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UNICOHERENT COMPACTIFICATIONS

M. H. CLAPP AND R. F. DICKMAN, JR.

In this paper we give necessary and sufficient conditions
for the Freudenthal compactification of a rimcompact, locally
connected and connected Hausdorff space to be unicoherent. We
give several necessary and sufficient conditions for a locally
connected generalized continuum to have a unicoherent com-
pactification and show that if such a space X has a unicoherent
compactification, then γX is the smallest unicoherent com-
pactification of X in the usual ordering of compactifications.

A connected topological space X is said to be unicoherent if, H> K
is connected whenever X — H + K where H and K are closed connected
sets. A continuum is a compact connected metric space and a gen-
eralized continuum is a locally compact, connected, separable metric
space. By a mapping we will always mean a continuous function.
If 2? is a subset of a space X, the closure of B in X will be denoted
by clx B and the boundary of B in X will be denoted by Fr x B. An
open set (respectively, a closed set) of a space X will be called a
7-open (respectively, 7-closed) subset of X provided it has a compact
boundary in X. A space is rimcompact (or semicompact) provided
every point has arbitrarily small neighborhoods with compact bound-
aries. All compactifications considered here are Hausdorff.

In [7] K. Morita showed that for any rimcompact Hausdorff
space X there exists a topologically unique compactification jX of X
satisfying:

(a) For every point x of yX and every open set R of ΎX con-
taining x there exists an open set V of yX containing x such that
VdR and Fr r z7cX

(b) Any two disjoint 7-closed subsets of X have disjoint closures
in yX.

Furthermore if C is any compactification of X satisfying (a), there
exists a mapping h of yX onto C such that h \ X is the identity map.
The compactification ΊX of X is called the Freudenthal compactification
of X after H. Freudenthal who first defined it [4].

DEFINITION. We say that a connected space X is 7-unicoherent
if whenever X = H + K, where H and K are 7-closed and connected
sets, H K is connected.

THEOREM 1. If X is a locally connected, connected, rimcompact
Hausdorff space, then jX, the Freudenthal compactification of X, is
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unicoherent iff X is y-unicoherent.

Proof. Suppose that X is 7-unicoherent and yX is not unicoherent.
Then yX = H + K where H and K are closed and connected sets and
H-K is not connected. Let H-K — A + B be a separation of H K
and let U and V be open subsets of yX containing A and B respec-
tively such that oλrΣU-QλrxV - Φ and ( P r r x F + ¥τϊXU)czX. By
Propositions (2.8) and (4.1) of [l],τX is locally connected so if C
denotes the component of U + V + H that contains H and D denotes
the component of U + V + K that contains K, C and D are open
connected subsets of yX such that (FrrxC + FrrχJD) c X. By Lemma
5 of [6], C'X and D-X are connected so that L = clx (C X) and Λf =
clz(D X) are 7-closed and connected subsets of X. Furthermore X=
L + M and L-M is not connected. This contradicts our hypothesis
that X is 7-unicoherent and thus yX must be unicoherent.

Now suppose that 7X is unicoherent and X is not 7-unicoherent.
Then X — H + K where H and K are 7-closed and connected subsets
of X and H'K is not connected. Let H K — A + B be a separation
of jy.ίΓ and let H', K', A! and ΰ ' denote the closures of H, K, A and
B, respectively, in jX. Since the boundary of H K in X is a subset
of the union of the boundaries of i ί and K in X, i ί K and hence L̂
and B are 7-closed subsets of X. Then by property (b) of Morita's
characterization of yX, A' and Br are disjoint closed subsets of yX.
We now argue that H'-K' is a subset of A' + B'. Suppose to the
contrary that there exists a point x in H' iΓ that does not belong to
A' + -B'. Let Z7 be any open subsets of 7X containing x such that
U does not intersect A' + J3' and such that Fr r x c X. Let Q be the
component of U that contains x and note that FτrzQ is a subset of X
and Q is an open subset of yX. Then since X is dense in yX and # is
a limit point of iϊ 7 and K', Q H and Q iΓare nonempty sets. But by
Lemma 5 of [6], Q X is connected and since Q misses H'K, Q X
must lie entirely in H or K, Of course this implies that either Q H
or Q'K is empty and this is a contradiction. Thus H' K = A' + B'
and this contradicts the unicoherence of yX. Therefore X is 7-
unicoherent.

