ON THE UNIVALENCE OF SOME ANALYTIC FUNCTIONS

G. M. ShaH

Let

$$
f(z)=z+\sum_{k=n+1}^{\infty} a_{k} z^{k}
$$

and

$$
g(z)=z+\sum_{k=n+1}^{\infty} a_{k} z^{k}
$$

be analytic and satisfy
(a)

$$
\boldsymbol{\operatorname { R e }}(f(z) /[\lambda f(z)+(1-\lambda) g(z)])>0
$$

or
(b)

$$
\begin{aligned}
|f(z) /[\lambda f(z)+(1-\lambda) g(z)]-1| & <1 \\
& \text { for }|z|<1,0 \leqq \lambda<1 .
\end{aligned}
$$

We propose to determine the values of R such that $f(z)$ is univalent and starlike for $|z|<R$ under the assumption (i) $\operatorname{Re}(g(z) / z)>0$, or (ii) $\boldsymbol{\operatorname { R e }}\left(z g^{\prime}(z) / g(z)\right)>\alpha, 0 \leqq \alpha<1$.

We also consider the case when $n=1$ and $\operatorname{Re}(g(z) / z)>1 / 2$ and show that under condition (a) $f(z)$ is univalent and starlike for $|z|<(1-\lambda) /(3+\lambda)$.
2. Lemma 1. If $p(z)=1+b_{n} z^{n}+b_{n+1} z^{n+1}+\cdots$ is analytic and satisfies $\operatorname{Re}(p(z))>\alpha, 0 \leqq \alpha<1$, for $|z|<1$, then

$$
\begin{equation*}
p(z)=\left[1+(2 \alpha-1) z^{n} u(z)\right] /\left[1+z^{n} u(z)\right], \quad \text { for }|z|<1 \tag{1}
\end{equation*}
$$

where $u(z)$ is analytic and $|u(z)| \leqq 1$ for $|z|<1$.
Proof. Let

$$
\begin{equation*}
F(z)=[p(z)-\alpha] /(1-\alpha)=1+c_{n} z^{n}+c_{n+1} z^{n+1}+\cdots \tag{2}
\end{equation*}
$$

$F(z)$ is analytic and $\operatorname{Re}(F(z))>0$ for $|z|<1$ and hence

$$
\begin{equation*}
h(z)=[1-F(z)] /[1+F(z)]=d_{n} z^{n}+d_{n+1} z^{n+1}+\cdots, \tag{3}
\end{equation*}
$$

is analytic and $|h(z)|<1$ for $|z|<1$. Thus, by Schwarz's lemma

$$
\begin{equation*}
h(z)=z^{n} u(z), \tag{4}
\end{equation*}
$$

where $u(z)$ is analytic and $|u(z)| \leqq 1$ for $|z|<1$. Now equations (2), (3) and (4) prove (1).

Lemma 2. Under the hypothesis of Lemma 1 we have for $|z|<1$
$\left|z p^{\prime}(z) / p(z)\right| \leqq 2 n z^{n}(1-\alpha) /\left\{\left(1-|z|^{n}\right)\left[1+(1-2 \alpha)|z|^{n}\right]\right\}$.
Proof. Proceeding as in the proof of Lemma 1, we have in view of (3) and a result of Goluzin [1] that for $|z|<1$

$$
\begin{equation*}
\left|h^{\prime}(z)\right| \leqq n|z|^{n-1}\left(1-|h(z)|^{2}\right) /\left(1-|z|^{2 n}\right) \tag{5}
\end{equation*}
$$

Using (3), the inequality (5) takes the form

$$
\left|F^{\prime}(z)\right| \leqq 2 n|z|^{n-1} \operatorname{Re}(F(z)) /\left(1-|z|^{2 n}\right)
$$

Hence, in view of (2),

$$
\begin{equation*}
\left|p^{\prime}(z)\right| \leqq 2 n|z|^{n-1}[\operatorname{Re}(p(z))-\alpha] /\left(1-|z|^{2 n}\right) \tag{6}
\end{equation*}
$$

or,

$$
\begin{equation*}
\left|z p^{\prime}(z) / p(z)\right| \leqq 2 n|z|^{n}\left(1-\alpha /(|p(z)|) /\left(1-|z|^{2 n}\right)\right. \tag{7}
\end{equation*}
$$

Equation (4) gives

$$
\begin{equation*}
|h(z)| \leqq|z|^{n} \quad \text { for }|z|<1 \tag{8}
\end{equation*}
$$

and hence, by virtue of (3),

$$
\begin{equation*}
|F(z)| \leqq\left(1+|z|^{n}\right) /\left(1-|z|^{n}\right) \quad \text { for }|z|<1 \tag{9}
\end{equation*}
$$

From (2) and (9),

$$
\begin{aligned}
|p(z)| & =|\alpha+(1-\alpha) F(z)| \\
& \leqq \alpha+(1-\alpha)|F(z)| \\
& \leqq\left[1+(1-2 \alpha)|z|^{n}\right] /\left(1-|z|^{n}\right) .
\end{aligned}
$$

The inequality (7), because of the last inequality, reduces to

$$
\left|z p^{\prime}(z) / p(z)\right| \leqq 2 n|z|^{n}(1-\alpha) /\left\{\left(1-|z|^{n}\right)\left[1+(1-2 \alpha)|z|^{n}\right]\right\} \text { for }|z|<1
$$

and this completes the proof.
We remark that in the case $\alpha=0$, the above lemma reduces to a result of MacGregor [2; Lemma 1] and the inequality (6) with $\alpha=0, n=1$, gives another result of MacGregor [2, Lemma 2].

