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APPLICATIONS OF RANDOM FOURIER SERIES OVER
COMPACT GROUPS TO FOURIER MULTIPLIERS

ALESSANDRO FIGA-TALAMANCA AND J. F. PRICE

The Fourier series of a function on a compact group can
be "randomized" by operating on each of the Fourier coef-
ficients by independent random unitary operators. In this
paper the theory of random Fourier series is used to prove
several new results for a type of Rudin-Shapiro sequence and
for Fourier multipliers. Thus in § 2 it is shown in effect that
2R(L*, I/O <= W{L\ L2) for all p, qe [1, oo] except for the pair
(p, Q) = (°°, 1)> while in §3 the theory of random Fourier series
is used to construct a type of Rudin-Shapiro sequence. This
sequence is then used in § 4 to obtain, for compact groups in
one case, and compact Lie groups in another, slightly more
restricted versions of several known families of strict inclu-
sions for Fourier multipliers over compact Abelian groups.

1* Notat ion and preliminaries* Throughout this paper we sup-

pose that G is a compact group (always Hausdorff) with normalized

Haar measure λG and that Γ is the set of equivalence classes of
continuous irreducible unitary representations of G. The spaces of
p-integrable functions, continuous functions and Radon measures over
G will be denoted by LP(G), C(G) and M(G) [or Lp, C and M] respec-
tively, while their respective norms will be denoted by || ||p> II ΊU
and IHU We will identify each function with the measure which
it generates.

If μeM(G), then μ is uniquely represented by the Fourier series

μ~Έd(y)trlμ(Dr)Dr( )],
γeΓ

where: Dr is a representative (which we assume to be fixed throughout
the sequel) of the class y e Γ; d(y) is the (finite) dimension of 7; tr
denotes the usual trace; and μ is the Fourier transform of μ with
respect to {Dr: 7 6 Γ}, that is

μ(Dr) = \ Dr(x)*dμ(x) ,
JG

for each y e Γ, Dr(x)* denoting the Hubert adjoint of Dr(x).
Let Hr denote the Hibert space of dimension d(y) corresponding

to the representation Dr, and let © denote the set consisting of func-
tions W on Γ such that W(i) is an endomorphism of Hr for each 7.
We can now define the "randomizing group" for G. Let & denote
the product group ΠTer^{Hr), where ^{Hr) is the compact group
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of unitary endomorphisms of Hr. Clearly gf may thought of as a
subset of @. Whenever μ e M(G) and U e & we denote the series

Σd(y)tr[μ(Dr)U(y)Dr]

by μu. The following two results are basic to this paper.

THEOREM 1.1. Suppose that & is equipped with its Haar measure
and that μ e M(G) has the property that μu represents a measure for
every U in a subset of & with positive measure) then μ is in L2(G).

THEOREM 1.2. Suppose that feL2(G). Then fu is the Fourier
series of a function in Γ\ISP<O° LP(G) for almost every U in gf, where
<& is equipped with its Haar measure.

The above two theorems are due to Figa-Talamanca and Rider
(see [4, (36.18)] and [2] or [4, (36.5)]).

MULTIPLIERS 1.3. If A and B are any two spaces selected from
LP{G), 1 ^ p ^ oo, C(G) and M(G), we define 2ft (A, B) to be the set
of We® such that

Σ,d(7)tr[w(y)μ(Dr)Dr]
γer

is the Fourier series of an element in B (we will denote this element
by Twμ) whenever μ belongs to A. Clearly the operator μ ι-> Twμa

is linear, while its continuity is an immediate consequence of the
closed graph theorem. Thus we define a norm on W{A, B) as the
usual operator norm on the set {Tw: We SK(A, B)}, and we denote this
set by M(A, B).

2* Multipliers and pseudomeasures* Let GL denote the subset
of 6? consisting of elements W such that

where || TF(7)|| denotes the usual operator norm for endomorphisms of
Hr. Whenever G has the property that sup{d(7): 7 6 Γ) is finite [for
example, if G is Abelian] and A, B are selected from LV(G), C(G) and
M(G), then it is banal to show that

(2.1) Wl(A, £)£<£«, ,

(see [4, Theorem (35.4), part IV]) and hence that each TeM(A,B)
may be written in the form T: f \—> f*μ, where μ is a pseudomeasure
(see [6, §2.2]).
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The inclusion (2.1) is known to be valid for some pairs A, B over
an unrestricted compact group (see, for example, the table on pp. 410-
411 of Hewitt and Ross [4]) and in this section we extend its validity
to some further pairs, thus completing five squares of Hewitt and
Ross's table.