We need the following notation and definitions. Let Sι denote
the unit circle in the complex plane, let I1 — {z = eiθ: 0 ^ θ <: Π} and
let I2 = {z = eiθ: Π ^ θ ^ 277}. For any space W let J^(W) denote
the set of mappings of W into S1 and let J^ (W) be the set of all
mappings of W into I5y 3 = 1, 2. For each / e S^ό( W),j = 1, 2, let Bd(f)
denote the set of all points t e Iό such that Fr f~ι{t) contains a compact
set K that separates W into two disjoint open sets M and N where
/ maps M into the arc from 1 to ί on Iό and / maps N into the arc
from ί to - 1 on I3. Finally let E(W) = {/ e
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B2(f\f-\I2)) is dense in S1}.

THEOREM 2. Suppose that X is a locally connected, rίmcompact
Hausdorff space. A necessary and sufficient condition that yX he
unicoherent is that every element of E{X) be nullhomotopic.

Proof of the necessity. Suppose that yX is unicoherent and let /
be an element of E(X). For j = 1,2, there exists a point tό e Ij such
that Fτx f'^tj) contains a compact set K3 that separates f~ι{Ij) into
two disjoint open sets M3 and Nj where / maps M3 into the arc from
1 to tj on Ij and / maps N3 into the arc from t3- to — 1 on Ij. Then
if we let M denote K, + K2 + ML + M2 and let N denote K, + K2

Nx + N2, X = M + N and the boundaries (relative to X) of M and N are
subsets of K — Kγ + K2. We assert that the boundaries of Mo — clrxM
and No — clrxΛΓ relative to yX are also subsets of K. In order to
see this suppose that x is an element of the boundary of MQ and x g
K. Then since ΊX is locally connected, there exists an open connected
set R of yX containing x such that R K = Φ and YvγxR(Z X. Then
R-M Φ Φ and R (X\M) Φ Φ since X is dense in γX Furthermore
R'X is connected by Lemma 5 of [6] and so R X is a connected
subset of X that meets M and X\Λf. This implies that R meets i£
and this contradicts our selection of x. Hence the boundaries of MQ

and No in yX are subsets of K. Also by Theorem 3 of [7], Mo

and No are topologically equivalent to yM and 7i^ respectively.
Then by Lemma 1 of [3], f\M has a continuous extension fM to Mo

and f\N has a continuous extension fN to JV"0. Then since No Mocz
K, the function h of YX into S1 defined by h\Mo — / i¥ and h\NQ =
fN is continuous. By Lemma (7.4) of [9, p. 228], Λ, is exponentially
representable on yX, i.e. there exists a real valued function θ on YX
such that h(x) = ei0{x) for all x e X. It is evident that this implies
that / = h IX is exponentially representable an X and by Theorem
(6.2) of [9, p. 226], / is nullhomotopic.

Proof of the sufficiency. Suppose that every element of E(X) is
nullhomotopic and suppose that yX is not unicoherent. Then by the
proof of Theorem 1 there exists closed and connected sets H and K
of yX such that H- K is not connected, Fr H and Fr K are subsets
of X and L = H X and M = K X are connected. Let H-K = A +
B be a separation of ίf K. We note that L and M are γ-closed subsets
of and thus by Theorem 3 of [7], yL is homeomorphic to H and 7M
is homeomorphic to K. It then follows from Lemma 2 of [3] that
there exists a mapping / of H into Ix such that f(A) = 1, /(J5) = — 1
and B^flH-X) is dense in 7lβ Similarly there exists a mapping g
of jRΓ into /2 such that g{A) = 1, #(J3) = — 1 and B2(g\K-X) is dense
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in J2. Then if we define hiyX-^S1 by h\H — f and h\K — g we
have that h is continuous and k — h\X is an element of 7?(X). Then
by our hypothesis and Proposition 6.2 of [9, p. 226], k is exponentially
representable, i.e. there exists a real-valued mapping Θ on X such
that for each xeX, k{x) = eiθ{x). But then Θ{A) c {0, ±2/7, ±477, •}
and θ{B)a{±Π, ±377, . •} and so if α e Θ{A) and 6 e 0(5), the interval
[a, b] lies in Θ(A) Θ(B) since L and M are connected. This is a con-
tradiction since then k{L) k(M) would then contain a semicircle
whereas it consists of the points —1 and 1. Hence yX is unicoherent.

