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THE FIXED POINT PROPERTY FOR ARCWISE
CONNECTED SPACES: A CORRECTION

R. E. SMITHSON AND L. E WARD, JR.

Several years ago the second author stated a fixed point
theorem for a class of arcwise connected spaces which includes
the dendroids as well as certain nonunicoherent continua.
Subsequently the first author detected a flaw in the proof.
The present collaboration has produced a correct proof. Since
the theorem has not been subsumed in the literature of the
intervening years and since other authors have alluded to it,
it seems desirable to publish the new proof.

For recent references to the theorem, see [1], [4] and [7].
The original, erroneous argument can be found in [5]. (The error
(p. 1277) occurs in the assertion that S' = \J (S'r) is connected, and
hence that ^V* has a maximal member.)

In the present exposition a few changes have been made in
terminology. In what follows an arc is a compact connected Haus-
dorff space with exactly two non-cutpoints. A space X is arcwise
connected if for each two elements x and y of X with x Φ y, there
exists an arc [x, y] contained in X. It is convenient to write [x, x] =
{x} and [x, y) = (y, x] = [x, y] — {y}. A circle is the union of two arcs
which meet only in their endpoints. We write • to denote the
empty set. If e e X then an e-ray is the union of a maximal nest
of arcs [e, x]. If R is an e-ray then

[efx):[e9x]aR}9

where the bar denotes closure. If X is not compact then it may be
that KR is empty, but in the compact case this cannot occur.

THEOREM. If X is an arcwise connected Hausdorff space which
contains no circle, if eeX and if f:X—+X is continuous, then f
has a fixed point or there exists an e-ray R such that f(KR) c KR.

COROLLARY. If X is an arcwise connected Hausdorff space which
contains no circle and if there exists ee X such that KR has the fixed
point property for each e-ray R, then X lias the fixed point property*

Before embarking on the proof of the theorem, some subsidiary
results will be helpful.

LEMMA 1. If X is a Hausdorff space, A is an arc and f:A—+
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X is continuous, then f(A) is arcwise connected.

Since A is locally connected and compact it follows that f(A) is
locally connected. In contrast to the case where A is separable, the
arcwise connectivity of f(A) is not immediate [3]. A proof of Lemma
1 can be found in the thesis of J. K Harris [2]; it is a modification
of an argument first used by J. L. Kelley (see, for example, [6; p. 39].)
We give a sketch of that argument.

If x and y are elements of f{A), then there exists a closed subset
F of A which is minimal with respect to {x, y) c f(F) and f(a) = f(b)
whenever a and b are the endpoints of a complementary interval of
A — F. It follows from this minimality that f(F) is connected and
that x and y are the only non-cutpoints of f{F). Therefore f(F) is
an arc, and so f(A) is arcwise connected.

For the remainder of this paper X is an arcwise connected Haus-
dorff space which contains no circle and ee X. In particular, if x
and y are distinct elements of X then the arc [x, y] is unique.
Consequently the relation x ^ y if and only if x e [e, y] is a partial
order. As usual, if x ^ y and x Φ y we write x < y.

Of course each arc in X has a natural order which does not
necessarily agree with the partial order ^ . If a and b are elements
of X and if p precedes q in the natural order on [α, b], we write [a,
p, q, b].

LEMMA 2. If a, b and c are elements of X such that a <b and
a 3C c, then ae [b, c].

Proof. If b ̂  c then by transitivity the hypothesis that α ̂  c is
contradicted. Therefore, by the uniqueness of arcs there exists d Φ
b such that [e, b] Π [e, c] = [e, d\. Moreover,

a e [e, b] - [e, d] c [d, b] c [d, b] (J [d, c] = [6, c] .

LEMMA 3. Let f:X-+Xbe continuous and suppose x and t are
elements of X such that x < t < f(x), t < f(t) and f(x) gΞ f(t). Then
there exists ye (x, t] such that f(y) e [f(x), f(t)] and f(y) ^ f(x).

Proof. By the uniqueness of arcs there exists ze X such that
[z, /(»)! = [e, /(&)! ΓΊ [/(«), f(x)] c [fit), f(x)], and therefore by Lemma
1, [z, f(x)] c f([x, t]). Because f(x) S /(*) and z ^ f{t) it follows that
z φ f(x). Consequently there exists ye (x, t] such that z — f{y)

LEMMA 4. If f: X—> X is continuous and if p and q are elements
of X such that [f(p), p, q, f{q)\, then there exists xe [p, q] such that
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x = f(χ).