Lemma 3. Under the hypothesis of Lemma 1 we have for $|z|<1$ $\operatorname{Re}(p(z)) \geqq\left[1+(2 \alpha-1)|z|^{n}\right] /\left(1+|z|^{n}\right)$.

Proof. We have from equation (3), $F(z)=[1-h(z)] /[1+h(z)]$ and also from (8), $|h(z)| \leqq|z|^{n}$ for $|z|<1$. Hence the image of $|z|<r(0<r<1)$ under $F(z)$ lies in the interior of the circle with the line segment joining the points $\left(1-r^{n}\right) /\left(1+r^{n}\right)$ and $\left(1+r^{n}\right) /\left(1-r^{n}\right)$ as a diameter. Consequently $\operatorname{Re}(F(z)) \geqq\left(1-|z|^{n}\right) /\left(1+|z|^{n}\right)$ for
$|z|<1$. The result now follows from the last inequality involving $F(z)$ and equation (2).

Lemma 4. ([6]). If $h(z)=1+c_{n} z^{n}+c_{n+1} z^{n+1}+\cdots$ is analytic and $\operatorname{Re}(h(z))>0$ for $|z|<1$, then

$$
[1-\lambda|h(z)|]^{-1} \leqq\left(1-|z|^{n}\right) /\left[\left(1-|z|^{n}\right)-\lambda\left(1+|z|^{n}\right)\right]
$$

for $|z|<[(1-\lambda) /(1+\lambda)]^{1 / n}$, where $0 \leqq \lambda<1$.
3. Theorem 1. Suppose that $f(z)=z+a_{n+1} z^{n+1}+a_{n+2} z^{n+2}+\cdots$, and $g(z)=z+b_{n+1} z^{n+1}+b_{n+2} z^{n+2}+\cdots$ are analytic and $\operatorname{Re}(g(z) / z)>0$ for $|z|<1$. If $\operatorname{Re}(f(z) /[\lambda f(z)+(1-\lambda) g(z)])>0,0 \leqq \lambda<1$, for $|z|<1$, then $f(z)$ is univalent and starlike for $|z|<R^{1 / n}$, where $R=\left\{\left[(2 n+\lambda-n \lambda)^{2}+\left(1-\lambda^{2}\right)\right]^{1 / 2}-(2 n+\lambda-n \lambda)\right\} /(1+\lambda)$.

Proof. Let

$$
h(z)=f(z) /[\lambda f(z)+(1-\lambda) g(z)]=1+c_{n} z^{n}+c_{n+1} z^{n+1}+\cdots,
$$

then $h(z)$ is analytic and $\operatorname{Re}(h(z))>0$ for $|z|<1$. Now

$$
\begin{equation*}
f(z)[1-\lambda h(z)]=(1-\lambda) h(z) z p(z) \tag{10}
\end{equation*}
$$

where $p(z)=g(z) / z=1+b_{n+1} z^{n}+b_{n+2} z^{n+1}+\cdots$. Multiplying the logarithmic derivative of both sides of equation (10) by z we have

$$
\begin{equation*}
z f^{\prime}(z) / f(z)=1+z p^{\prime}(z) / p(z)+z h^{\prime}(z) /\{h(z)[1-\lambda h(z)]\} \tag{11}
\end{equation*}
$$

Equation (11) is valid for those z for which $1-\lambda h(z) \neq 0$ and $|z|<1$. Since $|h(z)| \leqq\left(1+|z|^{n}\right) /\left(1-|z|^{n}\right), 1-\lambda h(z) \neq 0$ in particular if $|z|<[(1-\lambda) /(1+\lambda)]^{1 / n}$. Now from equation (11), we have

$$
\left|z f^{\prime}(z) / f(z)-1\right| \leqq\left|z p^{\prime}(z) / p(z)\right|+\left|z h^{\prime}(z) / h(z)\right||1-\lambda h(z)|^{-1}
$$

and by using Lemma 2 with $\alpha=0$ and Lemma 4, this gives

$$
\begin{align*}
\left|z f^{\prime}(z) / f(z)-1\right| & \leqq \frac{2 n|z|^{n}}{1-|z|^{2 n}}+\frac{2 n|z|^{n}}{\left(1-|z|^{2 n}\right)-\lambda\left(1+|z|^{n}\right)^{2}} \\
& =\frac{2 n|z|^{n}\left[\left(1-|z|^{n}\right)-\lambda\left(1+|z|^{n}\right)+\left(1-|z|^{n}\right)\right]}{\left(1-|z|^{2 n}\right)\left[\left(1-|z|^{n}\right)-\lambda\left(1+|z|^{n}\right)\right]} \tag{12}
\end{align*}
$$

provided that $|z|<[(1-\lambda) /(1+\lambda)]^{1 / n}$.
The fact that $\left|z f^{\prime}(z) / f(z)-1\right|<1$ implies that $\operatorname{Re}\left(z f^{\prime}(z) / f(z)\right)>0$, it follows from the inequality (12) that $\operatorname{Re}\left(z f^{\prime}(z) / f(z)>0\right.$ if

$$
|z|<[(1-\lambda) /(1+\lambda)]^{1 / n}
$$

and if

$$
\begin{align*}
G\left(|z|^{n}\right) \equiv & (1+\lambda)|z|^{3 n}+(4 n+2 n \lambda+\lambda-1)|z|^{2 n} \tag{13}\\
& +(2 n \lambda-4 n-\lambda-1)|z|^{n}+(1-\lambda)>0 .
\end{align*}
$$