DEFINITION. A connected space X is said to be weakly unicoherent
if whenever X—HΛ-K where H and K are closed and connected sets
and K is compact, H K is connected.

THEOREM 3. Let X be a locally connected generalized continuum.
A necessary and sufficient condition for yX to be unicoherent is that
X be weakly-unicoherent.

Proof of the necessity. Suppose that yX is unicoherent. Since X
is locally compact, X is open in yX and X* = ΊX\X is closed. Then
by Theorem (2.3) of [2], X— yX\X* is weakly-unicoherent.

Proof of the sufficiency* Suppose that yX is not unicoherent.
Then as in the proof of Theorem 1, yX has a representation yX =
P + Q where P and Q are open connected subsets of yX, the bound-
aries of P and Q in yX are subsets of X, c\rxP clrxQ = A + B where
A and B are disjoint nonempty closed sets and P has a nonempty
intersection with both the boundary of A and the boundary of B.
By Lemma 5 of [6], Pf = P X is a connected open subset of X and
thus is arcwise connected. Furthermore since the boundaries of A
and B are subsets of X there exists an arc aβ in Pf such that aβ A —
α and aβ B = β. Let 72 be the component of JP\(A + 73) that contains
aβ\(a + /S) and let W be an open subset of yX containing A such that
B-c\W = Φ and the boundary of W is a subset of X. Then 77 =
TϊJ Fr^PF is a nonempty compact subset of R and there exists a con-
tinuum Ko of X such that Ha Koa R. Let 7£ be the union of Ko

together with all the components of 7?\7f0 with boundary entirely in
KQ, i.e. having no boundary points in X (A + B). Then K separates
R since W- R contains a subarc ab\a from some point beaβ and
X\clxW contains a subarc aβ of aβ. But X\7Γ is connected since
X\K is the union of the closure of Q in X plus all of the components
of X\{A B) except R plus all of the components of R — Ko having a
boundary point in X (A + B). This contradicts Whyburn's charac-
terization of weak-unicoherence in [8, p. 185].
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COROLLARY 3.1. Let X be a locally connected generalized con-
tinuum. Then X is weakly-unicoherent iff X is 7-unicoherent.

This corollary follows immediately from Theorems 1 and 3.

REMARK. The authors have been unable to discover a direct
proof of Corollary (3.1). In general the two types of unicoherency
are not equivalent and in the absence of local compactness, Theorem
3 is not valid.

EXAMPLE. Let Y= {z complex 11/2 ^ \z\ ^ 1},

S = {z I I z I = 1}, A a countable dense subset of S ,

Lz = Y {ray from origin thru z)

Cr = {z\ |*| = r}, r e [1/2,1];

Z — {Cr*La\r is rational, aeA) .

The set Z is countable and dense in Y. Let X= Y— Z. The set X is
evidently T2, connected and locally connected (in fact, path connected
and locally path connected), rim compact but not locally compact.
Moreover:

1. X is weakly-unichoherent To see this, note that any con-
tinuum K c X has empty interior in X. If therefore X = H + K, H
closed and connected and K compact and connected, then necessarily
the open set X — H is a subset of K, and thus empty. It follows
that H K = K, which is connectedc

2. X is not 7-unicoherent. For let p, q e S — A be two distinct
points. Then Lp and Lq are compact and disjoint subsets of X. Assume
0 ^ ARGp < ARGq. Then

H = {z e XI ARGp :S ARGz ^ ARGq) and

K = {z e XlARGq ^ ARGZ ^ ARGp + 2π}

are closed, connected subsets of X such that X = H + K, H K = Lv +
Lq is compact but not connected.

3. yX is not unicoherent. To show this it is sufficient to show
that yX is just the set Y* To this end we use the characterization
of ΎX obtained by Morita [6]. We show that

(a) For any point x e ΊX and open set R of jX containing x, there
is an open set V of rX containing x such that VaR and F r r z 7 c J .

