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DETERMINING A POLYTOPE BY RADON PARTITIONS

MARILYN BREEN

In an extension of the classical Radon theorem, Hare and
Kenelly have introduced the concept of a primitive partition,
allowing* a reduction to minimal subsets which still possess
the necessary intersection property.

Here it is proved that primitive partitions in the vertex
set P of a polytope reveal the subsets of P which give rise
to faces of conv P, thus determining the combinatorial type
of the polytope. Furthermore, the polytope may be recon-
structed from various subcollections of the primitive partitions.

2* Preliminary results* Throughout, | P | denotes the cardinality
of P. If P is a set of points in Rd, A U B is a Radon partition for P
iff P = A\J B,AΓ) B = 0 , and conv A Π conv B Φ 0 . Each of A and
B is called half a partition for P and each element of A is said to
oppose B in the partition. The Radon theorem says that for P^Rd

having at least d + 2 points, there exists a Radon partition for P.
When P is in general position in Rd and P has exactly d + 2 elements,
the partition is unique.

In [2], Hare and Kenelly introduce the concept of a primitive
partition: For PξΞ:Rd, A{J B is a Radon partition in P iff A (J B is
a Radon partition for a subset S of P. We say that the Radon parti-
tion A U B extends the Radon partition A' (J B' iff 4 ' e A and J3'<Ξ j?.
Finally, i u δ is called a primitive partition in P, or simply a primi-
tive, provided it is a Radon partition in P and A\J B extends the
Radon partition A' LJβ' iff A! = A and Bf = U. It is proved that
each Radon partition extends a primitive partition having cardinality
at most d + 2.

Theorem 1 follows immediately from the results of Hare and Kenelly.

THEOREM 1. Let P denote a set of d + 2 points in Rd and let
A\J B be a primitive for P. Then \ A\ + \B\ = d + 2 iff P is in
general position.

COROLLARY 1. // A U B is a primitive for P, P^Rd, then A{J B
is in general position in Rk for some k ^ d, and \ A\ + \B\ = k + 2
for this k.

THEOREM 2. If Pξ^R1 and A\jB is a primitive for P, then
dim (conv A Π conv B) = 0.
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Proof. By the corollary to Theorem 1, A (J B is in general posi-
tion in Rk for some k ^ d.

Recall that dim (aff A Π a O ) = dim aff A + dim aff £ - dim
(aff A + aff 5). Letting i = |A| and I = |B|, for points in general
position, this is equal to (i — 1) + (I — 1) — k — j + £ — k — 2. Also,
for k + 2 points in general position, the partition is unique, and so
j + j — & 4- 2, and the above is zero.

3* Reconstructing polytopes* Our goal is to establish the rela-
tionship between faces of conv P and primitive partitions for P.
Throughout, P denotes the vertex set of a convex polytope in Rd,
and \P\ = n.

THEOREM 3. If SξΞ^P and conv S is a face of conv P, then S
is not half a Radon partition for P.

Proof. Assume conv S is a proper face, for otherwise the result
is trivial. Let H be a supporting hyperplane to conv P for which
H Π conv P = conv S. Assume P S cl (!?+), the closure of the open
half-space H+. Then P - Sg£Γ+, and conv (P ~ S) Π conv S = 0 .

The following definitions are useful in obtaining a converse to
Theorem 3.

DEFINITION. Let S^P. Then we say conv S cuts conv P (or
S cuts conv P) iff one of the following is true: Either (1) dim aff
S = d or (2) dim aff S ^ d — 1 and any hyperplane containing S cuts
conv P.

DEFINITION. If S § P and conv S cuts conv P, then a subset Γ
of S is said to be a minimal cutting subset of S for P iff conv T
cuts conv P and no subset of S of cardinality less than | T\ cuts conv P.

THEOREM 4. If \P\ = n^d + 1, and Sξ^P, then the following
is true: conv S is a face for conv P iff for A g S , A is half a primi-
tive for P only in case all the elements opposing A in the primitive
are also in S.

