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NORMPRESERVING EXTENSIONS IN SUBSPACES
OF C(X)

EGGERT BRIEM AND MURALI Rao

If B is a subspace of C(X) and F' is a closed subset of X,
this note gives sufficient conditions in order that every function
in the restriction subspace B|; has an extension in B with
no increase in norm.

Introduction. Let X be a compact Hausdorff space, C(X) the
Banach algebra of all continuous complex-valued functions on X and
let B be a closed linear subspace of C(X) separating the points of X
and containing the constants. A closed subset F of X is said to
have the normpreserving extension property w.r.t. B if any function
b, in the restriction subspace B|, has an extension be B (i.e. b|- = b,)
such that ||b|| = [|b,|l#(]| « || (resp. ||+ ||r) denotes the supremum norm
on X (resp. F)). The main result is the following:

Let F be a closed subset of X and suppose there is a map T
(not mecessarily linear) from M(X) into M(X) satisfying the following
conditions

(i) m — Tme B* for all me M(X)

(ii) T is a probability measure when \ s

(iii)) If s;eC and me M(X) t=1,+--,n and >, sm;ck(F)"
then >, si(Tms)|xr € B*.

Then F has the normpreserving extension property.

M(X) denotes the set of regular Borel measures on X, and if A
is a subset of B then A* is the set of those measures in M(X) which
annihilate A. k(F') consists of those functions in B which are iden-
tically 0 on F. Also if G is a Borel subset of X and m € M(X) then
m|; is the measure y,m where y, is the characteristic function for G.

Two conditions, either of which is known to imply that a closed
subset F of X has the normpreserving extension property are the
following:

Condition 1. For all o€ B+, 0|y € B*.

Condition 2. F is a compact subset of the Choquet boundary 2,
for B and for all 0 e M(Z;) N B*, o|r€ B*.

(M(2;) denotes the set of those o € M(X) for which the total variation
|o] is maximal in Choquet’s ordering for positive measures (see [1]
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Ch. I §3 and [6] p. 24)).

In Chapter 2 of this note we show that when either Condition 1 or
Condition 2 is satisfied there exists a map T with the above properties.

Actually, when Condition 1 or Condition 2 is satisfied stronger
extension properties than the normpreserving one hold. (In the case
of Condition 1 see [4] Theorem 3 and [5] Theorem 4.8 in the case of
Condition 2 see [2] Theorem 4.5 and [3] Theorem 2). But as we
show in Chapter 2 these stronger extension properties are corollaries
to theorems based on the existence of a map T described above.
Thus we are able to deal simultaneously with Conditions 1 and 2.

1. A condition for the normpreserving extension property.
Throughout this chapter F is a fixed closed subset of X and T is a map
Jrom M(X) into M(X) satisfying

(i) m — Tme B* for all me M(X)

(ii) T\ is a probability measure when \ is.

(i) If s;eC and m; e M(X) and >\, sim; € k(F)* then

ZZL:] S.,,(Tml) lx\p € B'L .

REMARK 1.1. It follows from conditions (i) and (iii) that if 3s,0; €
B* then Ys(To;)|rc B*. Also if \ is a probability measure and »\ =
|z then T = (T)\)|z, because \e k(F)* hence by (iii) (T)\)|xr€ B*.
Since B contains the constants and T\ is a positive measure (T\) |y »=0.

We let S; denote the state space of B s.e. S; = {peB*: ||p|| =
p(l) =1}. S, is a convex set which is compact in the w*-topology
and the natural map of X into S; is a homeomorphism. We shall
frequently think of X as embedded in S;. A representing measure
for peS; is a probability measure v, on X such that p(f) = g fdv,

for all feB.

DEFINITION 1.2. For each b, ¢ B|, we define a function b, on S,
as follows. If peS; put

i) = | b,
where v, is any representing measure for p on X.
REMARK 1.3. The above definition is meaningful because if v} is
another representing measure for p on X then v, — v}, € B*; hence by

Remark 1.1 (Tw,)|r — (TW,)|r € B*.

LEMMA 1.4. b, has the following properties:
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(1) b, is an affine function

(2) |b(p)| = Ibllr for all peS;

(8) by(p) =0by(p) if PeF

(4) b, ts a linear combination of upper semicontinuous affine
Sfumnctions.

