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THE DIOPHANTINE PROBLEM Y2 - Xz = A IN A
POLYNOMIAL RING

D E N N I S L. JOHNSON

Let C[z] be the ring of polynomials in z with complex
coefficients; we consider the equation Y2 — X3 = A, with
AeC[z] given, and seek solutions of this with X, YeC[z] i.e.
we treat the equation as a "polynomial diophantine" problem.
We show that when A is of degree 5 or 6 and has no multiple
roots, then there are exactly 240 solutions (X, Y) to the problem
with deg X g 2 and deg Y ^ 3.

It is possible that, A being of degree 6, solutions (X, Y) exist
with deg X > 2 or deg Y > 3. We "normalize" the problem so as to
remove these from our consideration, and give the following definitions:
if A is any polynomial of degree d, we shall permit its formal degree
to be any integer divisible by 6 and greater or equal to d. Given A
of formal degree 6k, we require the solutions X, Y of the equation
to be of formal degrees 2k, 3k resp., i.e. deg X fg 2k, deg Y g 3k.
This problem will be called the problem of order k. The restriction
on the degrees of X, Y causes no loss in generality, for if k is chosen
large enough, it will exceed 1/2 deg X and 1/3 deg Y. Furthermore,
the classification by k has a natural geometric interpretation. We
confine our attention to the problem of order 1. The order restriction
enables us to projectivize the equation to an equation of degree 6k,
with deg A = 6k, deg X = 2k, deg Y = 3k.

Suppose then that A has formal degree 6, and (X, Y) is a solu-
tion of proper formal degree, d e g X ^ 2 , degY^3. The projec-
tive curve K: ws — 3Xw 4- 2 Y = 0 has the ^-discriminant Y2 — X3 = A,
so the function z: K—> S2 (proj. line) has its branches among the roots
of A, for finite z. At z — oo we introduce z = 1/z, w = w/z = 2Ίι?
and get

(4) (4) = 0 :

If X = aoz
2 + . . . , Y = δ0z

3 + , then

JP = $ 3 - 3(α0 + <*!? + α 2? 2)^ + 2(60 + btz + •) = 0

and

| ^ 3 ^ 2 - 3(α o + . . . )

Now at z = 0 (i.e. 2 = 00) 3 has a branch point if and only if BFjdw = 0;
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i.e. we must have

wz — 3α0w + 260 — 0

and

Zw2 - 3α0 = 0

which is true if and only if Δ — — a\ + δ2 = 0 i.e. if and only if
deg A < 6. Hence if deg A < 6, we put a "formal root" of A at °o
with multiplicity 6-degA.

We now assume the roots of A to be distinct. This entails
deg A = 5 or 6, with no multiple (finite) roots. The roots will be called
z19 , z6. Note that if either Xor Y were zero at zι9 the other would
also be, since A is zero there (for the case zL = ©o just imagine the pro-
jective form of Y2 — X3 = A; the statement then reads that deg A < 6
and if deg Y< 3 then d e g X < 2 and conversely). Hence A would
have at least a double zero at zι9 (or at oo; deg A ^ 4) contrary to hy-
pothesis. Hence X, Y ^ 0 at zL9 and degX = 2 or deg F = 3. Away
from a branch point we may write locally:

-Y-VA
V V

Q / ^ - ^ /—Γ"

Wι —

VA + ω̂ / - Y - VA

for proper choice of the roots; as we go around zL, Λ/A changes to
— VA, and we get a root permutation wo<-*wQ, wt<->w2. Thus the
branching number bL at zL is 1, and the total branching is 6, so the
genus is g = 6/2 — r + 1 = 1, i.e. ϋΓ is a torus.

We should also prove that K is irreducible; but if K were re-
ducible, factoring as (w — ά)(w2 + aw + β) (where α, /S are polynomials
in z by Gauss's lemma) i.e., we have 3X = a2 — β and 2Y= — α/3,
and A - Γ2 - X3 = 4/53 + 15α2/22 + 12α4/5 - 4α6 - - (α2 - iβ){2a2 + /S)2.
It is easy to see that deg a ^ 1, deg β ^ 2, and hence deg(α2 — 4/3) ^ 2.
Since deg A Ξ> 5 we see that deg (2α2 + β) ^ 1, whence A has double
roots, contrary to hypothesis.

Thus, any solution X, Y gives us an elliptic curve K represented
as a 3-sheeted branched covering of S2 with branch points at zL, where
z: K—>S2 is an elliptic function of degree 3. Furthermore, w is also
a function on K, and its poles are among those of z, and of order ^
the order of the z-poles: for expanding wL at z — °o we get

i/(δ0

2 -
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i.e.

wc — (coLv —b0 + V~Δ' + ω2ί%J — bQ — i/Ύjz + lower powers of z

i.e. the order of w is ^ order of z at all places z = oo. (Clearly w
has no other poles). Note also that the sum ΣwL of the three values
of w over any z is zero.