Let $|\boldsymbol{z}|^{n}=t$ and consider the cubic polynomial $G(t)$ for $0 \leqq t \leqq 1$. $G(t)$ has at most two positive zeros. Since $G(0)=(1-\lambda)>0$, $G[(1-\lambda) /(1+\lambda)]=-4 \lambda n(1-\lambda) /(1+\lambda)^{2}<0$ and $G(1)=4 \lambda n>0$, it follows that $G\left(t_{1}\right)=0$ for some t_{1} such that $0<t_{1}<(1-\lambda) /(1+\lambda)$ and $G(t)>0$ for $0 \leqq t<t_{1}$ and $G(t)<0$ for $t_{1}<t<(1-\lambda) /(1+\lambda)$. Hence $\operatorname{Re}\left(z f^{\prime}(z) / f(z)\right)>0$ for those z for which only the inequality (13) is true. Now the inequality (13) holds if, in particular

$$
\begin{aligned}
(1+\lambda)|z|^{3 n} & +(4 n-2 n \lambda+\lambda-1)|z|^{2 n} \\
& +(2 n \lambda-4 n-\lambda-1)|z|^{n}+(1-\lambda)>0
\end{aligned}
$$

or,

$$
\left(|z|^{n}-1\right)\left[(1+\lambda)|z|^{2 n}+(4 n-2 n \lambda+2 \lambda)|z|^{n}+(\lambda-1)\right]>0
$$

or,

$$
(1+\lambda)|z|^{2 n}+(4 n-2 n \lambda+2 \lambda)|z|^{n}+(\lambda-1)<0 .
$$

The last inequality holds if

$$
\begin{equation*}
|z|^{n}<\left\{\left[(2 n+\lambda-n \lambda)^{2}+\left(1-\lambda^{2}\right)\right]^{1 / 2}-(2 n+\lambda-n \lambda)\right\} /(1+\lambda) . \tag{14}
\end{equation*}
$$

Since $f(z)$ is univalent and starlike for those z for which

$$
\operatorname{Re}\left(z f^{\prime}(z) / f(z)\right)>0
$$

we have that $f(z)$ is univalent and starlike for $|z|<R^{1 / n}$, where R is the right side of (14).

If we put $\lambda=0$ in Theorem 1 we obtain the following result which, when $n=1$, reduces to a result of Ratti [5, Theorem 1].

Corollary 1. Suppose that $f(z)=z+a_{n+1} z^{n+1}+a_{n+2} z^{n+2} \cdots$, and $g(z)=z+b_{n+1} z^{n+1}+b_{n+2} z^{n+2}+\cdots$ are analytic and $\operatorname{Re}(g(z) / z)>0$ for $|z|<1$. If $\operatorname{Re}(f(z) / g(z))>0$ for $|z|<1$ then $f(z)$ is univalent and starlike for $|z|<\left[\left(4 n^{2}+1\right)^{1 / 2}-2 n\right]^{1 / n}$.

The functions $f(z)=z\left(1-z^{n}\right)^{2} /\left(1+z^{n}\right)^{2}$ and $g(z)=z\left(1-z^{n}\right) /\left(1+z^{n}\right)$ satisfy the hypothesis of Corollary 1 and it is easy to see that the derivative of $f(z)$ vanishes at $z=\left[\left(4 n^{2}+1\right)^{1 / 2}-2 n\right]^{1 / n}$ and hence $\left[\left(4 n^{2}+1\right)^{1 / 2}-2 n\right]^{1 / n}$ is in fact the radius of univalence for such functions $f(z)$. This shows that Corollary 1 is sharp and hence Theorem 1 is sharp at least for $\lambda=0$.

Theorem 2. Suppose $f(z)=z+a_{2} z^{2}+\cdots$, and

$$
g(z)=z+b_{2} z^{2}+\cdots
$$

are analytic for $|z|<1$ and $\operatorname{Re}(g(z) / z)>1 / 2$ for $|z|<1$. If

$$
\operatorname{Re}(f(z) /[\lambda f(z)+(1-\lambda) g(z)])>0 \quad \text { for }|z|<1
$$

then $f(z)$ is univalent and starlike for $|z|<(1-\lambda) /(3+\lambda)$.
Proof. Let $h(z)=f(z) /[\lambda f(z)+(1-\lambda) g(z)]=1+c_{1} z+c_{2} z^{2}+\cdots$. Now $h(z)$ is analytic and $\operatorname{Re}(h(z))>0$ for $|z|<1$ and

$$
\begin{equation*}
f(z)[1-\lambda h(z)]=(1-\lambda) h(z) g(z) \tag{15}
\end{equation*}
$$

If we let $g(z)=z p(z)$, then by applying Lemma 1 with $\alpha=1 / 2$ and $n=1$ we have that $p(z)=[1+z u(z)]^{-1}$, where $u(z)$ is analytic and $|u(z)| \leqq 1$ for $|z|<1$. Equation (15) now reduces to

$$
f(z)[1-\lambda h(z)]=(1-\lambda) z h(z) /[1+z u(z)]
$$

Hence

$$
\frac{z f^{\prime}(z)}{f(z)}=\frac{1-z^{2} u^{\prime}(z)}{1+z u(z)}+\frac{z h^{\prime}(z)}{h(z)[1-\lambda h(z)]}
$$

and

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right) \geqq \operatorname{Re}\left(\frac{1-z^{2} u^{\prime}(z)}{1+z u(z)}\right)-\frac{\left|z h^{\prime}(z) / h(z)\right|}{|1-\lambda h(z)|}
$$