THEOREM 2.1. Suppose that {A, B) is one of the pairs (Lp, Lq),

(Lq, L1), (L\ M), (L~, Lp) or (C, Lp) where 1 < p < 2 < q< oo; then

(2.2) m(A, B) = (£. .

REMARKS 2.2. (1) Four cases remain open: (L^^L1), (L°°, M), (C, L1)
and (C, M). We were not able to decide whether (2.1), and hence
(2.2), is generally true for these cases. It is straightforward to show
that 3ft(L~, M) = m(C, M) = 2K(C, Lι). Also whenever S^Γ has the
property that sup{ώ(τ): 7G Γ) = oo, it is not true that there exists
We ©V^ with supp WaS such that We Wl(C, L1) (cf. Theorem (35.4),
part V, of Hewitt and Ross [4]). For example, when S is a Λ(p) set
for some p > 1, Theorem 2.1 above applies to show that whenever
WeWl(C, L1) has the property that supp W^S, then We 6L; examples
are known of sets S which are Λ(p) for all p > 1 and yet sup{d(τ):

ΎeS} = co (see Remark 10 of [2] or (37.11) (a) of [4]).
(2) There can be no analogue of Theorem 2.1 for non-compact

locally compact Abelian groups. For example, if G is a non-compact
LCA group and 1 ^ p < q :g ^o, then there exists a multiplier operator
from LV{G) into Lq(G) which cannot be written as convolution with
a pseudomeasure; see Larsen [5, Theorem 5.5.5].

Proof of 2.1. By inspection of Table (36.20) of [4], it is clear that
to prove equality in (2.2) we need only show that 3K(A, B) S-®~. Sup-
pose that l < p < 2 < g < co and that WeW{Lq, M), that is, that
WfeM for all fe Lq. Since 2 < q < oo, whenever fe Lq, then

fϋiΊ\ >f(Dr)U(y)

is the Fourier transform of an Lq function for a set of U in g? of
measure 1 (Theorem 1.2). In this case WfU is the Fourier transform
of a measure for all such U and so, by Theorem 1.1, Wf must be
the Fourier transform of an L2 function. Thus We M(Lq, U) and
since it is know that W{Lq, U) = SKoo[4], we have proved (2.2) for
the pairs {L\ Lp), (Lq, U) and (L\ M).

If % is a subset of @, write g* - {TF*: TFeg}, where TF* is
defined by T H TΓ(7)*. Since we have just seen that 3K(2/, M) = ©̂
and since it is obvious that (GL)* = GL, the proof of (2.2) can be
completed by showing
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(2.3) SPΪ(C, Lqf) s Wl(L9, My .

However (2.3) is a simple consequence of the theory of adjoint
operators. For if WeWl(C, Lqf) we can define T£: Lq-+M by

\ gd(T$f) = \ (Twg)-fdXG
JG JG

for feLq,geC. Thus, whenever feLq and g is a trigonometric
polynomial,

= \ mnf) = \ (τwg
JG JG

= Σrd(y)tr[(TwgΓ(Dr)*f(Dr)]

= Σrd(Ύ)tr[g(Dr)*W*(Ύ)f(Dr)] .

Thus (T*fΓ(Dr) = W*(y)f(Dr) for all / in Lq showing that W* e
Wl(Lq, M), from which follows the required validity of (2.3).

We now look at the inclusion relation opposite to (2.1). The fol-
lowing simple proposition will describe exactly the cases when we
have

(2.4) @ o£Src(If*, Lq) .

PROPOSITION 2.3. Suppose that G is infinite; then the inclusion
(2.4) is valid if and only if q ^ 2 ^ p.

Proof, (i) II q ^ 2 ^ p, then Lq^L2^Lp and so Wl(Lp, Lq) 3
m{L\ U). However M(L\ U) = ^ and so (2.4) is satisfied.

(ii) On the other hand, suppose that p < 2 and that (2.4) is
valid. Then certainly 3^ S3K(LP, Lq) and a straightforward applica-
tion of Theorem 1.1 implies that L p g L 2 , an absurdity when G is
infinite compact.

(iii) Finally we have the case 2 < q ^ oo and 2 ^ p <^ oo. If
we also suppose q Φ oo, then

3K(I/, I/O S 3W(C, IΛ) s 2K(iv9', AT)*

by (2.3), and the proof proceeds as in paragraph (ii). The case q = oo
follows easily from the inclusions.

3* Rudin-Shapiro sequences* Let G be a compact group and
t any number in (2, oo]. By a Rudin-Shapiro sequence of type t (briefly,
a £-jRS-sequence) we shall mean a sequence (hn)nBN9 where N={1, 2, •},
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of functions in U(G) with the properties

ί i n f p n | | a > 0 , s u p | | M * < - >
( ' llim||^m = 0.