Proof. If conv S is a face for conv P, then by Theorem 3, S
cannot be half a Radon partition for P Thus if A g S and A is half
a primitive for P, some of the elements opposing A must lie in S.
We must show that all the elements opposing A lie in S:

Suppose not, and let A U B be a primitive for P with 4 g S , 5 f ]
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S Φ 0 , and B f] (P ~ S) Φ 0 . Since A (j B is a primitive, conv A Π
conv (5 Π S) is empty. Thus any point in conv A Π conv B cannot lie
in conv S. Yet i g S , so conv A S conv S, and we have a contradic-
tion. Our supposition is false, and all members of B lie in S.

Conversely, suppose SζΞP has the property that for 4 g S , 4 is
half a primitive only in case all the elements opposing A in the primi-
tive come from S.

Let xeP ~ Sφ 0 .
First we assert that x £ aff S. If x e aff S, then reduce S to a

(k + l)-subset T g S such that affT=affS, where A; = dim aff S.
Then conv T is necessarily a simplex. Since T U {#} is a (A: + 2)-subset
of Rk = aff (Γ U {α}), there is a Radon partition for Γ U {x}. Let Ao U Bo

be a primitive for T U {#}. Necessarily a? appears, since T is a simplex.
Assume x e Z?o. Then Ao is a subset of T (and thus a subset of S)
which is half a primitive for P. Yet x opposes Ao and x is not in £,
contradicting our hypothesis. Thus we have proved that for x in
P ~ S,x$ aff S. Also, this implies that S - P Π a f f S and dim aff

We assert that S lies in a proper face of conv P. Assume that
S does not lie in a proper face of conv P to reach a contradiction.
Let x e P ~ S. US does not lie in a face of conv P, then conv S
necessarily cuts conv P. Choose S ' g S to be a minimal cutting sub-
set of S for P. Let p be in conv S' and interior to conv P. We
will show that a subset A of S' is half a primitive partition A U B
for P, where S g S :

Consider the ray from x through p. Since p is interior to conv
P, this ray intersects bdry conv P at a point v beyond p. Clearly
v$ aff S, or else x e aff(SU {v}) = aff S, a contradiction since x g. aff $.
Now # lies in a facet P7 of conv P. Choose exactly d vertices T in
F such that v e conv Γ and ϊ7 determines a simplex.

Let Q = Γ U S' U {̂ }. Consider the polytope conv Q. We will
show that S' is half a partition for Q:

By minimality of (S'|, it follows that aff Sr Π conv P = convS'.
For otherwise, conv S' is not in a face for the polytope aff S' Π conv P
(since the dimensions are the same), and some proper subset of Sr

must cut aff S' Π conv P. Thus a proper subset of S' cuts our original
polytope conv P, contradicting minimality of S'. This implies also
that aff S' Π conv Q = conv S\

To show that convS' Π conv (Q — S') ^ 0, it suffices to show
that aff S' Π conv (Q ~ S') Φ 0 . Assume that the intersection is empty
to reach a contradiction. If the intersection is empty, then strictly
separate aff S' from conv (Q ~ S') by a hyperplane if. Since H Π aff
S' = 0 , J5Γ must be parallel to aff S'. Let J be a hyperplane parallel
to H and containing aff S'. Clearly J f] conv (Q — S') = 0 , so J is a
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supporting hyperplane for conv Q such that J Π conv Q = conv S', and
conv S' is a face for conv Q. However, this is a contradiction, for
the segment [x, v] intersects conv Sf at p. Our assumption is false,
conv S' Π conv (Q ~ S') is not empty, and S' is half a partition for Q.

Let A U B be a primitive inside S' U (Q — S') We claim that a?
necessarily appears in J5, for otherwise we have BξΞ=T, but conv T
is a face for conv Q so by the first part of this theorem, 4 g Γ also.
But we chose T to be a simplex, so there is no primitive for T; we
have a contradiction, and x must appear.

Recall that x g S. Thus Bξ£S since x e B. At last we have con-
tradicted our hypothesis, for A U JS is a primitive such that i g S
and £§£S. Our assumption that S does not lie in a face of conv P
is false, and S does indeed lie in a face.

To complete the proof, it remains to show that conv S is a full
face of conv P. Select a face F of conv P having minimal dimension
for which SξΞ=F. Clearly S cannot lie in a proper face of the polytope
F. Thus, F S a f f S , so P f] F^P Π aff S = S, and vert F = S, fini-
shing the proof.

