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ON THE COMPLETION OF LOCALLY SOLID VECTOR
LATTICES

D. H. FREMLIN

Let E be a Riesz space (= vector lattice), with a locally
solid Hausdorff linear space topology. Then its completion
also has a Riesz space structure. In this paper it is shown
how a pair of important properties which may be possessed
by E are inherited by its completion.

In general this article will rest on the foundations of [4] and [5].
A linear space topology on a Riesz space E is locally solid if 0 has
a neighbourhood basis consisting of solid sets. In this case, the lattice
operations are uniformly continuous; consequently (assuming that the
topology is Hausdorff) they can be extended to the linear topological
space completion E of E, and E will also be a locally solid topological
Riesz space ([5, p. 235; 4, p. 108]). E is now a Riesz subspace of E,
i.e. a linear subspace which is also a sublattice.

My object is to show how two important and common properties
are preserved by the process of completion. Unfortunately, although
these properties have been studied by various authors (see e.g. [3]),
no satisfactory terminology has been devised. I hope that my use of
the words "Fatou" (§1) and "Lebesgue" (§5), suggested by the famous
convergence theorems, will prove acceptable.

1* Fatou topologies* Let E be a Riesz space and X a, topology
on E. I will call X Fαtou if (i) it is a linear space topology (ii) 0
has a base consisting of sets U which are solid and such that if
0 cz 4 g U and A j x in E (i.e. if A is nonempty, directed upwards,
and has x for its least upper bound), then xe U.

This property is exceedingly common. Consider, for example,
C(X) for any compact space X; the basic neighbourhoods of 0 are of
the form {x: \\x\\oo <Ξ ε}, and these all have the property described
above. Similarly, in all the Lp spaces, for 0 <£ p ^ °o, the usual
topologies are Fatou.

The most striking thing about Fatou topologies is Nakano's
theorem (see [2]). For its full strength this requires a further concept.
Let us call a linear space topology on a Riesz space E SL Levi topology
if every topologically bounded set A £ E which is directed upwards
has an upper bound in E. (For example, all the spaces adduced above
have Levi topologies. Also, the weak topology associated with a locally
convex Hausdorff Levi topology will always be Levi). Then: A Levi
Fatou Hausdorff topology on a Dedekind complete Riesz space is com-
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plete. For a proof of this theorem, see [4], Proposition IV. 1.5. ([4]
uses the phrases "locally order complete" and "boundedly complete"
for Fatou and Levi topologies respectively in Dedekind complete
spaces).

2* Extensions of Riesz spaces; the spaces C^X). Let E be a
Riesz space. I shall call a Riesz subspace F of E orderdense if, for
every x ^ 0 in E,

x = sup {y: y e F, 0 ^ y ^ x} .

An important consequence of this is that if A is a nonempty subset
of F and x = sup A in F, that is, if x is the least member of F
which is an upper bound of A, then x = sup A in E. It follows that
if F is orderdense in E, and G is orderdense in F, then G is order-
dense in E.

Let X be a compact extremally disconnected Hausdorff topological
space. Let C^X) be the set of all those continuous functions x from
X to the extended real line [—°°, °°] such that {t: — oo < #(£) < °°}
is dense in X. Because every continuous real-valued function defined
on a dense open subset of X has a unique extension to a member of
Coo(X) ([6, Lemma V 2.1]), CJ.X) has a natural Riesz space structure
under which it is Dedekind complete ([6, Theorem V. 2.2]). The point
is that every Archimedean Riesz space can be embedded as an order-
dense Riesz subspace of some C^X) ([6, Theorems IV. 11.1 and V.
4.2]).

[6] gives several properties of the space CΌo(X), but not the one
we shall need; so I set it out here.

PROPOSITION 1. Let X and C^{X) be as above. Let AgCo o(X)+

be a nonempty set such that for every x > 0 in C^X) there is an
neN such that

nx Φ sup y A nx .
yeA

Then A is bounded above in

Proof. Define w : X-+ [0, oo] by

w(t) = sup y(t)vteX.
yeA

Then w is lower semi-continuous. Define v:X—*[0, oo] by

v(t) = inf isupw(M): U a nhd of t\
[.ueU )
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for every teX. Then discontinuous ([6, Theorem V. 1.1]). My aim
is to prove that v G CL(X), i.e. that v is finite on a dense set.

Suppose that G g X is open and not empty. As X is compact
and Hausdorff, there is a continuous function x o n l such that x > 0
but x(t) = 0 V t G X\G. Now α? e CΌ^X), so there is an n G iV such that

wα; ^ sup y A nx ,
j / e i

that is, there is a £ > 0 in C^iX) such that

Of course z ^ %#, so z is finite everywhere and z(t) — 0 V £ G X\G. Let
if = {£: z(ί) > 0}; then i ϊ is not empty and i f S G.

But if ί G H, y(t) ^ rae(£) - z{t) V y e A, so w(ί) ^ nx(t) - z(t); and
as nx — z is continuous, v(t) ^ rac(ί) — z(ί) < °° V teH.

Consequently, {t: v(t) < oo} meets G. As G is arbitrary, v G CM(X)
and is the required upper bound for A.