Using Lemmas 2 and 4 with $n=1$, we get

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right) \geqq \operatorname{Re}\left(\frac{1-z^{2} u^{\prime}(z)}{1+z u(z)}\right)-\frac{2|z|}{\left(1-|z|^{2}\right)-\lambda(1+|z|)^{2}}
$$

for $|z|<(1-\lambda) /(1+\lambda)$.
Hence $\operatorname{Re}\left(z f^{\prime}(z) / f(z)\right)>0$ if $|z|<(1-\lambda) /(1+\lambda)$ and
$T(|z|) \operatorname{Re}\left[\left(1-z^{2} u^{\prime}(z)\right)(1+\overline{z u(z)}]-2|z| \operatorname{Re}[(1+z u(z))(1+\overline{z u(z)}]>0\right.$, where $T(|z|)=\left(1-|z|^{2}\right)-\lambda(1+|z|)^{2}$. The last inequality holds if

$$
\begin{aligned}
& T(|z|) \operatorname{Re}(1+\overline{z u(z)})-T(|z|) \operatorname{Re}\left[z^{2} u^{\prime}(z)(1+\overline{z u(z)}]\right. \\
& \quad+2|z| \operatorname{Re}[(1-z u(z))(1+\overline{z u(z)})]-4|z| \operatorname{Re}(1+\overline{z u(z)})>0
\end{aligned}
$$

or if

$$
\begin{aligned}
& {[4|z|-T(|z|)] \operatorname{Re}(1+\overline{z u(z)})+T(|z|) \operatorname{Re}\left[z^{2} u^{\prime}(z)(1+\overline{z u(z)})\right]} \\
& <2|z|\left(1-|z|^{2}|u(z)|^{2}\right)
\end{aligned}
$$

or

$$
\begin{aligned}
& |4| z|-T(|z|)|(1+|z||u(z)|)+T(|z|)|z|^{2}\left|u^{\prime}(z)\right|(1+|z||u(z)|) \\
& <2|z|\left(1-|z|^{2}|u(z)|^{2}\right) .
\end{aligned}
$$

This inequality holds, in view of (5) with $n=1$ if

$$
\begin{align*}
& |4| z|-T(|z|)|+T(|z|)|z|^{2}\left(1-|u(z)|^{2}\right)\left(1-|z|^{2}\right)^{-1} \tag{16}\\
& <2|z|(1-|z||u(z)|)
\end{align*}
$$

Two cases arise according as $4|z|-T(|z|)$ is nonnegative or not.
Case 1. $4|z|-T(|z|) \geqq 0$, i.e. $|z| \geqq\left[(4 \lambda+5)^{1 / 2}-(\lambda+2)\right] /(1+\lambda)$. Since $\left[(4 \lambda+5)^{1 / 2}-(\lambda+2)\right]<(1-\lambda)$ for $0 \leqq \lambda<1$, it follows, in view of inequality (16), that $\operatorname{Re}\left(z f^{\prime}(z) / f(z)\right)>0$ for those z for which $\left[(4 \lambda+5)^{1 / 2}-(\lambda+2)\right] /(1+\lambda) \leqq|z|<(1-\lambda) /(1+\lambda)$ and

$$
\begin{aligned}
& 4|z|-T(|z|)+T(|z|)|z|^{2}\left(1-|u(z)|^{2}\right)\left(1-|u(z)|^{2}\right)^{-1} \\
& <2|z|(1-|z||u(z)|)
\end{aligned}
$$

The last inequality holds, because of the original value of $T(|z|)$, if

$$
\begin{align*}
& 2|z|+2|z|^{2}-1+\lambda(1+|z|)^{2}-\lambda|z|^{2}(1+|z|) /(1-|z|) \tag{17}\\
& <|z|^{2}|u(z)|^{2}-\lambda|z|^{2}|u(z)|^{2}(1+|z|) /(1-|z|)-2|z|^{2}|u(z)| .
\end{align*}
$$

Since $|u(z)| \leqq 1$, the right side of inequality (17)

$$
\geqq|z|^{2}|u(z)|^{2}-2|z|^{2}|u(z)|-\lambda|z|^{2}(1+|z|) /(1-|z|) .
$$

Hence inequality (17) holds, if in particular

$$
\begin{equation*}
2|z|+2|z|^{2}-1+\lambda(1+|z|)^{2}<|z|^{2}|u(z)|^{2}-2|z|^{2}|u(z)| \tag{18}
\end{equation*}
$$

If we let $F(x)=x^{2}|z|^{2}-2 x|z|^{2}$, where $x=|u(z)|, 0 \leqq x \leqq 1$, then $F(x)$ is a decreasing function of x for $0 \leqq x \leqq 1$, and hence

$$
F(x) \geqq F(1)=-|z|^{2} \quad \text { for } 0 \leqq x \leqq 1
$$

Hence inequality (18) holds if $2|z|+2|z|^{2}-1+\lambda(1+|z|)^{2}<-|z|^{2}$ or $(3|z|-1)(|z|+1)+\lambda(1+|z|)^{2}<0$ or $3|z|-1+\lambda(1+|z|)<0$ or if $|z|<(1-\lambda) /(3+\lambda)$. Since $(1-\lambda) /(3+\lambda)<(1-\lambda) /(1+\lambda)$, we have shown that

$$
\begin{align*}
& \operatorname{Re}\left(z f^{\prime}(z) / f(z)\right)>0 \\
& \text { for }\left[(4 \lambda+5)^{1 / 2}-(\lambda+2)\right] /(1+\lambda) \leqq|z|<(1-\lambda) /(3+\lambda) \tag{19}
\end{align*}
$$