COROLLARY 1. For a sίmplicial polytope conv PandS^P, conv
S is a face for conv P iff no subset of S is half a primitive for P.

The proof to Theorem 4 required a construction which we will
need again, and for this reason we list it as a corollary:

COROLLARY 2. Let SξΞ;P,xeP~affSφ 0 . If S does not lie
in a face of conv P, let Sf be a minimal cutting subset of S for P.
Then aff S' Π conv P = conv S'. Moreover, S' is half a Radon parti-
tion for a subset Q of P where xeQ, and Q may be chosen so that
Q ~ [Sr U {x}] is a simplex and lies in a facet of conv P. For any
primitive A U B inside S' U [Qr - S'] with A^S',xeB.

COROLLARY 3. // P is in general position, S half a Radon parti-
tion for P, xe P ~ S, and S' a minimal cutting subset of S for P,
then S' is half a primitive for P, and this primitive may be selected
so that x still appears.

DEFINITION. We say that it is possible to reconstruct the polytope
conv P iff for each face F of conv P we can determine the unique
subset S of P such that conv S = F.

The author wishes to thank the referee for the following obser-
vation: Let μ determine the collection of all sets SQP for which conv
S is a face for conv P. Since μ is a complete lattice under inclusion,
and each maximal chain in μ is of length d + 2, beginning with 0
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and ending with P, we can determine the dimension of each face
conv S from its position in any maximal chain. The lattice μ also
determines all inclusion relations between faces and hence gives the
combinatorial type of conv P.

Therefore, when the definition of reconstruct is satisfied, the
combinatorial type of the poly tope is revealed.

DEFINITION. Let Pu P2 be vertex sets for two polytopes conv Pί9

conv P2, and let Ru R2> denote the set of primitive partitions for Pu P2

respectively. We say that R, is isomorphίc to R2 iff there is a one-
to-one map ψ of Pi onto P2 having the following property: A U B is
a primitive for P1 iff ψ(A) U ψ(B) is a primitive for P2.

The following corollary is a direct consequence of Theorem 4.

COROLLARY 4. Let Pl9 P2 be vertex sets for polytopes, Ru R2 their
respective primitive partitions. If Rλ is isomorphic to R2, then conv
Px is combinatorially equivalent to conv P2. Thus it is possible to
determine the combinatorial type of a polytope from the Radon parti-
tions of its vertex set.

The following example shows that the converse is false. That
is, two polytopes may be combinatorially equivalent although their
vertex sets have non-isomorphic Radon partitions.

EXAMPLE 1. Let {1, 2, 3, 4} be the vertex set for a square which
is base for two distinct bipyramids conv Pi and conv P2. Let {5, 6}
be the remaining vertices for conv Pίy and let the segment [5, 6] pass
through the center of the square. The primitives for Pγ are

{ 1 , 3} U {2, 4} ,

{ 1 , 3} U {5, 6} ,

{2, 4} U {5, 6} .

Now let {7, 8} be the remaining vertices for conv P2, where the
segment [7, 8] intersects the base within [2, 4] Π rel int conv {1, 2, 3}.
The primitives for P2 are

{ 1 , 3} U {2, 4}

{ 1 , 2, 3} U {7, 8}

{2, 4} U {7, 8} .

The primitives for Pu P2 are not isomorphic, yet the map ψ from
Pi onto P2 defined as the identity on {1, 2, 3, 4}, π/r(5) = 7, <f (6) = 8, sets
up a one-to-one correspondence between faces and is inclusion pre-
serving«
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Even for points in general position, combinatorial equivalence of
conv Pu conv P2 does not imply that Rx is isomorphic to R2. However,
in case we have exactly d + 2 points in general position in Rd, the
implication does hold.

COROLLARY 5. For i = 1,2, let conv Pi be a simplicial polytope
having d + 2 vertices, and let Rι be the unique Radon partition for
Pi. Then combinatorial equivalence of conv Pu conv P2 implies that Rx

is isomorphic to R2.

It is interesting that Corollary 5 may be used to obtain the fol-
lowing familiar result.