Now suppose conversely that we are given a branched covering
of S2 with 6 simple branch points at the roots of A; we then have
an elliptic curve if and a meromorphic function z: K~+ S2 with 3 poles
(one of which is double if a branch point is at °o) at places k19 k2, kz.
Now the set of meromorphic functions w on K whose poles are among
the kc form a vector space V of dimension 3. Given any such w, the
sum w0 + wx + w2 of its 3 values over any z gives us a function which
is:

(1) finite for finite z
(2) of order ^ the order of z at z = °°
(3) symmetric in the sheets, so rational in z.

Hence Σwc must be linear in z: Σwt = awz + bw, where aw and 6̂ , are
constants depending on w. Note that aw and bw are clearly complex-
linear in w, i.e. α, 6: V—>C are linear maps. Furthermore, since both
w — 1 and w = 2 are in V we have α and b are linearly independent:
for

α(l) = 0 a(z) = 3

6(1) = 3 b(z) = 0

and so aw — 0, ί̂  = 0 defines a one dimensional subspace of V i.e.
a w Φ 0, defined up to a constant multiple, of degree fg 3, with its poles
among those of z, and with Σwc = 0. Hence w satisfies some equation

w3 - ZPw + 2Q = 0, with P & Q rational in z

but

— 3P = WiWa + w2^3 + wzw1 is finite for 2 finite

hence P is a polynomial; also its degree is ^ 2 since the order of wt

is S that of z at ©o. Likewise Q is a polynomial of degree ^ 3 in
z. Finally w is not rational in z since if it were, it would actually
be linear, w = az + 6, and then

Jw, = 3w = 3αz + 36 = 0, i.e. w = 0 .

Hence ^ 3 — ZPw + 2Q = 0 is irreducible, and thus defines the curve
K. Because of this, we must have the branch points as roots of the
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discriminant Q2 - P 3 (=£0); i.e. A\Q2 - P3; deg ζ>2 - P 3 ^ 6, and is
<6 if and only if as we have seen previously, ©o is a branch point
of K; in the latter case we also have deg A = 5, and so in every
case we have deg (Q2 — P3) = deg A, i.e. A = k(Q2 — P3) for some
constant k Φ 0. If now we replace w by w/a(ae C), we replace
P by P/α2 and Q by Q/a* and Q2 - P 3 by (Q2 - P3)/α6; Hence we
may choose a scale factor a, determined up to a 6th root of unity,
and a rescaled w such that Q2 — P 3 = A, i.e. (P, Q) is a solution.
Thus we have shown that any 3 sheeted covering of S2 with simple
branches at A = 0 gives us exactly 6 solutions to the problem (These
6 solutions are distinct since two could be equal if and only if P or
Q = 0, which is impossible). Furthermore, if we have two different such
branched coverings Ku K2, then the corresponding solutions (Pl9 Q:),
(P2, Q2) must be distinct, since the data (P{, Qc) actually define K.

Thus the only remaining problem is to enumerate the different
coverings possible.

We choose a base point q e S2, distinct from the roots ze9 and
loops pc (c — 1, , 6) encircling the roots zc acting as free generators
of the fundamental group πλ(S2 — \Jj z3), subject only to the relation
Pi ••• PQ — identity. Choosing a numbering 1, 2, 3 of the sheets over
q, each pc determines a permutation πc (in S3) of the sheets, and these
completely determine the surface. Since the branches are all simple,
these permutations must be transpositions: (12), (23) or (31). Also not
all the πc can be equal, for then two sheets over q would remain
unconnected from the third. If we choose πl9 π5 arbitrarily then
7Γ6 is determined by πjcz π6 = e. Note however that πl9 π5 may
not be chosen all equal, since π6 would also be same by virtue of the
relation. Hence we may choose τzu 7Γ5 in 35 — 3 ways, obtaining
all possible coverings of the required nature. Two such choices πe, π[
give the same covering if and only if they differ by a renumbering
of the sheets over q, i.e. if and only if π[ = gπcg~ι for some g e Ss.
Since at least two different transpositions occur among the πn con-
jugation by the elements of S3 produces exactly 6 different equivalent
choices of πe; hence the total number of different surfaces is (35 — 3)/6 =
(34 — l)/2 = 40. Remembering that to each such surface there are 6
solutions, we have:

THEOREM. If A is a polynomial of degree 5 or 6 without multiple
roots, then there are exactly 240 distinct solutions of the equation
Y2 — Xs = A in polynomials X, Y for which deg X <£ 2, deg Y <̂  3.

It should be pointed out that, in principle at least, the deter-
mination of the solutions (X, Y) for a given A could be solved by
classical elimination theory. For example, if X — aQz2 + aγz + a2 and
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Γ = boz
B + b,z2 + b2z + δ3 is a solution to Y2 - X3 = A = a:02

6 + + «β,
then treating the α, and &y as unknowns, formal manipulation and the
equating of coefficients gives us 7 polynomial equations in 7 unknowns
which presumably (assuming independence) gives a finite set of so-
lutions for the unknowns a,, bά. This also shows us that the ac and
bj are algebraic over the field of the ak. In practice, however, this
elimination would probably not be computationally feasible.
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