(Recall that by \\K\U we mean sup{||feΛ(Dr)||: 7eΓ}.)
When t = oo the above definition is essentially that of the Rudin-

Shapiro sequences discussed, for example, in Gaudry [3] (where it is
shown that oo -.βg-sequences exist for all non-discrete locally compact
Abelian groups) and in Edwards and Price [1, §5.4 and §§A.1-A.4]
(where further sufficient conditions are given for the existence of
oo-iϋg-sequences). In this section we show that ί-i2>S-sequences, t < oo,
exist for all infinite compact groups. However, we would point out
that the proof is completely existential in nature. Similarly to [1,
§5.4], it is easy to see that if (hn) satisfies (3.1), then we can con-
struct a sequence (kn) from (hn) with the properties

(3.2)

where B1 and B2 are strictly positive numbers independent of n.

LEMMA 3.1. (a) Let G be an infinite compact group and let t e
(2, oo). Then there exists a Rudin-Shapiro sequence (hn) of type t.
Without loss of generality we can take (hn) with \\hn\\z = 1 for all
ne N.

(b) Moreover, if G is also a Lie group, then there exists a second
t-RS-sequence, (hi) say, with \\hn\\2 — \\ht\\z{ = 1), hn*hi = ht*hn, and
a positive nonzero number p independent of n such that

( \ \ Ω 1 + ι i p \ \ h \\2lp < 1 1 / ? * * / ? II < I I Λ \\2lP

V 1 / Γ 11 " ' T i l I oo ^ M ϊ l n * Γvn I I P = II r i n | | o o 9

for all ne N, and 1 ^ p ^ 2.

REMARK 3.2. When G is the circle group (the simplest compact
Lie group) the original Rudin-Shapiro sequence (φn) consists of trigono-
metric polynomials such that φn takes only the values ± 1 on its
support [0, 2% One might suspect that in this case Lemma 3.1 (b)
would be satisfied by taking hn = ht = ΦJWΦΛIU Certainly (i) is satisfied
(with p = 1) but however (ii) is not since ||few||L = II^J|Γ2> whereas

= l l Σ β l " /H^llr2~iog2"||55Ii||2-
2

ί m=0 Ml
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This difference is not essential: by convolving t h e nth te rm of

the classical Rudin-Shapiro sequence with the Fejer kernel of order

2n one obtains sequences which, after normalizing, satisfy p a r t (b) of

the lemma. This depends on the fact t h a t for p > 1 Fejer kernel

and t h e Dirichlet kernel have essentially the same Lp norms. For

our purposes Rudin-Shapiro sequences based on Fejer type kernels

are more convenient.

Proof of 3.1. Let (Un) be a contracting sequence of open, nonvoid,

symmetric, central (that is, stable under inner automorphisms of G)

sets in infinite, compact G with the property t h a t \imnXG(Un) = 0.

[When G is also a Lie group we learn from (44.29) of [4] t h a t there

exists a number k > 0 such t h a t t h e U'ns may be selected to also

satisfy

,Q Qv ίX(Un) ^ kX(UJ
( 8 8 ) \

Define χn to be the characteristic function of Un. Since each Un

is central, the Fourier series of each χn has the form

X»~Σir*rd(7)%n(Dr)tr[Dr] ,

where the χn(Dr) are complex numbers. By the proof of Theorem 4
of [2] (which is Theorem 1.2 above), there exists a number B(t), in-
dependent of n, and a subset ^ n of & with measure 1 such that

(3.4) I I Z J r i | 4 ^ 5 ( ί ) | | χ . | | f

for all W in %fn. Since G is compact, the measure of c2/~γ = ^T C* is

also 1 so that ^ Λ and ^ w * have a nonvoid intersection. Thus cor-

responding to each n we can, and will, choose Wn in %fn n ^ Λ *

Let K = MUnr
ιl2l> and K = \{Un)-ιV*. Then

and

Thus (hn) is a £-i2S-sequence, and so is (hi) by similar reasoning.
Clearly \\hn\\2 — \\ht ||2 = 1 and hϊ*hn — hn*hl (since both convolu-

tions have λίϊ/J-^χJ 2 as their Fourier transforms), so that if G is a
Lie group we have only to prove (b) of 3.1. The right-hand inequality
for p = 2 is a trivial consequence of the fact that the norm of
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the operators f\^f*K from L2 into L2 is ||&»|U To prove the left-
hand inequality first note that \\hi *&»||p = λ(E7Λ)~1 | |χn*χw | |p.