COROLLARY 6. Consider the collection & of all sets P in Rd con-
sisting ofd + 2 points in general position with no point of P interior
to conv P. Then there are exactly [d/2] possible Radon partitions for
P in ^ and each one determines a distinct polytope conv P. There-
fore, there are exactly [d/2] simplicial polytopes having d + 2 vertices.

4* Reductions* Of major interest is the problem of obtaining
a minimal subcollection of primitive partitions for P which will deter-
mine the combinatorial type of conv P. The following theorems are
concerned with one kind of reduction.

For xe P, let ^ x denote the subcollection of primitive partitions
for P defined in the following manner: A\J B belongs to <g% iff either
(1) x appears in A U B or (2) \A\ + |J5| ^ d + 1.

Theorems 5 and 6 show that conv P may be reconstructed from <g%.

THEOREM 5. For xeP and S g P ~ {x}, conv S is not a face for
conv P iff there is some member A[j B of ^ x such that AξΞ S, Bξ£S.

Proof. By Theorem 4, if a subset A of S is half a primitive
A U B for P, and B^S, conv S cannot be a face for conv P.

Conversely, suppose that x is a specified point in P, SξΞ P ~ {x},
and conv S is not a face for conv P. We consider cases:

Case 1. If S lies in a facet F of conv P, then by a fundamental
property of polytopes, conv S cannot be a face for F. Using Theorem
4, since conv S is not a face for the polytope F, a subset A of S must
be half a primitive A\J B for vert F, with B§=S. Moreover, since
F is (d — l)-dimensional, |A| + |JB|^d + l, and Condition (2) is satisfied.

Case 2. If S does not lie in a facet and if xe affS, then as in
the proof of Theorem 4, let dim aff S — k ^ d and reduce S to a
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(k + l)-subset T of S such that aff T = aίf 5. Conv T is necessarily
a simplex. Since T U {#} is a (& + 2)-subset of jβ* = aff (Γ U {%}), there
is a Radon partition for T [j {x}. Let A U i? be a primitive correspond-
ing to this partition- Necessarily x appears since conv T is a simplex.
Assume xeB. Then A g ^ S S , and Condition (1) is satisfied.

Case 3. If S does not lie in a facet and if x & aff S, then we
may call on the technical corollary following Theorem 4 to obtain a
subset S' of S and a subset Q of P having the property that £' U
(Q ~ S') is a Radon partition for Q. Moreover, if A U B is a primi-
tive inside S'U (Q ~ S')> then x appears in B. Thus AQS, B^S,
and a? opposes a subset of £ in this primitive. We have satisfied
Condition (1) and completed the proof of the theorem.

For x in P, Theorem 5 allows us to recognize all faces of conv P
not containing x by listing the primitives in which x appears plus the
primitives having ^ d -f 1 points. Our next problem, of course, is
recognizing the faces containing x, and we would like to be able to
do this from the same collection of primitives. Happily, the next
theorem shows that this is possible.

THEOREM 6. For Tξ^P and x in T, conv T is not a face for
conv P iff there is some member A{j B of ^ x such that Aξ^T, B£T.

Proof. Certainly if there is a primitive Al) B with AξΞ:T and
Bξ^T, then by Theorem 4, conv T cannot be a face for conv P.

Conversely, assume that conv T is not a face for conv P and x e T.
Again, we must consider cases:

Case 1. Now if T lies in a facet F of convP, repeating the
argument in Case 1 of Theorem 5 shows that Condition (2) is satisfied.

In the remaining cases, assume that T does not lie in a facet for
conv P. L e t S ^ T - {x}:

Case 2. If S is contained in a facet F but conv S is not a face
for conv P, then by repeating the argument in Case 1 of Theorem 5,
Condition (2) holds.

Case 3. Suppose S is contained in a facet and conv S is a face
for conv P. Recall T = S I) {x} is not a face, for we are assuming
that T does not lie in a facet. By Theorem 4, there is a primitive A[j B
for P with AQS{J{X) = T and Bξj£S\J{x}. Moreover, since convS
is a face for conv P, a subset C of S is half a primitive C U D for
P iff ΰ g S . This implies that x must appear in A, for otherwise
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we would have i g S and ΰ g S , a contradition. Thus A g Γ , £ ^ Γ ,
and x appears, satisfying Condition (1).

