely
convergent power sesies of one complex variable with positive radius
of convergence,

0={P) = 3 i@ — 2},
and for P, in @ let S, be its disc of convergence so that
F = {(Ps S} -
Analytic continuation can be represented by
& = {A.}ieo

where A, is the operator which expresses a function element defined
in a neighborhood of z as a power series about the point z. In this
case it is known that & and .o satisfy the conditions for being a
compatible set of operators. Indeed .o is referred to as a direct
analytic continuation. The indicator function in this example is the
multivalued analytic function which is generated by the power series.

3. Continuing the coefficients of linear Weierstrass Poly-
nomials. Let @ be the functions defined by a power series with
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positive radius of convergence and which have the value zero at the
center of their disc of convergence,

0={£@ =3 ae -2},

n=1

and for f, in @ let S, be its disc of convergence. Now a set of
operators, 77 can be defined on @ by fW, is defined by the power
series of f(2) — f(2) with center z, whenever z, is in the disc of con-
vergence of f. This set of operators is compatible and hence gives a
generalized continuation, “%#“continuation, on .&#. Note, that indica-
tor function of any complete 9#-function is

(fW)(=) =0.

For <7-continuation the Law of Permance of Functional Equations is
quite similar to that of analytic continuation. For instance the 9%~
continuation of an algebraic function element is again an algebraic
function element.

This example can be generalized to C™ by letting S, be the largest
ball in which the power series converges absolutely. Then f, in @
can be considered as the coefficient of a linear Weierstrass Polynomial
which is regular in W,

P(w, 2) = (w — wy) + f(2)

which has center (w,, z). [6, page 68]. If (w, z) is a zero of P and
2, is S, then representing the zero set of P in a neighborhood of (w,, z,)
is the Weierstrass Polynomial with center (w,, z,), namely,

(w —w) + (FW.)(®) .

Hence, 9#“continuation continues the coefficient of a linear Weierstrass
Polynomial.

4. Continuing the normalized B;-associate of the Bergman
Integral Operator. Let ¥ = {{||{| =1} and set X = (%, 9, 2) in E®

w =X, ) =&+ 20 + Z2*

(1) Z:-;—(iy—kz), and Z*:—;-(iy—z).
Bergman introduced the integral operator

1 a
(2) HX) = o= S, OF

where f is an analytic function of the complex variables « and {
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having at most a finite number of isolated singularities [1]. The
integral operator defined in (2) is called the Bergman-Whittaker
Integral Operator. Bergman has shown that in a neighborhood of X,
(2) represents a harmonic function [1, 2]. The function f in (2) is
called the B;-associate of the harmonic function which it defines. B;-
associates of the form

(3) f0,0 =3 3 a0

where (3) converges absolutely for # in a neighborhood, N, of zero
and uniformly for % in a compact subset of N and  on & are called
normalized B,-associates. Then (2) gives a one to one correspondence
between normalized B;-associates and harmonic functions which are
regular in a neighborhood of the origin [3, 4]. A translation of the
origin in (1) gives

(4 WX -X,0=@-a) +(Z—Z)+ (2 -z
(5)  fulX,0) = fulu(X — X,0,0 = 5 3 alfu(X - X, O

Then (2) gives a one-to-one correspondence between normalized B;-
associates centered at X, f.(u(X — X, {), ), and harmonic functions
regular in a neighborhood of X,.

The B;-associate may be defined for all » and { but the Bergman
integral operator only represents the harmonic function in a domain,
called the domain of association, which is usually not all of E® [4].
Rational Bd-associates generate harmonic functions which are not in
general regular throughout E®. The space is divided by surfaces of
separation into a finite number of regions. As X moves from one
domain of association to another, a new harmonic function is defined.
If X changes from one demain of association to another the singular
points of f(u,{) may enter or leave the interior of the curve of integ-
ration. In this section the generalized continuation developed for
normalized B;-associates overcomes this difficulty. That is, generalized
continuations of a normalized B;-associate generate the same harmonic
function.

Let @ = {f.} be the set of all normalized B,-associates with centers
X, in C?. That is, in (1) continue x,y, and z to complex numbers
= + %, Y =Y, + Y and 2 = 2, + 2. Set 4" = {(fa S.)} Where
fx is in @ and S, is the largest ball with center X, such that for
any compact subset M of S,, (5) converges absolutely and uniformly
on M x <4 Hence, f, is defined on S, X <. The compatible set of
operators <% defined on 4" is a generalization of analytic continua-
tion such as one finds in Hille [7: page 128]. Assume
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(6) X, 0) = £ull(X,0,0) = 3 3 apufu(X, OI'C

is normalized B;-associate which is centered at the origin. To apply
By, to obtain a normalized B;-associate which is centered at X, the
steps are:

(A) In (6) express u(X, () as

w(X — X, Q) + w(X;, §) = w(X — X5, §) + %0 + ZL + Z*C

and then expand this last four termed expression in a multinomial
expansion to obtain

n—r n—r—3

S S b mZZH (X — X, OIT

t=0

(1) 3 3 a3

where b, ,, is the multinomial coefficient and ¢ = n — r — s — ¢.