Case 2. $4|z|-T(|z|)<0$, i.e. $|z|<\left[(4 \lambda+5)^{1 / 2}-(\lambda+2)\right] /(1+\lambda)$. We intend to show that $\operatorname{Re}\left(z f^{\prime}(z) / f(z)\right)>0$ in this case also. Since $f(z)$ and $g(z)$ satisfy, in particular, the hypothesis of Theorem 1 with $n=1$, it follows from Theorem 1 that

$$
\operatorname{Re}\left(z f^{\prime}(z) / f(z)\right)>0 \text { for }|z|<\left[\left(5-\lambda^{2}\right)^{1 / 2}-2\right] /(1+\lambda) .
$$

It is easy to see that

$$
\left[(4 \lambda+5)^{1 / 2}-(\lambda+2)\right] \leqq\left(5-\lambda^{2}\right)^{1 / 2}-2 \quad \text { for } 0 \leqq \lambda \leqq 1
$$

and hence in particular

$$
\operatorname{Re}\left(z f^{\prime}(z) / f(z)\right)>0 \text { for }|z|<\left[(4 \lambda+5)^{1 / 2}-(\lambda+2)\right] /(1+\lambda)
$$

In view of the above and (19), it now follows that $f(z)$ is univalent and starlike for $|z|<(1-\lambda) /(3+\lambda)$ and this completes the proof.

For $\lambda=0$ the above result reduces to a result of Ratti [5, Theorem 2] and improves a result of MacGregor [2, Theorem 4] since $\operatorname{Re}(g(z) / z)>1 / 2$ does not necessarily imply that $g(z)$ is convex [7]. The functions $f(z)=z(1-z) /(1+z)^{2}$ and $g(z)=z /(1+z)$ satisfy the hypothesis of Theorem 2 with $\lambda=0$ and $f(z)$ is univalent in no circle $|z|<r$ with $r>1 / 3$ since $f^{\prime}(z)$ vanishes at $z=1 / 3$. This shows that Theorem 2 is sharp at least for $\lambda=0$.

A function $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$ is said to be starlike of order α, $0 \leqq \alpha<1$, for $|z|<1$ if $\operatorname{Re}\left(z f^{\prime}(z) / f(z)\right)>\alpha$ for $|z|<1$, we now prove the following result.

THEOREM 3. Let $f(z)=z+\sum_{k=n+1}^{\infty} b_{k} z^{k}$ and $g(z)=z+\sum_{k=n+1}^{\infty} b_{k} z^{k}$ be analytic for $|z|<1$ and $g(z)$ be starlike of order $\alpha, 0 \leqq \alpha<1$, for $|z|<1$. If $\operatorname{Re}(f(z) /[\lambda f(z)+(1-\lambda) g(z)])>0$ for $|z|<1$, then $f(z)$ is univalent and starlike for

$$
\begin{equation*}
|z|<[(1-\lambda) /(1+\lambda+2 n)]^{1 / n} \quad \text { if } \alpha=1 / 2 \tag{i}
\end{equation*}
$$

and

$$
\begin{equation*}
|z|<R^{1 / n}, \quad \text { if } \alpha \neq 1 / 2 \tag{ii}
\end{equation*}
$$

where

$$
R=\left\{\left[A^{2}+4\left(1-\lambda^{2}\right)(2 \alpha-1)\right]^{1 / 2}-A\right\} /[2(1+\lambda)(2 \alpha-1)]
$$

with $A=2 n+\lambda+1-(2 \alpha-1)(1-\lambda)$.
Proof. Proceeding as in the proof of Theorem 1 we get

$$
\operatorname{Re}\left(z f^{\prime}(z) / f(z)\right) \geqq \operatorname{Re}\left(z g^{\prime}(z) / g(z)\right)-\left|z h^{\prime}(z) / h(z)\right||1-\lambda h(z)|^{-1}
$$

Applying Lemma 3 (to $z g^{\prime}(z) / g(z)$) and Lemmas 2 and 4 we get,

$$
\begin{equation*}
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right) \geqq \frac{1+(2 \alpha-1)|z|^{n}}{1+|z|^{n}}-\frac{2 n|z|^{n}}{\left(1-|z|^{2 n}\right)-\lambda\left(1+|z|^{n}\right)^{2}} \tag{20}
\end{equation*}
$$

provided that $|z|<[(1-\lambda) /(1+\lambda)]^{1 / n}$.