Case 4. If conv S is not in a facet for conv P and x is in aff S,
then unfortunately it is necessary to consider subcases:

(4a) If dim aff S = d, then since T Φ P, there is some y e P ~ T
and necessarily y is in aff S. Let T' be the vertex set for a cϋ-dimen-
sional simplex, xeTf^T=Sl] {#}. Then T' U {y} is a set having
d + 2 points in R\ so there is a primitive A u 5 for T" (J {#}. Certainly
?/ appears (since T' is a simplex). Assume y e B. Then A g Γ ' S Ϊ 7 ,
and Bξ£T. Now if | A\ + | J5| — d + 2, then α; appears and Condition
(1) holds. I f | A | + |J5|^fl! + l, then Condition (2) holds.

(4b) Similarly, if dim aff S = k < d and if there is some y in
(P f laf ϊS)- T, let T' be the vertex set for a ^-dimensional simplex,
xe T'QT, and repeat the above proof.

(4c) If dim aff S = k < d and if ( P n a f f S ) - Γ = 0, then select
a point y e P ~ aff Si. (This is possible since T ^ P.) Again, let T"
be the vertex set for a ^-dimensional simplex, x in T' g T.

Now we want to use our old friend, the corollary following The-
orem 4, but first we must make a few adjustments.

Let conv R be a new poly tope, where R = P — (aff T ~ T') We
have thrown away the vertices in aff T except for those in T". Notice
that x remains. Also y remains since y g aff S = aff T.

We assert that T" does not lie in a face of conv iϋ: If T" is in
a face, then let the hyperplane H support conv R with T' g if. Then
aff Γ 'SJBΓ But aff T' = aff T, so aff Γgff, and H supports conv
P ΞΞ conv (R U Γ) with Tξ^H. But Γ does not lie in a face of conv
P by hypothesis. We have a contradiction, and Tf does not lie in a
face of conv ϋ?.

We are ready for the corollary to Theorem 4. I" does not lie
in a face of conv R, and y is in i2 ~ aff Γ'. Thus there is a subset
T" of T' which appears as half a Radon partition for a subset Q of
iϋ, where y eQ. Moreover, Q may be chosen so that Q ~ {T" (J {?/})
is a simplex and lies in a facet of conv i?. For any primitive A{] B
inside T" U (Q ~ T") with A g T;', yeB.

Now if a? is in T", and if x e i , then we have i g ϊ 7 , B^T (since
yeB)y and α? appears in the primitive, satisfying Condition (1). If x
is in T" but a; is not in A, then by our minimality condition of T",
no proper subset of T" may cut conv R, so conv A cannot cut conv
Rf and likewise, conv A cannot cut conv Q. Then conv A must lie in
some face of conv Q, and certainly conv A Π conv B must lie in the
boundary of conv Q. By Theorem 1, Corollary 1, necessarily \A\ +
B\ S d + 1, satisfying Condition (2).

We still need to examine what happens in case x does not appear
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in T". Again by the corollary to Theorem 4, aff T" Π conv R = conv T".
Now conv T is a simplex, T" S T\ and a; e T. If a; is not in T",
then a? g conv T", and so α; g aff ϊ7". By the very choice of T", conv T"
cuts conv iϋ, and so conv T" does not lie in a face of conv R. Also
αe.B~af fT", so there is a subset Γί3) of T" which is half a
partition for a subset of R (by the corollary). Let C U -D be a cor-
responding primitive. Then C^Tm and re e Zλ Not all of D can lie
in T', for if it did, we would have a primitive C U D in the vertex
set of the simplex T', and this is ridiculous. Thus, D §£ T', but D^R,
and the only points of T7 in i2 are those in T\ Thus, D g T. To
review, CQT, D§=T, and # appears in D, satisfying Condition (1),
and completing Case 4c.