Proof. By a straightforward maximality argument there exists
[x, y] c [p, q] which is minimal relative to [f(x), x, y, f{y)] If f(x) Φ
x then x = f(xt) where xx e (x, y] so that [xl9 y] contradicts the mini-
mality of [x, y]. Therefore f(x) = x.

A subset C of X is called a chain if it is simply ordered with
respect to the partial order ^ .

LEMMA 5. If xe X such that x ^ f(x) and if there exists tL e X
such that ίi ^ /(ίx) ^ x, then f has a fixed point.

Proof. Let T be a subset of X which is maximal with respect to
T\Jf(T) c [e, x] and t ^ f(t) for all te T. Since Γ c [e, a?], there is
a least upper bound ί0 of T. We will show that ί0 = /(ίo)

Suppose first that t0 ^ /(ί0) and f(tQ) S U Then there exist
disjoint open sets U and V such that toe V, f(V) c ί7and U f) [e, t0] =
• = VΠ[e, f(t0)]. If ίe T is chosen so that [t,to]c:V, then [/(ί),
/(ίo)] c f([t, t0]) c Ϊ7 since, by Lemma 1, /([£, ί0]) is arcwise connected.
Since t < f(t) and £ g£ f(to)9 it follows from Lemma 2 that £ e [/(£)>
/(ίo)] c Z7, and this contradicts our assumption that C7 and V are
disjoint. Therefore, either /(ί0) ^ ί0 or ί0 ^ /(ί0).

If /(ίo) < ί0 then there exist disjoint open sets 0 and W such that
£0e0 and f(0)aW. If ye T is chosen so that [y, ί0] c 0, then [/(?/),
/(ί o )]cΐΓ and, since /(ί0) <y ^ f(y), it follows that ye W. Again
this is a contradiction and therefore ί0 ^ /(ίo)

If ί0 < /(ί0) then there are disjoint open sets Ur and V such that
ίoe V, f(V') c Z7' and J7' Π [e, ί0] = D If se[tOf x] is chosen so that
[ί0, s] c F', then s < /(ί0) and hence [/(ίo), /(s)] c Z7'. By Lemma 3
there exists se(ί0, s] such that f(z)e[f(to),f(s)] and f{z)<,f(Q.
Since 2 < /(z) ̂  /(ί0) ^ a?, the maximality of the set T is contradicted.
Therefore ί0 = /(ί0).

Proo/ o/ ίλe theorem. Let ^ denote the family of all subsets
S of X such that S U /(S) is a chain and ί ^ /(ί) for each ί e S.
Clearly {e} e ̂ , so by Zorn's Lemma £f has a maximal member So.

Suppose So U /(So) c [e, x] for some x e l If x S f(χ) then /
must have a fixed point by Lemma 5. If x ^ /(a?) for each x such
that So U /(So) c [e, a;] then by maximality both x and f{x) are members
of So and hence x = /(#)•

Therefore we may assume that So U /(So) is cofinal in some ray
R. It follows readily that So is cofinal in R. We will show that if
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f(KB) — KR Φ • then / has a fixed point Choose yeKB such that
f(y) e X — KB, then there is a generalized sequence xn (i.e., a function
whose domain is some ordinal number) in R such that xn < xn+1 and
%% —+ V* Since So is cofinal in R, the sequence xn can be so chosen
that there exists yneSof) [xn, xn+ί], for each n.

If there exists n, such that xni $ [e, f{xn)\ then [f(yn), yni, x%1,
f(%n)]> so that by Lemma 4, / has a fixed point. Consequently we
may assume xn ^ f(xn) for each n. Moreover, since f(y) ί KR we
may assume f(xn) & R, for each n.

If there exists n2 such that f{xn) ^ f(f(%n2)) then we may find
m such that |/w e [e, f(f(xn.))] and therefore [/(τ/J, ym, f(xn), /(/fe2))].
Again, / has a fixed point by Lemma 4. Hence we may assume that
#n < /(»») is /(/(»n)) But then the hypotheses of Lemma 5 are
satisfied.
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