Suppose that the sequence (Un) is selected with the extra pro-
perties (3.3). Whenever xe U2n,

because if y e U2n and x e U2n, then y~ιx e Un. Therefore

Thus

(since H ^ l ^ ^ \\K\l = (UnY
12) as required for (i), where /> = Ar1.

To complete the proof of 3.1 (b) we establish the following straight-
forward string of inequalities:

= \\k\\ι,
4* Strict inclusions for Wl{Lp, Lq). In this section we use the

existence of Rudin-Shapiro sequences of type t, t < oo, to prove several
strict inclusions for the spaces 2ft(Z/, Lq). In particular, our results
will imply:
and then use interpolation.

4.1. If p, q and r belong to [1, oo] and satisfy 1/p
1/r, then

1/q <; 1 —

whence we have, by considering the operators g\-+ g* / ,

(4.1) Lr(GΓQWl(Lp, Lq)

(where Lr(Gy denotes the subset of © consisting of Fourier transforms
of functions in Lr{G)). If furthermore 1 < p ^ q < ^, p Φ qf and
1 < r ^ oo, Theorem 4.3 below shows that the inclusion in (4.1) is
strict whenever G is infinite.
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4 2. If G is a compact group, then

(A 9\ crγ> /" T v\ T Q\\ i— 9(\}ί T v T v\
y± Δ) VJCylj ι

9 AJ 1) ^ VJv\Ju , LJ )

whenever p1 ^ p <̂  qγ. If furthermore (? is an infinite compact Lie
group and 2 < p < q19 then Theorem 4.4 below will show that inclu-
sion (4.2) is strict.

The above two results are essentially extensions to compact groups
or compact Lie groups of results in Gaudry [3] and Edwards and
Price [1, §5] for locally compact Abelian groups; in fact we follow the
broad outlines of the proofs used in [3].

THEOREM 4.3. Let G be an infinite compact group and let r
belong to (1, oo]. Then whenever 1 < p rg q < oo and p Φ q\ there
exist elements in 9K(LP, Lq) which are not in Lr(G)~.

Proof. Suppose that the hypotheses of the theorem are satisfied
and that furthermore Wl(Lp, Lq) § Lr(GΓ. By the closed graph theorem
this imbedding is continuous so there exists a number K such that
for every function in LU(G), with 1 — 1/u = 1/p — 1/q (see (4.1)), we
have

(4.3) 11/11,^*112/11™,

where ||2VI|p,g denotes the norm of the multiplier operator g\->g*f
from Lv into ZΛ We will show that (4.3) is impossible.

There are two cases.

Case 1. 1/p + 1/q < 1. In this case an application of the Riesz-
Thorin convexity theorem yields immediately that

II T II < II T \\a II T I | i—«
II J-f\\p,q ^ II ^ / | | 2 , 2 | | J-fWs',00

where 1/p = a/2 + (1 - a)/s' and 1/q = a/2. Since || Tf\\2>2 = | |/ |U and

l | ϊ / | | . , l β β = 11/11., we have

(4.4) HΓ/iu^s n/112,11/ ι ιr β

with a = 2/q Φ 0 and 1/β = q(l - 1/q - l/q)/(q - 2) Φ 0. Put t -
max{̂ 6, s, r'}; then t Φ oo and from §3 we know that there exists a
sequence (kn) of U functions satisfying (3.2). Substituting in (4.4)
yields

(4.5) \\TkJ\p>q^ c o n s t . 2-annί~a

which tends to zero as n tends to infinity since a Φ 0.
On the other hand

(4.6) llfc l l r ^ \\kn\\t, ^ B& .
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Inequalities (4.5) and (4.6) together contradict (4.3) when 1/p + 1/q < 1.

Case 2. 1/p + 1/q > 1. A similar application of the convexity
theorem yields

II T II < " II T \\a II T 111—or
II •*- f\\p q ~ II - * / l | 2 , 2 | | •*• fWus

= ιι/n~ιι/ιιr
where 1/p = a/2 + 1 — a, 1/q = a/2 + (1 — a)/s in which case a =
2p' Φ 0 and 1/s = p(l/q + 1/p ~ l)/(2 - p) Φ 0. Inequality (4.3) may
be contradicted in a manner similar to that of Case 1 by using a
sequence satisfying (3.2), again with t = max {w, s, r'}.