(B) If (7) converges absolutely as a multiple series we can add
the series in any admissible manner [8; page 114]. In particular (7)
can be expressed as

(8) FAED =3 3 X — X, 1T

where ¢,, is obtained by adding all the coefficients for a fixed » and
V.

(C) Normalize f*, that is, remove all the terms from (8) for
which |v| > ». This gives the direct <Z-continuation

r

(9) FoBr,= 3 3 enfu(X — X, OIC .

Note that £ is an analytic continuation of f,, hence, the integrals
of f¥ and f, defined in (2) will be equal for X in the intersection of
the domains of definition of f* and f,. Moreover, normalizing f;} does
not change the value of the integral (2) as can be seen by applying
the Residue Theorem to a term by term integration of the series.
This implies that Bergman’s Integral operator carries direct-<#Z-con-
tinuation of normalized B,-associates over into analytic continuation
of their respective harmonic functions.

To show that <# is a compatible set of operators it is necessary
to show that

(10) To Z Ta — A(Xo, 0)

where 7, is the radius of the ball of definition of f, = f.By,. First,
note that

1n X — X5, )| < V' 2d(X, Xj)
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and that for every R there exists a X and ¢ such that
WX — X,8|=1v2dX,X)=12R .

Hence, if 7, is the radius of S, then 1/ 2 r, is the radius of convergence
of

(12) ) (kﬁ‘,n . [)u"‘ .

Second, if X = (x, y, #) and is represented by (=, 2, Z *) then X =
(lz|, | Z|, |Z*|) has the property that d(X, 0) = d(X, 0).
In examining the absolute convergence of (7)

Ibr,s,txgzoszo*t[u(x - X, OI¢* =C, ...
are the terms in the expansion of
[w(X — X, §) + w(&,, D] .

Hence, (7) converges absolutely for d(X, X,) < r, — d(X,, 0) since (11)
and (12) imply that

S
|
3
3
|

r
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'|'M3
M-

—s
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I

where o < r,. This convergence is uniform on compact sets of S, N S,.

Let 57 = {H,, S,)} where H, is a regular harmonic function rep-
resented by a power series whose largest ball of absolute convergence
is S,. The Bergman Integral Operator defines a map +: M(_#; &) —
M(s57, s7) where .57 is analytic continuation and +f, is given by (2).
From previous statements it is noted that « is injective and as noted
in (¢) + is “Z o morphism. Theorem 11 implies that M(.#; &Z) is
homeomorphic to M(S7, %) and the Corollary implies that the mani-
fold obtained by normalized continuation of f, is the same as the
manifold obtained by analytically continuing the harmonic function
Ha = "#f a*

In particular when

FX,0 =3 3 anuuX — X, OI'C

n=0 k=—

with center X, is <Z-continued to the function
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FuBx(X,0) = 5 3 bualu(X — X, O

with center X, the b,,’s can be calculated in the following cases.
(1) b = D57mn Au 1 (705 — w))d"™ when X, — X, = (d, 0, 0)
(1) b= 20500 Dot @ nren—ii(5!/ (B — m)m!(j — R)!)(id/2)"™ when X, —
X, = (0, d, 0), and
(i) bk = 30520 Dhn Cinranmici(— DG/ (A—n)In!(5 — h)!)(d/2)"™ when
X, — X, = (0,0, d).

For example if

(X0 =3 3 WX re

which has center (0, 0, 0) is <#-continued using above expressions it
is found that the <Z-function determined by f, is

F:{(Xa,fa)IXaz(ayb7c)’ a‘;&l and b+0}y

where

oo n 1 n+1l
(X, ) = _____> WX — X, O)C .
L= 3 (rmom) ® Q)
Hence, f, is the B,-associate of a harmonic function %, whose analytic
extensions are single-valued since F' is single-valued. Also the analytic
continuation of %, is regular everywhere except for {(z, ¥, ) |z +iy=1}.

Indeed it can be shown by using (2) that in a neighborhood of
(0,0, 0)

1

hO y Yy - T
(%, 9, 2) ——

In a less tedious manner one can observe that

x50 = el -

and hence is the normalized B;-associate of the same 7%, [5, Theorem
2.1].

For <Z-continuation the indicator function of a complete <#-func-
tion generated by (f., S.) is the complete .o~function generated by
(¥fs, S.) as can be seen from (2). Hence, the indicator function for
“F-continuation is the harmonic function obtained by the integral
operators.
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