3* THEOREM 1. Let E be an Archimedean Riesz space with a
Hausdorff Fatou topology. Let E be its linear topological space com-
pletion with its natural Riesz space structure. Then (i) E is an
orderdense Riesz subspace of E (ii) the topology on E is Fatou.

Proof. My method is to find a complete Riesz space extending
E which has the required properties.

( a ) Let X be a compact extremally disconnected Hausdorίf topol-
ogical space such that E can be embedded as an orderdense Riesz
subspace of C^X) (§2 above). Let & be the set of all neighbour-
hoods U of 0 in E satisfying the Fatou property in § 1, i.e. such that
U is solid and if 0 c A g i 7 and A f x in E then x G U. Then
is a base of neighbourhoods of 0. For each U e &, set

U = {wiweC^X), VxeE, \x\ ^ \w\=>xe U) .

Then ϋ is a solid subset of C^X). Note that U Π E = U.

( b ) Suppose that U and V belong to & and that U + U^V.
Then U + E? S V". For suppose that Wj, w2eϋ and that a G E is such
that I it? I <s 1̂ 1 + w2 |. Set t?i = |wi| Λ |a?| and v2 = |a?| — vλ ^ |w2 | .
Then At = {y:yeE,0^y<.Vi} | ^ for i = 1, 2, so Λ + A2 ] v, + v2 =
I a? I in J57. But Λ + A2 S U + 17 S F, so \x\eV and ί c e F . As a; is
arbitrary, wt-\- w2e V; as w1 and tί;2 are arbitrary, ZJ + USV.

( c ) It follows that if we set
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H= Π U aϋ,

then H is a solid linear subspace of Cco{X)y including E, and {U f) H:
U e &) is a neighbourhood basis at 0 for a linear space topology %
on H. As every U Π H is solid, £ is locally solid; as U Π E = Z7 for
every Z7 e ^ , £ induces the original topology on i?. Also, % is
Hausdorff, for if w e H and w Φ 0, there is an a? e ϋ7 such that 0 <
x <̂  I w I now if Ϊ7 e & is such that xg U, w £ U.

( d) If Z7e ̂ , 0 c A £ t^, and A j w in ^ ( X ) , then w £ U. For
suppose that xeE and that \x\ ̂  | ^ [ . Then

{τ/+ + w~: y e A} | w + + w" = \w\ ^ \x\ ,

so

{Ia?I Λ (y+ + r ) : | / G 4 } | |a;| .

Now set

B = {z: z e E, 1 y e A, 0 ^ z ^ \x\ Λ (y+ + w~)} .

Then B \ , and as E is orderdense in C^{X), B \ \x\. But if z e 2?
there is a 7/ e A such that

s g y+ + ^~ ^ /̂+ + y~ = 12/[ ,

so, as y eϋ, ze U. Because Ϊ7 e &, xe U. As a? is arbitrary, w eϋ.

(e) Consequently the sets U Π H all satisfy the Fatou condition,
and £ is Fatou. (Here we have used the fact that H is orderdense
in CL(X), so that if A ] w in H, then A ] w in

(f) It also follows that % is Levi. For suppose that A S if is
directed upwards, is not empty, and is bounded. Then of course
B = {y+: ye A} is directed upwards, and it is bounded because X is
locally solid. Now suppose that x > 0 in CΌo(X). Let Ue & be such
that .τ 6 £7. Let n > 0 be such that A gΞ w U. Now

{w-ι2/ Λ #: y e B)

is a subset of ϋ, directed upwards; so its supremum belongs to fj
and cannot be x. Thus supyeBy A nx is not nx, and B satisfies the
condition of Proposition 1; so B, and therefore A, is bounded above
in Co^X). Let z0 = sup A in C^iX); this exists as CΌo(X) is Dedekind
complete. If F G ^ , there is an m > 0 such that τrΓιA^ V, so by
(d) again m~]z0 e V i.e. zoemV. As F is arbitrary, zoeH, and is the
required upper bound for A in H.
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(g) Thus X satisfies the conditions of Nakano's theorem, and H
is complete. So E may be regarded as the closure of E in H. Because
E is orderdense in H, it is orderdense in E. Finally, it is easy to
see that the topology on E induced by X is Fatou, because X itself
is Fatou and E is orderdense in H.

REMARK. Of course the condition "Archimedean" in the hypotheses
of the theorem is redundant, because any Riesz space with a Hausdorff
locally solid linear space topology must be Archimedean. The same
applies to Theorem 2 below.

4* Counter-example* Suppose that E = C ([0, 1]), the space of
real-valued continuous functions on the unit interval. Give E the
topology induced by || ^ where

li - \^\x\dμLVxeE ,

μL being Lebesgue measure. Then || 1̂  is a Riesz norm so the topology
is locally solid. But it is not Fatou and E is not orderdense in its
completion L\μL).

5* Lebesgue topologies. I should now like to proceed to a
stronger condition, also fulfilled by many examples. Because it is of
great interest in many contexts, I give as general a definition as I
can. Let E be any partially ordered set. A topology X on E is
Lebesgue if, whenever A is a non-empty subset of E and either A \ x
or A I x in E, then x belongs to the closure A of A. We shall be
interested, of course, in linear space topologies on Riesz spaces; in
this case, X is Lebesgue iff 0 e A whenever 0 c A J 0.