THEOREM 4.4. Suppose that G is an infinite compact Lie group
and that p0, q0, pu #i(ε[l, oo]) have the properties that p0 <̂  g0, l/p0 +
l/q0 < 1, Pi < co and q1 ^ 2. If furthermore qx > q0, then there exist
elements in Wl(LPQ, Lq°) which are not in Wl(LPι, ZΛ)

This result remains valid when 3Jt(LPo, Lg°) is replaced by 9K(L?o,
LpΌ) and/or W{LP\ Lqή is replaced by 2ft(ZΛ, Lpϊ).

Proof. Suppose that G and p0, q0, pu qι satisfy the hypotheses of
the theorem. By arguing as in the proof of Theorem 4.3 it is clear
that the result may be proved by finding a sequence (hn) of functions
such that

(4.7) min{ | |2\J | P j , f f l , || ThJq[,p[}/ max {|| 2\J | P θ i ί o , \\Thn\\q>,P>}~+^

a s n —> oo.

Let (hn) and (hi) denote a pair of £-i2S-sequences satisfying Lemma
3.1 (b) with t equal to the maximum of pl9 (q0 — 2)/qQ(l — l/q0 — l/p0)
and (2 — q'0)/qΌ(l — l/q0 — 1/Po) Then, by proceeding as in the proof
of Theorem 4.1, we have

(4.8) max (||TΛJ|,0,ff0> || ThJg{,p,) ^ const. \\hn\\^ .

On the other hand we have, by the definition of the norms,

and

\\Tin\\<ί.pί = H K J k . i ^ \\h.*K\\J\\h*\\9ι,

where T[n is t h e operator fv-*hn*f (see t h e discussion in 5.3 of [1]).
Thus

(4.9) m i n ( | | Γ A J | , l i f l , | |2\J | f f i i P j ) ^ \\K**K\\*J\\K\\9l .

Now it is easily shown t h a t if g e Lqi with qγ ^ 2, t h e n
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\\g\\l ^ \\g\\i\\g\\^)qi where 2 - β + (1 - β) -Ql ,

and so

(4.10) \\h:*hu\\qι^ \\h**hnnh**hn\\τι+^.

Applying 3.1 (b), (4.10) and the definition of a £-iϋS-sequence yields

min(\\ThJ\Pvqi\\ThJ\q[,p,) ^ (^ΊI^JU)2 / ^

where A is a non zero positive mumber. This inequality combines
with (4.8) to show that (4.7) is satisfied whenever q1 >q0 since ||λ»|U~*0
as n—* co.

COROLLARY 4.5. Theorem 4.4 (and hence also 4.2) remains valid
for compact group G which have a closed normal subgroup GQ such
that G/Go is an infinite (compact) Lie group.

REMARKS 4.6. (i) We do not know whether Theorem 4.4 remains
valid for all compact groups or, for that matter, whether part (b) of
Theorem 3.1 remains valid in the general case. We should remark
that the construction of Rudin-Shapiro sequences for compact Abelian
groups is more complicated for groups which do not have a torus as
a factor group; see Gaudry [3].

(ii) In the notation of [4], G has the property of Corollary 4.5 if
and only if there exists a finite subset 7i, •• ,7 f c of Γ such that
[%, '"Ύk\ is infinite. This follows from (28.10) and (28.6) of [4] com-
bined with the fact that a compact group G is a Lie group if and
only if its dual Γ is finitely generated.

Proof of 4.5. Suppose that Go is a closed normal subgroup of G
and that Γo is the dual (hypergroup) of G/Go. Let AQ = A(Γ, Go)
denote the annihilator of GQ in Γ; then there exists an isomorphism
φ between hypergroups Ao and Γo in such a manner that for each
7 G i 0 we can choose Dφir) so that

Dψ{r) oπ = Dr ,

where π denotes the natural projection from G onto G/Go. For the
sequel we suppose that the Dψ{r) are chosen in this manner. Thus,
for example, if / is an integrable function on G/Go and

f~Σrd(%)tr[f(Dr)DrQ] ,

then
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(4.11) / o π ~ Σ d(y)tr[f(Dnr))Dr] .
reA0

For each μe($(Γ0), we define μ' e@(Γ) by μ' — μoψ on Ao, and
zero otherwise. Corollary 4.5 is an immediate consequence of Theorem
4.4 and the fact that μem(Lp(G/G0), Lq(G/G0)) if and only if μ'e
Tt(Lp(G), Lq(G)). The proof of this final equivalence is routine. (For
example, see Lemma 4.6 of [3]; use can also be made of equations of
the form (4.11) above and (A.3) (A.5) and (A.6) in the appendix of
[1]).

Added in proof. The authors have been able to show that
Theorem 4.4 (and hence also 4.2) are valid for an unrestricted com-
pact group. The proof will appear elsewhere.
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