Hence $\operatorname{Re}\left(z f^{\prime}(z) / f(z)\right)>0$ for those z for which $\left.|z|<[1-\lambda) /(1+\lambda)\right]^{1 / n}$ and the right side of inequality (20) is greater than zero. The latter holds if

$$
\begin{align*}
G\left(|z|^{n}\right) \equiv & (1+\lambda)(2 \alpha-1)|z|^{2 n} \\
& +[2 n+\lambda+1-(2 \alpha-1)(1-\lambda)]|z|^{n}-(1-\lambda)<0 \tag{21}
\end{align*}
$$

Let $|\boldsymbol{z}|^{n}=t$ and consider the quadratic $G(t)$ for $0 \leqq t \leqq 1$. Since $G(0)=\lambda-1<0, G[(1-\lambda) /(1+\lambda)]=2 n(1-\lambda) /(1+\lambda)>0$, it follows that $G\left(t_{1}\right)=0$ for some t_{1} such that $0<t_{1}<(1-\lambda) /(1+\lambda)$ and $G(t)<0$ for $0 \leqq t<t_{1}$ and $G(t)>0$ for $t_{1}<t<(1-\lambda) /(1+\lambda)$. Hence $f(z)$ is univalent and starlike for those z for which only the inequality (21) holds. Now the inequality (21) holds if

$$
|z|<[(1-\lambda) /(1+\lambda+2 n)]^{1 / n}
$$

when $\alpha=1 / 2$ and

$$
|z|<\left\{\left[A^{2}+4\left(1-\lambda^{2}\right)(2 \alpha-1)\right]^{1 / 2}-A\right\}^{1 / n} /[2(1+\lambda)(2 \alpha-1)]^{1 / n}
$$

when $\alpha \neq 1 / 2$, where $A=2 n+\lambda+1-(2 \alpha-1)(1-\lambda)$ and this completes the proof.

If we put $\lambda=0, n=1$ and $\alpha=0$ in the above result then we see that $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$ under the modified hypothesis is univalent and starlike for $|z|<2-\sqrt{3}$, a result obtained by MacGregor [2, Theorem 3]. On the other hand if $\lambda=0$ and $n=1$, Theorem 3 reduces to a result of Ratti [5, Theorem 3]. The functions

$$
f(z)=z\left(1-z^{n}\right) /\left(1+z^{n}\right)^{\frac{2-2 \alpha}{n}+1} \quad \text { and } \quad g(z)=z /\left(1+z^{n}\right)^{\frac{2-2 x}{n}}
$$

show that Theorem 3 is sharp at least for $\lambda=0$ and arbitrary n, since the derivative of $f(z)$ vanishes at

$$
z=\left\{\left[(n+1-\alpha)-\left((n+1-\alpha)^{2}-(1-2 \alpha)\right)^{1 / 2}\right] /(1-2 \alpha)\right\}^{1 / n}
$$

for $\alpha \neq 1 / 2$ and at $z=-1 /(2 n+1)$ when $\alpha=1 / 2$.
4. Let $S(R)$ denote the functions $f(z)=z+\sum_{k=2}^{\infty} a_{k} z^{k}$ which are analytic and satisfy $\left|z f^{\prime}(z) / f(z)-1\right|<1$ for $|z|<R$. Obviously every member of $S(R)$ is univalent and starlike for $|z|<R$. We now prove the following result.

THEOREM 4. Let $f(z)=z+a_{n+1} z^{n+1}+a_{n+2} z^{n+2}+\cdots$, and $g(z)=$ $z+b_{n+1} z^{n+1}+b_{n+2} z^{n+2}+\cdots$ be analytic and satisfy $\operatorname{Re}(g(z) / z)>0$ for $|z|<1$. If $|f(z) /[\lambda f(z)+(1-\lambda) g(z)]-1|<1,0 \leqq \lambda<1$, for $|z|<1$, then $f(z) \in S\left(R^{1 / n}\right)$, where R is the smallest positive root of the equation $(2 n \lambda+\lambda-n-1) R^{2}-(3 n+\lambda-2 n \lambda) R+(1-\lambda)=0$.

Proof. Let

$$
\begin{equation*}
h(z)=f(z) /[\lambda f(z)+(1-\lambda) g(z)]-1=c_{n} z^{n}+c_{n+1} z^{n+1}+\cdots \tag{22}
\end{equation*}
$$

By hypothesis, $h(z)$ is analytic and $|h(z)|<1$ for $|z|<1$ and hence by a result of Goluzin [1] we have that for $|z|<1$

$$
\begin{equation*}
\left|h^{\prime}(z)\right| \leqq n|z|^{n-1}\left(1-|h(z)|^{2}\right) /\left(1-|z|^{2 n}\right) \tag{23}
\end{equation*}
$$

and by Schwarz's lemma for $|z|<1$

$$
\begin{equation*}
|h(z)| \leqq|z|^{n} \tag{24}
\end{equation*}
$$

If we let $g(z)=z p(z)$, then we have from (22)

$$
f(z)[1-\lambda-\lambda h(z)]=(1-\lambda) z p(z)[1+h(z)] .
$$

Hence,

$$
\frac{z f^{\prime}(z)}{f(z)}=1+\frac{z p^{\prime}(z)}{p(z)}+\frac{z h^{\prime}(z)}{[1+h(z)][1-\lambda-\lambda h(z)]}
$$

and this gives

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leqq\left|\frac{z p^{\prime}(z)}{p(z)}\right|+\frac{\left|z h^{\prime}(z)\right|}{|1+h(z)||1-\lambda-\lambda h(z)|}
$$