Now the ordinary topologies on the Lp spaces, for 0 ^ p < ©o,
are Lebesgue; so is the norm topology on cQ(N). We note that the
exceptions are the L°° and C(X) spaces. However, the weak topology
XS(L°°, Lι) is Lebesgue; in fact it is the case that the Mackey topology
Xk(L°°, Lι) is Lebesgue. Of course, if X is Lebesgue and ® is weaker
than X, then © is Lebesgue.

Lebesgue topologies have many remarkable properties. I give one
of the simplest.

LEMMA 1. A Lebesgue locally solid linear space topology on a
Riesz space is Fatou.

Proof. Let U be any neighbourhood of 0; let V be a closed
neighbourhood of 0 included in U; let W be a solid neighbourhood of
0 included in V. The point is that W is solid ([4, Proposition IV.
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4.8]). But now W^U and W satisfies the Fatou condition because
the topology is Lebesgue.

6* THEOREM 2. Let E be an Archimedean Riesz space with a
Lebesgue locally solid Hausdorff linear space topology. Then the com-
pletion E of E also has a Lebesgue topology.

Proof. We know by Lemma 1 and Theorem 1 that E is order-
dense in E. Suppose, if possible, that A j 0 in E, A is not empty,
but that 0 ί A. Let U be a solid neighbourhood of 0 in E such that
A does not meet U. Let V be a solid neighbourhood of 0 in E such
that V+ V+ 7 i U. Fix xoeA and find ayoeE such that xQ - y0 e V;
without loss of generality, I may suppose that y0 ^ 0. Now

{Vo Λ (xo - %)+; xeA} t y0 Λ x0,

so if

B = {z: z e E, 3 x e A, 0 ^ z ^ y0 A (x0 - %)+} ,

B \ x0 Λ y0 in i?. Similarly,

C = {w: w e E, 0 ^ w ^ (τ/0 - ô)+} ΐ (yϋ - ^o)+ ,

and so B + C ] y0 in E. As the topology on E is Lebesgue, there
exist ze B and w e C such that

yQ — w — z e V.

But as V is solid, we V, so τ/0 — £ e F + V, and

x0 - z = 2/o ~ « + fco - 2/o) e V + F + F i C7 .

However, there is an x e A such that 0 ^ z ^ (x0 — x)+, and there is
an x^A such that xι S % Λ x0 ^ #o — z But ί7 is solid, so xι e U;
which is the contradiction we require.

7* Conclusion* I think that Theorem 1 is more surprising than
Theorem 2. Both Fatou and Lebesgue topologies are frequently mys-
terious; but when we require a topology to be both locally solid and
Lebesgue we are imposing such a powerful condition that we expect
agreeable results to follow quickly. The Fatou property is harder to
tackle. Its actual applications in Theorem 1, while certainly essential
(see §4), are buried too deep in the argument to be readily disentangled;
so it's not clear just what it is about Fatou topologies that makes the
theorem true.

Theorem 1 is reminiscent of the result in [1] that if E is any Riesz
space, then the canonical image of E in Exx or (E~)z is orderdense.
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In fact this can be deduced from Theorem 1, though (as far as I
know) only by an extremely involved route. But there may be some
hope that the techniques of [1] could be adapted to give a simpler
proof of Theorem 1.

Theorem 2 is more straightforward, and can be proved independ-
ently of Theorem 1 without much difficulty. If in Theorem 2 we
know that E is locally convex, there is a proof direct from the result
in [1] quoted above. But the hypothesis of local convexity doesn't
seem to help in Theorem 1.

Theorem 2 recalls the construction of the ordinary function spaces.
If the spaces L\ U etc. are thought of as completions of the space
S of equivalence classes of simple functions under the appropriate
norms, their properties can be deduced from the fact that each of
these norms induces a Lebesgue locally solid topology on S.

REFERENCES

1. W. A. J. Luxemburg and A. G. Zaanen, Notes on Banach function spaces X, Proc.
Nat. Acad. Sci., Amsterdam (A) 67 (1964), 494-506; also in Indagationes Mathematicae,
vol. 26.
2. R. Metzler and H. Nakano, Quasi-Norm Spaces, Trans. Amer. Math. Soc, 123 (1966),
1-31.
3. H. Nakano, Linear topologies on semi-ordered linear spaces, J. Fac. Sci. Hokkaido
(I), 12 (1953), 87-104.
4. A. L. Peressini, Ordered Topological Spaces, Harper and Row, 1967.
5. H. H. Schaefer, Topological Vector Spaces, Macmillan, 1966.
6. B. Z. Vulikh, (trans. L. F. Boron) Introduction to the Theory of Partially Ordered
Spaces, Wolters-Noordhoff, 1967.

Received April 1, 1971. This work was done while I held a Central Electricity
Generating Board Junior Research Fellowship at Churchill College, Cambridge.

UNIVERSITY OF ESSEX

COLCHESTER, ENGLAND