(5) SEoda — 0 for all oe B

Proof 1. follows from the definition of b, and remark 1.1. (2)
is trivial: To prove (3) observe that if xe F then by remark 1.1
Té, = (T19,)|» (6, is point mass at x). But 76, is a representing
measure for x. (4) Observe that if b,€ B|r and f, = Reb,, we can define
fo in exactly the same way as we defined b,. Then f, is affine on S,
and f, = Reb,. First assume that f, = 0. We want to show that f,
is upper semi-continuous. For each ¢ = 0 put K, = {pe S, fu(p) = t}
we must show that K, is closed. Let {p,} be a net from K, with
limit point p,, and v, a representing measure for p, on X for each a.
Write Tw, = %, + w, where u, = (Tv,)|s. Let w, be a w*-clusterpoint
for {u,} and let {u;} be a subnet from {u,} converging to u,. Also let
w, be a clusterpoint for {w,;}. Then v, = u, + w, is a representing
measure for p, and since

=l 2(2r) = ()],

(Remark 1.1). Using this and Remark 1.1 once more we get:

5\

I 0”

ey = | faTo, = wll| fam(es) + fjw)l-| fdr(Y

%]
> = SFfoolu0 =t. Hence p,c K, .

> nuOHS fo‘”(u |

I~n general tak_e a positive number k such that f, + k= 0. Then
fo= fo+ k — k is the difference of upper semi-continuous functions.
Since this holds for any f,e ReB|, (4) is proved.

Since b, is a linear combination of real valued affine upper semi-
continuous functions it satisfies the barycenter formula i.e. if pe S,
and v, is a representing measure for p then

gzi,dvp — by(p)

(See [1] Cor. I 1.4)

Now we consider a measure o< B' with a decomposition o =
i, t;0; into probability measures o; representing points p;e S, for
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1=1,2 3, 4. By axiom (i) the measure To; also represent p; for 4 =
1,2,3,4. Applying the above result together with the definition of

b, and axiom (iii), we obtain:

This completes the proof of (5).
ProrosiTION 1.5. By s closed in C(F)

Proof. Let o€ B, and consider a b,€ B|; such that [|b]; < 1.
By statement (5) of Lemma 1.4:

0= Sli,do* _ S bdo + S bdo .
F

X\F

Hence

] = [, | <11

and so |o|r = [[0]xrll

By a result of Gamelin [4] and Glicksberg [5] (see also [3, Prop.
1]) this implies that B|, is almost normpreserving, or what is equi-
valent, that B/, is isometric to B|,. Hence B|; is complete in uniform
norm, and we are done.

PROPOSITION 1.6. Let b, € Bl and let 4 be a strictly positive lower
semi-continuous function on X such that (x) > |by(x)| for all xe X.
Then there is a function be B such that bl, = b, and |b(x)| < +r(x)
for all xe X.

Proof. Apply Theorem 2.2 of [2].

THEOREM 1.7. Let F and T be as in the beginning of this chapter
and let b€ Bl with ||b||» £ 1 and let + be a strictly positive lower

semi-continuous function such that (x) > |by(x)| for all xe X. Then
there is a function b€ B such that

blr = by, [|b]] = [|bo]lr and |b(x)| < y(x) for all xe X .
Proof. The proof is exactly the same as proof of [3] Theorem 2

after replacing the function A from [3] by b, and Lemma 1 of [3]
by Proposition 1.6 of this note.
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COROLLARY 1.8. F and T as before. Then F has the normpre-
serving extension property w.r.t. B.

THEOREM 1.9. Let F and T be as before let b,€ By and let + be
a strictly positive lower semi-continuous function such that r(x) =

\5y(@) | for all we X. Suppose furthermore that y(z) = gwmx for all

ve X\F for which by(x) =0 (N, is a representing measure for ).
Then there 1s a fumnction be B such that

blr = b, and |b(x)| < y(x) for all xe X .

Proof. The proof is the same as the proof of [2] Theorem 4.5
replacing in the proof of Theorem 2.1 of [2] by Proposition 1.6 of this
note.