Applying Lemma 2, with $\alpha=0$, we get, in view of (23), for $|z|<1$

$$
\begin{aligned}
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| & \leqq \frac{2 n|z|^{n}}{1-|z|^{2 n}}+\frac{n|z|^{n}\left(1-|h(z)|^{2}\right)}{\left(1-|z|^{2 n}\right)|1+h(z)||1-\lambda-\lambda h(z)|} \\
& \leqq \frac{2 n|z|^{n}}{1-|z|^{2 n}}+\frac{n|z|^{n}(1+|h(z)|}{\left(1-|z|^{2 n}\right)|1-\lambda-\lambda h(z)|}
\end{aligned}
$$

by using (24), we have

$$
\left|\frac{z f^{\prime}(z)}{f(z)}-1\right| \leqq \frac{2 n|z|^{n}}{1-|z|^{2 n}}+\frac{n|z|^{n}}{\left(1-|z|^{n}\right)\left(1-\lambda-\lambda|z|^{n}\right)}
$$

valid for $|z|<[(1-\lambda) / \lambda]^{1 / n}$. Hence $\left|z f^{\prime}(z) / f(z)-1\right|<1$ if

$$
|\boldsymbol{z}|<[(1-\lambda) / \lambda]^{1 / n}
$$

and

$$
2 n|z|^{n}\left(1-\lambda-\lambda|z|^{n}\right)+n|z|^{n}\left(1+|z|^{n}\right)<\left(1-|z|^{2 n}\right)\left(1-\lambda-\lambda|z|^{n}\right) .
$$

The last inequality holds if

$$
\begin{align*}
G\left(|z|^{n}\right) \equiv & \lambda|z|^{3 n}+(2 n \lambda+\lambda-n-1)|z|^{2 n} \tag{25}\\
& -(3 n+\lambda-2 n \lambda)|z|^{n}+(1-\lambda)>0 .
\end{align*}
$$

Let $|z|^{n}=t$ and consider the cubic polynomial $G(t)$ for $0 \leqq t \leqq 1$.
$G(t)$ has at most two positive zeros. Since $G(0)=(1-\lambda)>0$ and $G((1-\lambda) / \lambda)=-\left(n(1-\lambda) / \lambda^{2}<0\right.$, it follows that $G\left(t_{1}\right)=0$ for some t_{1} such that $0<t_{1}<(1-\lambda) / \lambda$ and $G(t)>0$ for $0 \leqq t<t_{1}$ and $G(t)<0$ for some values of t between t_{1} and $(1-\lambda) / \lambda$. Hence

$$
\left|z f^{\prime}(z) / f(z)-1\right|<1
$$

for those values of z for which only the inequality (25) holds. Now inequality (25) holds if, in particular

$$
(2 n \lambda+\lambda-n-1)|z|^{2 n}-(3 n+\lambda-2 n \lambda)|z|^{n}+(1-\lambda)>0
$$

and this completes the proof.
If we set $\lambda=0$ and $n=1$ in the above result we have the following.

Corollary 2. Suppose $f(z)=z+a_{2} z^{2}+a_{3} z^{3}+\cdots$ and $g(z)=$ $z+b_{2} z^{2}+b_{3} z^{3}+\cdots$ are analytic and satisfy $\operatorname{Re}(g(z) / z)>0$ for $|z|<1$. If $|f(z) / g(z)-1|<1$ for $|z|<1$, then $\left|z f^{\prime}(z) / f(z)-1\right|<1$ for $|z|<1 / 4(\sqrt{17}-3)$.

It may be noted that Corollary 2 implies, in particular, that $f(z)$ is univalent and starlike for $|z|<1 / 4(\sqrt{17}-3)$ and hence includes a result of Ratti [5, Theorem 4]. If we take $f(z)=z\left(1-z^{n}\right)^{2} /\left(1+z^{n}\right)$ and $g(z)=z\left(1-z^{n}\right) /\left(1+z^{n}\right)$, it is easy to see that these functions satisfy the hypothesis of Theorem 4 with $\lambda=0$. We see that $f^{\prime}(z)$ vanishes at $z_{0}=\left[-3 n+\left(9 n^{2}+4 n+4\right)^{1 / 2}\right] /(2 n+2)$ and hence

$$
\left|z_{0} f^{\prime}\left(z_{0}\right) / f\left(z_{0}\right)-1\right|=1
$$

This shows that Theorem 4 is sharp for at least $\lambda=0$ and also that Corollary 2 is sharp.

THEOREM 5. Let $f(z)=z+a_{n+1} z^{n+1}+a_{n+2} z^{n+2}+\cdots$ and $g(z)=$ $z+b_{n+1} z^{n+1}+b_{n+2} z^{n+2}+\cdots$ be analytic for $|z|<1$ and $g(z)$ be starlike of order α for $|z|<1,0 \leqq \alpha<1$. If

$$
\mid f(z) /[\lambda f(z)+(1-\lambda) g(z)]-1<1,0 \leqq \lambda<1, \text { for }|z|<1
$$

then $f(z)$ is univalent and starlike for $|z|<R^{1 / n}$, where R is the smallest positive root of the equation

$$
\begin{align*}
(2 \alpha-1) \lambda R^{3} & -(n+2 \alpha-1-\lambda) R^{2} \\
& +(2 \alpha-2-2 \alpha \lambda+\lambda-n) R+(1-\lambda)=0 \tag{26}
\end{align*}
$$

Proof. Proceeding as in the proof of Theorem 4 we have

$$
\frac{z f^{\prime}(z)}{f(z)}=\frac{z g^{\prime}(z)}{g(z)}+\frac{z h^{\prime}(z)}{[1+h(z)][1-\lambda-\lambda h(z)]} .
$$