Case 5. If S is not in a face and # is not in aff S, then as in
Case 4c, reduce conv P to a new polytope conv R, where R = P ~
(aff S ~ S'), and where S' is the vertex set for a A:-dimensional simplex
with k = dim aff S. By our earlier argument, S' does not lie in a
face of conv R. Also, xe R and $ g aff Sf. Then by the corollary to
Theorem 4, a subset S" of S' appears as half a partition for a subset
Q of iϋ. Let A U β be a corresponding primitive. Then by the corol-
lary, A<^S" and α e JB. Moreover, E g Γ = S U {α;}, for if B g Γ , we
would have 4 g S ' , S g T i l Q = S'U {#}. But S' determines a simplex
and ê  g aff £', so S' U {x} determines a simplex and has no primitives.
Thus A g Γ j ΰ ^ ϊ 1 , and x appears in B, satisfying Condition (1) and
finishing Case 5.

This completes the proof of Theorem 6.
At last we have obtained a reduction in the number of partitions

necessary to reconstruct an arbitrary polytope. Combining Theorems
5 and 6, we have the following corollaries:

COROLLARY 1. The combinatorial type of conv P is determined
by ^ x for any x e P.

COROLLARY 2. For P in general position and x e P, the combin-
atorial type of conv P is determined by the primitive partitions for P
which contain x.

5* Locating points* Another approach to the problem of obtain-
ing a minimal collection of primitive partitions which determine conv P
leads to the method of reconstructing a polytope by locating vertices,
one at a time.

DEFINITION. Let P U {x} be the vertex set for a polytope in Rd

and assume that we have reconstructed conv P. We say that we
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locate x relative to conv P iff we are able to reconstruct conv (P U {#}).

DEFINITION. Let P be the vertex set for a polytope in Rd and
let x be a point not in P. For F a facet of conv P, we say x is
beyond F iff x is in the open halfspace of HF not containing P (where
ίZ^ is the hyperplane determined by F). For E a face of conv P, we
say x is beyond E iff α? is beyond JF for every facet F containing E.

To reconstruct conv P by locating vertices, one at a time, first
select 8L (d + l)-subset S of P for which there is no primitive. (Clearly
S determines a simplex.) The following theorem describes the pro-
cedure for locating additional points.

THEOREM 7. Let P U {x} be the vertex set for a polytope, and
assume that we have reconstructed conv P. Then to reconstruct conv
(P U {x}), it is sufficient to consider the primitives A\J B for P U {x}
such that A lies in a face of conv P, xe B, and x opposes no proper
subset of A in a primitive.

Proof. Using Theorem 5.2.1 of Grϋnbaum [1], we see that to
establish the faces for conv (P U {%}), it suffices to examine the faces
for conv P.

For S g P and conv S a face for conv P, S determines a face for
conv (P U {x}) iff no subset A of S appears as half a primitive A\J B
with x in B. Also, S U {x} determines a face for conv (P U {x}) iff for
every primitive A\J B with 4 g S and x in B, then 5 g S l i {x}

However, if there is one primitive Ao (J Bo with Ao £ S, x e Bo, and
ΰ o g S U {x}, then by general position of the points involved, xe aff S,
x lies in every face containing S, and $ U {x} determines a face for
conv (P U {#})• Therefore, if one primitive with i o 9 S and x in i?0

satisfies B0S S I) {x}, then every primitive with 4 g S and # in i?
satisfies S g S U {#}, and it is easy to determine all faces of conv (P U
{x}) from those listed.

As the following example illustrates, the construction in Theorem
7 allows us to locate x relative to conv P but does not allow us to
locate x relative to conv Q, where Q £ P.

EXAMPLE 2. Let {1, 2} U {3, 4, 5} be the primitive partition for the
set P = {1, 2, 3, 4, 5} in R\ and let 6 lie beyond the face conv {1, 4, 5}.
This does not determine the location of 6 relative conv Q, Q = {1, 2, 3, 4},
for 6 may or may not lie beyond the edge [1, 2] of conv Q.

REMARK. It is easy to find examples for which the subcollection
of primitive partitions described in Theorem 7 is minimal. Moreover,
at each stage of the construction at least one primitive is required
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to locate an additional vertex. Thus at least n — (d + 1) primitive
partitions are needed to reconstruct conv P. This lower bound is
always attained for simplicial polytopes having d + 2 vertices.
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