(b) Any two disjoint 7-closβd subsets of X have disjoint closures
in γX.



60 M. H. CLAPP AND R. F. DICKMAN, JR.

That (a) holds is evident from the definition of X. To see that
(b) holds, let A and B be disjoint 7-closed subsets of X and suppose
that peo\γxA'θ\rxB. First of all we note that p cannot belong
to X for then it would lie in A B which is empty. In particular p
does not lie in the compact set (FrxA + Frxi3). By our construction
of X there exists an open subset V of Y containing p such that
V (FrxA + FrxB) = Φ and V X is connected. Since p belongs to the
closure of A in Γ, V X A is not empty and since V X misses FτxA,
V X must lie entirely in A. But this is a contradiction since V X
must meet B. Therefore A and B have disjoint closures in Y.

DEFINITION. A mapping f:Xe Y is monotone provided for every
y e Y, f~\y) is compact and connected.

THEOREM 4. If X is a locally connected generalized continuum
and Y is any unicoherent compactification of X, then there exists a
monotone mapping g of Y onto ΊX such that g\X is the identity.

Proof. Let Z denote the quotient space of Y obtained from the
decomposition whose only nondegenerate elements are the components
of Y\X and let p denote the natural map of Y onto Z. Then since
X is open in Y, Z is a Hausdorff compactification of X. Furthermore
since point inverses of p are connected, it follows from Proposition
(2.2.1) of [9], that Z is unicoherent. Also Z\X is totally disconnected
and by the maximality of yX there exists a mapping h of ΊX onto
Z such that h \ X is the identity and h(yX\X) = Z\X. We assert that
A is a homeomorphism. In order to prove this we need only show
that h is one-to-one on yX\X. To this end let x,ye yX, x Φ y and
suppose that h(x) = h(y). There exists a connected and open set R
of ΊX containing x such that y£c\rR = K and Frr RaX. Then Z =
h(K) + h(jX\R) and h(K) h(yX\R) = h{x) + h(Fτ R) is not connected.
This contradicts the unicoherence of Z and hence h must be a homeo-
morphism. Then g — h~ιop is the desired monotone mapping.

COROLLARY 4.1. Suppose that X is a locally connected generalized
continuum. Then X has a unicoherent compactification if and only
if ΊX is unicoherent.

Proof. This result follows immediately from Theorem 4 and the
fact that monotone images of compact unicoherent continua are uni-
coherent.

THEOREM 5. Suppose that X is a locally connected generalized
continuum. Then the following are equivalent
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( i ) X is weakly-unicoherent
(ii) yX is unicoherent
(iii) X is Ί-unicoherent
(iv) X has a unicoherent compactification
(v) every mapping of X into S1 with compact boundaries of

point inverses is null-homotopic.

Proof. The equivalence of (i)—(iv) has been established in Theorems
(1) — (4). As an immediate consequence of Theorem (3.3) of [2], we
have that (v) implies (i) and (ii) implies (v) follows from Theorem 1
of this paper.

DEFINITION. A connected space X is said to have the complementa-
tion property provided whenever if is a compact set in X, X\K has
at most one component with a non-compact closure. See [2] for some
characterizations of this property.

THEOREM 6. Let X he a locally connected generalized continuum
and let Y be any unicoherent, locally connected continuum. There
exists a unicoherent compactification Z of X with Z\X homeomorphic
to Y if and only if X is weakly-unicoherent and has the complemen-
tation property.

Proof of the necessity. Suppose that Z is a unicoherent compac-
tification of X and Z\X is homeomorphic to Y. Then by Theorem
(4.2) of [2], X is weakly-unicoherent and has the complementation
property.

Proof of the sufficiency. Suppose that X is weaklyunicoherent
and has the complementation property. Then by Theorem (2.2) of
[5] there exists a compactification Z of X with Z\X homeomorphic
to Y and by Theorem (4.2) of [2], Z is unicoherent. This completes
the proof.

REMARK. It appears to be difficult to establish results concerning
the unicoherence of a compactification of an arbitrary completely regular
space. We can show that the Freudenthal compactification of a
rim-compact, locally connected Y-unicoherent space is the smallest
unicoherent compactification of X with yX\X zero-dimensional.
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