Hence,

$$
\operatorname{Re}\left(\frac{z f^{\prime}(z)}{f(z)}\right) \geqq \operatorname{Re}\left(\frac{z g^{\prime}(z)}{g(z)}\right)-\frac{\left|z h^{\prime}(z)\right|}{|1+h(z)||1-\lambda-\lambda h(z)|} .
$$

Since $\operatorname{Re}\left(z g^{\prime}(z) / g(z)\right)>\alpha$ and $z g^{\prime}(z) / g(z)=1+c_{n} z^{n}+c_{n+1} z^{n+1}+\cdots$, we have by Lemma 3 and inequalities (23) and (24) that

$$
\begin{align*}
\operatorname{Re}\left(z f^{\prime}(z) / f(z)\right) \geqq & {\left[1+(2 \alpha-1)|z|^{n}\right] /\left(1+|z|^{n}\right) } \\
& -n|z|^{n} /\left[\left(1-|z|^{n}\right)\left(1-\lambda-\lambda|z|^{n}\right)\right] \tag{27}
\end{align*}
$$

valid for $|z|<[(1-\lambda) / \lambda]^{1 / n}$.
Hence $\operatorname{Re}\left(z f^{\prime}(z) / f(z)\right)>0$ if $|z|<[(1-\lambda) / \lambda]^{1 / n}$ and if (in view of inequality (27))

$$
\begin{align*}
G\left(|z|^{n}\right) \equiv & (2 \alpha-) \lambda|z|^{3 n} \\
& -(n+2 \alpha-1-\lambda)|z|^{2 n} \\
& +(2 \alpha-2-2 \alpha \lambda+\lambda-n)|z|^{n} \tag{28}\\
& +(1-\lambda)>0 .
\end{align*}
$$

Let $|z|=t$ and consider the cubic polynomial $G(t)$ for $0 \leqq t \leqq 1$. Since $G(0)=1-\lambda>0$ and $G((1-\lambda) / \lambda)=(-n(1-\lambda)) / \lambda^{2}<0$, it follows that $G\left(t_{1}\right)=0$ for some t_{1} such that $0<t_{1}<(1-\lambda) / \lambda$ and $G(t)>0$ for $0 \leqq t<t_{1}$ and $G(t)<0$ for some t between t_{1} and $(1-\lambda) / \lambda$. Hence $f(z)$ is starlike and univalent for $|z|<R^{1 / n}$, in view of inequality (28), where R is the smallest positive root of the equation (26).

The case when $\lambda=0$ in Theorem 5 is of special interest. In this case equation (26) becomes

$$
(n+2 \alpha-1) R^{2}-(2 \alpha-2-n) R-1=0
$$

which gives $R=1 / 3$ in case $\alpha=0$ and $n=1$ and

$$
\begin{equation*}
R=\left\{(2 \alpha-2-n)+\left[(2 \alpha-2-n)^{2}+4(n+2 \alpha-1)\right]^{1 / 2}\right\} /[2(n+2 \alpha-1)] \tag{29}
\end{equation*}
$$

if $\alpha \neq 0$. This proves the following result, which includes a result of Ratti [5, Theorem 6].

Corollary 3. Suppose $f(z)=z+a_{n+1} z^{n+1}+a_{n+2} z^{n+2}+\cdots$ and $g(z)=z+b_{n+1} z^{n+1}+b_{n+2} z^{n+2}+\cdots$ are analytic for $|z|<1$ and $g(z)$ is starlike of order α for $|z|<1,0 \leqq \alpha<1$. If $|f(z) / g(z)-1|<1$ for $|z|<1$ then $f(z)$ is univalent and starlike for
(i) $|z|<1 / 3$ if $\alpha=0$ and $n=1$
(ii) $|z|<R^{1 / n}$, where R is given by (29) if $\alpha \neq 0$.

It is easy to see that the functions $f(z)=z\left(1-z^{n}\right) /\left(1+z^{n}\right)^{(2-2 \alpha) / n}$ and $g(z)=z /\left(1+z^{n}\right)^{(2-2 \alpha) / n}$ satisfy the hypothesis of Corollary 3 and also that the derivative of $f(z)$ vanishes at $z=1 / 3$ if $\alpha=0$ and $n=1$, and at $z=\left\{\left[(n+2-2 \alpha)^{2}+4(n+2 \alpha-1)\right]^{1 / 2}-(n+2-2 \alpha)\right\}^{1 / n} /$ $[2(n+2 \alpha-1)]^{1 / n}$ if $\alpha \neq 0$. This shows that Corollary 3 is sharp.

References

1. G. M. Goluzin, Some estimates of derivatives of bounded functions, Mat. Sb., N.S., 16 (1945), 295-306.
2. T. H. MacGregor, The radius of univalence of certain analytic functions, Proc. Amer. Math. Soc., 14 (1963), 514-520.
3 . The radius of univalence of certain analytic functions, II., Proc. Amer. Math. Soc., 14 (1963), 521-524.
3. Z. Nehari, Conformal Mapping, First Ed., 1952, McGraw Hill Inc., New York.
4. J. S. Ratti, The radius of univalence of certain analytic functions, Math. Z. 107 (1968), 241-248.
5. G. M. Shah, The Radius of p-valence of some analytic functions, submitted to Czechoslovak Math. J.
6. E. Strohhäcker, Beiträge Zu Theorie der Schlichten Funktionen, Math. Z., 37 (1933), 356-380.

Received July 1, 1971 and in revised form January 28, 1972. This research was supported in part by a grant from the Research Committee of the University of Wisconsin Center System.

The University of Wisconsin - Waukesha