2. Relations to conditions 1 and 2. We start by showing
the equivalence of condition 1 to a condition involving k(F')*

ProOPOSITION 2.1. Let F be a closed subset of X. Then the follow-
wmg conditions are equivalent:

1. For all ce B+ 0|, B*
1. For all 0 €k(F)*, o|yr€ B*.

Proof. Condition 1’ trivially implies 1. Suppose Condition 1 is
satisfied and let o e k(F')*. Let b,€ B|; and let b € B be any extension

of b,. Since o € k(F)* the quantity dea is independent of the choice

of the extension b. Thus b, — \bdo is a well defined linear functional

on B|y. By [4] Theorem 1, B|; is closed in C(F'). It then follows
from the open mapping theorem that b,— bdo is a continuous linear
functional. Thus we can find a measure o, = 0,|, such that o, — o €
B*. But then o|xr = (0, — 0)|xr € B*.

Let again F be a closed subset of X and suppose that Condition
1 is satisfied. Let T be the identity map from M(X) to M(X). By
the above proposition 7T satisfies requirements (i) (ii) and (iii) from
the beginning of Chapter 1. In this case if b,€ B|., by(x) = 0 for all
xe€ X\F. From Theorem 1.9 we can then deduce the following well
known theorem.

THEOREM 2.2. Let F be a closed subset of X and suppose that
tlr€ B* for all pe B, If bye Bl and + is a strictly positive lower
semi-continuous function with (x) = |b(x)| for all x € F then there
18 function be B such that
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bl = by and |b(x)| < (@) for all zeX.

We now look at Condition 2. Let F be a compact subset of the
Choquet boundary 2, and suppose Condition 2 is satisfied i.e. for all
ceB*NM(2;),0|,cB. We need the following lemma

LEMMA 2.83. Under the above hypotheses B|, is closed in C(F).

Proof. By [5] Theorem 3.1 we must show the existence of a
constant ¢ = 1 such that || — (B|p)*|| Sc|| ¢ — B"|| for all pe M(F).
Let e M(F) and o0 € B*. We write 0 = ¢|r + 0|5 and further write
Olrr = tN — BN + 2(EN — t\) Where the t’s are positive numbers
and the \’s are probability measures such that )\, and )\, (resp. A,
and ),) live on disjoint subsets of X. For ¢=1,---,4 let v; be a
maximal measure such that \; — v, € B*. Put w = t,v, — &0, + 2(t;v; —
tw). Then oy, — weB* and [|w|| = i &lvll = 2 GlIN] =
2|lo|xrlls Now ol + we B* N M(Y;) so that o|, + w|r,€ B*. Hence
ot — (A= gt — @lr + D IS = L] + 2010 lnell < 2122 —
ol|l. Thus we can take ¢ = 2 and the lemma is proved.

As above let F' be a compact subset of ¥, and suppose that for
all ce M(3;) N B',0|,€ B'. We define a map 7 from M(X) to M(X)
as follows. If ) is a probability measure on X pick a maximal
measure v with » — ve B* and put Tn = ». If \ is already maximal
put Tx =\, If oe M(X) write 0 = ¢\ — t.\, + i(t\s — t\,) Where
the t’s are positive numbers and where A\, and A, (resp. A\, and A,)
are probability measures living on disjoint subsets of X. Then put
To = t,Tn, — ;TN + ©(t; TNy — t,TN,). The map T from M(X) to M(X)
we get in this way obviously has properties (i) and (ii) from the
beginning of Chapter 1. Observe that To = ¢ if ¢ = ¢|, since FC
Y3 To see that T also has property (iii) let Is;0;€k(F)*. By
Lemma 2.3 B|; is closed in C(F'). Just as in the proof of Proposition
2.1 we can find a measure p = ¢, such that y — ¥s;0,€ B*. Then p —
3s;To; e B N M(25) so that p— ¥s,(To;) |, € B, but then Xs;(70;)[x\r €
B*. We can then using Theorems 1.7 and 1.9 deduce the same inter-
polation theorems as in [2] and [3]. In particular we get from
Theorem 1.7:

THEOREM 2.4. Let F be a compact subset of the Choquet boundary
Y, and suppose that for all e B* N M(2;),0|€ B-. Then F has
the normpreserving extension property w.r.t. B.
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